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ABSTRACT 
 

To effectively cope with the high dimensionality problem in face recognition, a novel two-dimensional 
maximum margin projection (2DMMP) algorithm for face recognition is proposed in this paper. Specially, 
2DMMP is based on the maximum margin projection (MMP) and fully considers the intrinsic tensor 
structure of face image. By utilizing both local manifold structure and discriminative information, as well 
as characterizing the correlations among pixels with the tensor structure, 2DMMP can effectively project 
the high-dimensional face image space into lower-dimensional feature space for face recognition. 
Experimental results on three face databases show that the proposed 2DMMP algorithm outperforms other 
related algorithms in terms of recognition accuracy. 
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1. INTRODUCTION  
 

Face recognition has received increasing 
attention from researchers in the past few decades 
due to its wide applications, such as identity 
authentication, surveillance, image retrieval and 
human-computer interaction [1]. In general, a face 
image of size of 1 2n n× is represented as a vector in 
the image space. Through the image space is of 
high dimensionality, the face image space is often a 
low dimensional feature space which is embedded 
in the ambient space. Therefore, it is often essential 
to conduct dimensionality reduction to acquire an 
efficient and discriminative representation before 
formally conducting classification. Dimensionality 
reduction could effectively avoid the “curse of 
dimensionality”, improve performance and 
computational efficiency of face recognition 
algorithms, and alleviate storage requirement [2]. 
Thus, dimension reduction is an important data 
preprocessing step for face recognition applications. 
Principal component analysis (PCA) and linear 
discriminant analysis (LDA) [3] are two of the well-
known dimensionality reduction techniques for face 
recognition. 

PCA also known as Karhunen-Loeve 
transformation, is a classical dimensionality 
reduction technique widely used in the areas of data 
mining and pattern recognition. PCA projects the 
data points into a lower dimensional subspace, and 
aims to find a set of mutually orthogonal bases that 

capture the global information of the data points in 
terms of variance. However, PCA is unsupervised, 
it does not fully use the class label information of 
the given face images. LDA also called Fisher’s 
linear discriminant, is a supervised dimensionality 
reduction method. LDA aims to find an optimal 
transformation that maps the data into a lower-
dimensional space (while preserving the class label 
information) that minimizes the within-class scatter 
and simultaneously maximizes the between-class 
scatter, thus achieving maximum discrimination. 
Both PCA and LDA have been extensively used in 
face recognition and created the popular Eigenfaces 
and Fisherfaces [3], respectively. However, both 
PCA and LDA effectively find only the Euclidean 
structure, they fail to discover the underlying face 
image manifold structure [4]. 

In recent years, various researchers have shown 
that face space is usually a sub-manifold of very 
low dimensionality which is embedded in the 
ambient space of very high dimensional image. In 
order to discover the intrinsic manifold structure, 
many manifold-related algorithms have been 
proposed for dimensionality reduction, such as 
isometric feature mapping(ISOMAP) [5] , locally 
linear embedding(LLE) [6], Laplacian eigenmap 
(LE) [7], and locality preserving projections (LPP) 
[4], four of the most popular manifold learning 
algorithms. However, the former three algorithms 
all suffer from the out of sample problem, i.e., we 
cannot obtain the low-dimensional representation of 
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samples not in the training set [8]. Although LPP 
adopts an linearization procedure to construct 
explicit maps over new testing set, all these 
algorithms are imperfect for supervised learning 
tasks(such as face recognition) since they are 
unsupervised and only consider the intra-class 
geometry. In order to overcome the above 
shortcomings, a novel manifold learning algorithm 
called maximum margin projection (MMP) [9], has 
been recently proposed for dimensionality reduction. 
By jointly considering the local manifold structure 
and discriminative information together for 
dimensionality reduction, MMP and its extensions 
have been successfully applied to various tasks. 
However, it still has the following problems that are 
not properly addressed till now: it unfold input 
image data into vectors before dimensionality 
reduction. In fact, face images are intrinsically in 
the form of second or higher order tensors. As a 
result, such vectorization process ignores the 
underlying data structure and often leads to the 
curse of dimensionality and the small sample size 
problems. Therefore, it is often helpful to process 
the face image in their original form and order. 
Several research groups have shown that the image 
as tensor representation can lead to good 
classification performance for different applications 
[10-12]. Nevertheless, how to conduct MMP for 
dimensionality reduction by encoding a face image 
as a two-order tensor structure in the context of face 
recognition is still a research area where few people 
have tried to explore. In this paper, we propose a 
new two-dimensional maximum margin projection 
(2DMMP) for face recognition and demonstrate that 
the proposed algorithm alleviate the above 
problems when using the vector representation. 

The rest of the paper is organized as follows. In 
Section 2, we provide a brief review of the MMP 
algorithm. The two-dimensional MMP algorithm 
for face recognition is developed in Section 3. The 
experimental results are reported in Section 4. 
Finally, the conclusions are presented in Section 5. 

2. BRIEF REVIEW OF MMP 
 

MPP is a recently proposed manifold learning 
algorithm for dimensionality reduction [9]. It is 
based on two local adjacency graphs and explicitly 
considers the local manifold structure and the class 
relationship between the face images. 

Given a set of face images p
n Rxxx ∈,,, 21  , 

Let [ ]nxxxX ,,, 21 = . Let bS and wS  be 

weight matrices of between-class graph bG and 

within-class graph wG , respectively. The optimal 
projection matrix of MMP can be obtained by 
solving the following maximization problem: 

( )( ) aXSLXaa T
wb

T

aopt ββ −+= 1maxarg   (1) 

with the constraint 

1=aXXDa T
w

T                            (2) 

where [ ]1,0∈β is an positive constant which 
control the tradeoff  between bL  and wS , it is 
empirically set to be 0.5 in our experiments. 

bbb SDL −=  is the Laplacian matrix of bG , 

bD is a diagonal matrix whose entries on diagonal 

are column sum of bS , i.e., , ,b ii b ijj
D S= ∑ , wD  is 

a also diagonal matrix whose entries on diagonal 
are column sum of wS , i.e., , ,w ii w ijj

D S= ∑ . The 

definitions of two weight matrices bS  and  wS  are 
as follows: 

( ) ( ),

, if and share thesamelabel

1, if or is unlabeled

but or  

0, otherwise

i j

i j
w ij

i w j j w i

x x
x x

S
x N x x N x

γ



= 
∈ ∈




  (3) 

( ) ( )
,

1, if or

0, otherwise.
i b j j b i

b ij

x N x x N x
S

 ∈ ∈= 


     (4) 

( ) ( ) ( ){ }kjxlxlxxN i
j

i
j

iib ,,1, =≠=      (5) 

( ) ( ) ( )ibiiw xNxNxN −=               (6) 

where ( )iN x  and ( )ixl  denote the set of k nearest 

neighbors and the label of ix , respectively. 

Specially, ( )b iN x contains the neighbors having 

different labels, and ( )w iN x  contains the rest of the 
neighbors. 

The objective function of MMP incurs a heavy 
penalty if neighboring points ix  and jx  in the 
within-class graph is mapped far apart. Meanwhile, 
it incurs a heavy penalty if neighboring points ix  

and jx  in the between-class graph is mapped close 
together. Finally, the optimal projection matrix a  
that maximizes (1) is given by the maximum 
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eigenvalue solution to the following generalized 
eigenvalue problem: 

( )( )1 T T
b w wX L S X a XD X aβ β λ+ − =         (7) 

Note that since the number of images is less than 
the dimensionality of images, it implies that 
both ( )( ) T

wb XSLX ββ −+ 1  and T
w XXD  are 

singular. To overcome this problem, one can first 
project the face image into the PCA subspace by 
throwing away those zero singular values. After the 
eigenvector are obtained by solving (7), then for the 
new testing image x , its lower-dimensional 
embedding is as follows: 

Tx y A x→ =                             (8) 

where y is a lower feature representation of the 
face image x , and [ ]1 2, , , lA a a a=  is the 
projection matrix of MMP. 

From the above computing process of MMP, we 
can observe the following drawbacks of MMP: It 
suffers from the singular problem, which stems 
from MMP unfold face image into vectors before 
dimensionality reduction. Such kind of 
vectorization largely increases the computational 
costs of dimensionality reduction and seriously 
destroys the intrinsic two-order tensor structure of 
face image. In order to overcome the above 
problem of MMP, we propose the tensor extension 
of MMP for face recognition in the following 
section. 

3. TENSOR EXTENSION OF MMP FOR 
FACE RECOGNITION 

 
Given a set of face images 1 2, , , nX X X in the 

two-order tensor 1 2n n× , tensor MMP aims to find 
two transformation matrices 1 1n lU ×∈ and 

2 2n lV ×∈  that project each face images iX into a 
lower-dimensional feature representation 

1 2l l
iY ∈ ×   by using T

i iY U X V= such that iY  
represents iX  in terms of local manifold structure 
and discriminative information, where 1,i n=  , 

1 1l n< , and  2 2l n< . 

In order to make the connected points of the 
between-class graph bG stay as distant as possible 
while the connected points of the within-class graph 

wG stay as close together as possible, two-
dimensional (tensor) MMP aims to find two 

transformation matrices by solving the following 
optimal objective function: 

2

,

2

,

min

min

i j w ij
ij

T T
i j w ij

ij

Y Y W

U X V U X V W

−

= −

∑
∑

            (9) 

2

,

2

,

max

max

i j b ij
ij

T T
i j b ij

ij

Y Y W

U X V U X V W

−

= −

∑
∑

         (10) 

with the constraint  

( )1 1
TT T T

w wY D Y U XV D U XV= ⇒ =        (11) 

According to the matrix theory ( )2 TA Tr AA= , 
(9) and (11) can be rewritten as follows: 

( )( )

2

,

,

, ,

, ,

2

2

i j w ij
ij

TT T T T
i j i j w ij

ij

T T T T T T
i w ii i i w ij j

i ij

T T T T T T
i w ii i i w ij j

i ij

Y Y W T

Tr U X V U X V U X V U X V W

Tr U X VD V X U U X VW V X U

Tr U X VD V X U U X VW V X U

−

 = − −  
 

= − 
 
 

= − 
 

∑

∑

∑ ∑

∑ ∑

(12) 

( )
( )
( )

( )

T
w

TT T
w

TT T
w

T T T
w

Tr Y D Y

Tr U XV D U XV

Tr U XV D U XV

Tr U X VD V X U

 =   
 =   
 =  

                   (13) 

By combining (12) and (13), the minimization 
problem of (9) can be transformed into the 
following maximization problem: 

,

,

T T T
i w ij j

ij

T T T
i w ij j

ij

Tr U X VW V X U

Tr U X VW V X U

 
 
 
  

=   
   

∑

∑
             (14) 

In addition, by using ( )2 TA Tr AA= , (10) can 
be rewritten as follows: 
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( )( )

2

,

2

,

,

, ,

, ,

2

2

i j b ij
ij

T T
i j b ij

ij
TT T T T

i j i j b ij
ij

T T T T T T
i b ii i i b ij j

i ij

T T T T T
i b ii i i b ij j

i ij

Y Y W

U X V U X V W

Tr U X V U X V U X V U X V W

Tr U X VD V X U U X VW V X U

Tr U X VD V X X VW V X U

−

= −

 = − −  
 

= − 
 
  

= −  
   

∑
∑

∑

∑ ∑

∑ ∑

(14) 

In order to concisely describe in the following, 
we define 

,
T T

vw i w ij j
ij

Q X VW V X= ∑                      (15) 

, ,
T T T T

vb i b ii i i b ij j
i ij

Q X VD V X X VW V X
 

= − 
 
∑ ∑    (16) 

( )T T
w wQ X VD V X=                             (17) 

Then, the optimal objective function of tensor 
MMP can be rewritten as the following 
maximization problem: 

( )( )
,

1
max

T
vb vw

TU V
w

Tr U Q Q U

Tr U Q U

β β + − 
  

           (18) 

Similarly, by using ( )2 TA Tr A A= , the optimal 
objective function of tensor MMP can be also 
rewritten as the following maximization problem: 

( )( )
,

1
max

T
ub uw

TU V
w

Tr V Q Q V

Tr V P V

β β + − 
  

           (19) 

where 

,
T T

uw j w ij i
ij

Q X UW U X= ∑                      (20) 

, ,
T T T T

ub i b ii i i b ij j
i ij

Q X UD U X X UW U X
 

= − 
 
∑ ∑     (21) 

( )T T
w wP XUD U X=                            (22) 

Finally, we obtain the optimal problems of tensor 
MMP: 

( )( )
,

1
max

T
vb vw

TU V
w

Tr U Q Q U

Tr U Q U

β β + − 
  

          (23) 

( )( )
,

1
max

T
ub uw

TU V
w

Tr V Q Q V

Tr V P V

β β + − 
  

         (24) 

The above two maximization problems (23) and 
(24) depend on each other, and hence can not be 
solved independently. In the following, we propose 
a simple iteration method to solve these two 
optimization problems. In this algorithm, we first 
initialize the projection matrices U and V , then 
each projection matrix U (orV ) can be iteratively 
solved by fixing the other projection matrix 
V (or U ) in alternation. Specially, we first fix 
V and use the maximization problems (23), then 
U can be computed by solving the following 
generalized eigenvector problem: 

( )( )1vb vw wQ Q U Q Uβ β λ+ − =                 (25) 

Let the column vector 1 2, , , dU U U  be the 
solution to (25) according to their 
eigenvalues 1 2 dλ λ λ> > , thus the projection 
matrix ( )1 2, , , dU U U U=  . 

Once U is obtained, by using the maximization 
problems (24), V can be updated by solving the 
following generalized eigenvector problem: 

( )( )1ub uw wQ Q V P Vβ β λ+ − =                  (26) 

Let the column vector 1 2, , , dV V V  be the 
solution to (26) according to their 
eigenvalues 1 2 dλ λ λ> > , thus the projection 
matrix ( )1 2, , , dV V V V=  . 

Thus, the optimal projection matrices U and V  
can be obtained by iteratively computing the 
generalized eigenvector problems of (25) and (26). 
In our experiments, matrix V  is initially set to the 
identity matrix. 

Once the final optimal projection matrices U and 
V of tensor MMP is obtained, for a new testing X , 
its lower-dimensional embedding can computed 
according to  

TX Y U XV→ =                           (27) 

where Y  is a lower feature representation of the 
face image X . 

After the transformation by two-dimensional 
(tensor) MMP, a feature matrix is obtained for each 
image. Then, the face recognition becomes a 
pattern classification task, and different pattern 
classifier can be applied for face recognition. In this 
paper, we apply the nearest-neighbor classifier for 
its simplicity, and the Euclidean metric is used as 
our distance measure. 
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4. EXPERIMENTAL RESULTS 
 

In this section, we investigate the performance of 
our proposed two-dimensional MMP (2DMMP) 
algorithm for face recognition. The system 
performance is compared with the two-dimensional 
PCA (2DPCA) [10], two-dimensional LDA 
(2DLDA) [11], two-dimensional LPP (2DLPP) [12] 
and the original MMP [9] algorithms, where 
2DPCA, 2DLDA, and 2DLPP are three of the most 
tensor dimensionality reduction algorithms in face 
recognition. We use the same graph structures in 
the MMP and 2DMMP algorithms. The settings of 
other algorithms are identical to the description in 
the corresponding papers. 

In the following experiments, three face 
databases were tested for face recognition: the Yale 
database, the Olivetti Research Laboratory (ORL), 
and the PIE (pose, illumination, and expression) 
database from CMU. In all the experiments, 
preprocessing to locate the faces was applied. 
Original images were normalized (in scale and 
orientation) such that the two eyes were aligned at 
the same position. Then, the facial areas were 
cropped into the final images for recognition. In 
addition, in order to reduce the influence of some 
extreme illumination, histogram equalization is also 
done as preprocessing. Some sample images after 
preprocessing of the three databases are shown in 
Figure 1 to Figure 3, respectively. 

 

 
Figure 1: Face Image Examples From The Yale Database 

 

  
Figure 2: Face Image Examples From The Orl 

Database 

 

  
Figure 3: Face Image Examples From The Cmu Pie 

Database 

 

In short, to perform face recognition, we first 
obtain the face subspaces by different 
dimensionality reduction algorithms. Then, facial 
images are projected into the face subspaces. 
Finally, the nearest-neighbor classifier is applied to 
recognize different facial images in the reduced 

feature spaces, where the Euclidean metric is used 
as the distance measure. 

The Yale face database (http://cvc.yale.edu/ 
projects/yalefaces/yalefaces.html) was constructed 
at the Yale Center for Computational Vision and 
Control. It contains 165 gray scale images of 15 
individuals. The images demonstrate variations in 
lighting condition, facial expression (normal, happy, 
sad, sleepy, surprised, and wink). We randomly 
select five images of each individual to construct 
the training set and the rest images of the database 
to form the testing set. Thus, the numbers of the 
training samples and testing samples are 75 and 90, 
respectively. For each evaluation, 10 rounds of 
experiments are repeated with random selection of 
the training data, and the average result is reported 
as final recognition accuracy. In general, the 
performance of all dimensionality reduction 
algorithms varies with the number of reduced 
dimensions. We show the best recognition 
accuracies and the corresponding optimal 
dimensionality obtained by 2DPCA, 2DLDA, 
2DLPP, MMP, and 2DMMP algorithms in Table 1. 
Figure 4 shows the plots of recognition accuracy 
versus reduced dimensionality on the Yale face 
database. It can be found that our proposed 
2DMMP outperforms other algorithms in terms of 
recognition accuracy. 

Table 1: Recognition Accuracy Comparisons On The 
Yale Database 

Algorithm Accuracy Dimensionality 

2DPCA 79.3% 20×20 

2DLDA 84.6% 15×15 

2DLPP 88.5% 15×15 

MMP 92.4% 50 

2DMMP 97.7% 10×10 

 

Table 2: Recognition Accuracy Comparisons On The 
ORL Database 

Algorithm Accuracy Dimensionality 

2DPCA 88.2% 15×15 

2DLDA 93.8% 10×10 

2DLPP 95.7% 10×10 

MMP 96.9% 80 

2DMMP 98.3% 10×10 
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The ORL database (http://www.uk.research. 
att.com/facedatabase.html) contains 400 images 
grouped into 40 distinct subjects with ten different 
images for each. These images were captured at 
different times, and for some subjects, the images 
may vary in facial expressions and facial details. 
All the images were taken against a dark 
homogeneous background with the tolerance for 
some side movement of about 20 . In this 
experiment, a random subset with five images per 
individual was chosen to form training set, and the 
rest of the database was considered to be the testing 
set. Thus, the numbers of the training samples and 
testing samples are 200 and 200, respectively. 
Likewise, we average the results over 10 random 
splits of the database as final recognition accuracy. 
The experimental protocols are set as the same with 
those applied in the Yale database. Table 2 lists the 
recognition results. Figure 5 shows the plots of 
recognition accuracy versus reduced dimensionality 
on the ORL face database, so we can observe that 
our proposed 2DMMP algorithms has the best 
performance. 

Table 3: Recognition Accuracy Comparisons On The 
CMU PIE Database 

Algorithm Accuracy Dimensionality 

2DPCA 84.6% 20×20 

2DLDA 95.1% 15×15 

2DLPP 95.8% 15×15 

MMP 96.2% 100 

2DMMP 97.9% 15×15 
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Figure 4: Recognition Accuracy Versus Reduced 

Dimensionality On The Yale Database 

 

The CMU PIE face database contains 68 subjects 
with 41368 face images as a whole [13]. The face 

images were captured by 13 synchronized cameras 
and 21 flashes, under varying pose, illumination, 
and expression. We used 170 face images for each 
individual in our experiment, 85 for training and the 
other 85 for testing. Thus, the numbers of the 
training samples and testing samples are 5780 and 
5780, respectively. Likewise, we average the results 
over 10 random splits of the database as final 
recognition accuracy. Table 3 shows the 
recognition results. Figure 6 shows the plots of 
recognition accuracy versus reduced dimensionality 
on the CMU PIE face database. As can be seen, our 
proposed 2DMMP performs much better than other 
algorithms. 
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Figure 5: Recognition Accuracy Versus Reduced 

Dimensionality On The Orl Database 
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Figure 6: Recognition Accuracy Versus Reduced 

Dimensionality On The Cmu Pie Database 

 

In summary, three experiments on three face 
databases have been systematically performed. 
These experimental results reveal the following 
observations: 

1) Our proposed 2DMMP algorithm consistently 
outperforms 2DPCA, 2DLDA, 2DLPP, and MMP 
algorithms, which shows that the tensor extension 
can effectively improve the recognition 
performance of 2DMMP algorithm. 
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2) The performance of 2DPCA is the worst 
among the compared algorithms. The possible 
explanation is that 2DPCA is unsupervised and 
neglects the valuable discriminative information. 

3) 2DLPP performs better than 2DPCA and 
2DLD.The main reason could be attributed to the 
fact that both 2DPCA and 2DLDA see only the 
Euclidean structure, while failing to discover the 
underlying manifold structure. 

4) Although MMP performs much better than 
LPP by simultaneously using local manifold 
structure and discriminative information, it still 
performs worse than our proposed 2DMMP 
algorithm, which demonstrates the importance of 
utilizing both local manifold structure and 
discriminative information, as well as 
characterizing the correlations among pixels with 
the tensor structure. Meanwhile, it further proves 
that the face image-as-tensor representation can 
lead to better recognition performance for face 
recognition. 

5. CONCLUSION 
 

In this paper, we have proposed a novel two-
dimensional maximum margin projection (2DMMP) 
algorithm for face recognition. It combines the 
discriminative manifold preserving power of 
maximum margin projection (MMP) and tensor 
structure representation of face image to provide an 
effective method for face recognition. The 
experimental results on three face databases show 
that the proposed 2DMMP algorithm outperforms 
other related algorithms in terms of recognition 
accuracy. 
 
ACKNOWLEDGMENTS 

 
This work is supported by NSFC (Grant No. 

70701013), the National Science Foundation for 
Post-doctoral Scientists of China (Grant No. 
2011M500035), and the Specialized Research Fund 
for the Doctoral Program of Higher Education of 
China (Grant No.20110023110002).  

REFERENCES:  
 
 [1] W.Zhao, R. Chellappa, P. Phillips, and A. 

Rosenfeld, “Face recognition: a literature 
survey”, ACM Computing Surveys, Vol.35, 
No.4, 2003, pp.399-458. 

[2] H.Wang, S.Chen, Z.Hu, and W.Zheng, 
“Locality-preserved maximum information 
projection”, IEEE Transactions on Neural 
Networks, Vol.19, No.4, 2008, pp.571-585. 

[3] P.Belhumeur, J. Hespanha, and D. Kriegman, 
“Eigenfaces vs. fisherfaces: recognition using 
class specific linear projection,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, Vol.19, No.7, 1997, pp.711-720. 

[4] X.He, S.Yan, Y.Hu, P.Niyogi, and H.-J. Zhang, 
“Face recognition using Laplacianfaces”, IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, Vol.27, No.3, 2005, pp.328-340. 

[5] J.Tenenbaum, V.Silva, and J. Langford, “A 
global geometric framework for nonlinear 
dimensionality reduction”, Science, Vol.290, 
No.5500, 2000, pp.2319-2323. 

[6] S.Roweis and L. Saul, “Nonlinear dimensionality 
reduction by locally linear embedding”, Science, 
Vol.290, No.5500, 2000, pp.2323-2326. 

[7] M.Belkin and P.Niyogi, “Laplacian eigenmaps 
for dimensionality reduction and data 
representation”, Neural Computation, Vol.15, 
No.6, 2003, pp.1373-1396. 

[8] D.Cai, X.He, J.Han, and H.J.Zhang, “Orthogonal 
Laplacianfaces for face recognition”, IEEE 
Transactions on Image Processing, Vol.15, 
No.11, 2006, pp.3608-3614. 

[9] X.He, D.Cai, and J.Han, “Learning a maximum 
margin subspace for image retrieval”, IEEE 
Transactions on Knowledge and Data 
Engineering, Vol.20, No.2, 2008, pp.189-201. 

[10]Yang, D.Zhang, A.F.Frangi, and J.Y.Yang, 
“Two-dimensional PCA: a new approach to 
appearance-based face representation and 
recognition”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol.26, 
No.4, 2004, pp.131-137. 

[11] J.Ye, R.Janardan, and Q.Li, “Two-dimensional 
linear discriminant analysis”, Neural 
Information Processing Systems, 2005, pp. 
1569-1576. 

[12] X.He, D.Cai, and P.Niyogi, “Tensor subspace 
analysis”, Advances in Neural Information 
Processing Systems, 2005, pp.1-8. 

[13] T. Sim, S. Baker, and M. Bsat, “The CMU pose, 
illuminlation, and expression database”, IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, Vol.25, No.12, 2003, pp.1615-
1618.    
      

http://www.jatit.org/

	1YOUMAO BAI, 2ZIQIANG WANG, 1XU QIAN

