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ABSTRACT 

 

The SENSE model with sparsity regularization acts as an unconstrained minimization problem to 
reconstruct the MRI, which obtain better reconstruction results than the traditional SENSE. To implement 
the sparsity constraints, discrete wavelet transform (DWT) and total variation (TV) are common exploited 
together to sparsify the MR image. In this paper, a novel sparsifying transform based on the combination of 
singular value decomposition (SVD) and Laplacian (LP) transform is proposed for parallel MR image 
reconstruction. The proposed algorithm adopts the SVD of the MR image as sparsifying transform instead 
of exploiting the wavelet domain sparsity of the image, and uses the LP-norm as an alternative to TV-norm 
in the sparsity regularization term. The performances of the proposed method are evaluated on two typical 
types of MR image (complex brain MR image and sparse angiogram MR image). Compared with the 
DWT-TV sparsifying transform, the proposed SVD-LP method can significantly achieve better 
reconstruction quality and considerably improve the computation efficiency. 

Keywords: SENSE Reconstruction, Singular Value Decomposition, Laplacian Transforms, Sparsity 
Regularization 

 

1. INTRODUCTION  

MRI speed is usually limited by the large 
number of samples needed along the phase-
encoding direction [1]. Parallel MR imaging 
(pMRI) exploits spatial sensitivity of an array of 
receiver coils to reduce the number of required 
Fourier encoding steps, thereby accelerating MR 
scanning. SENSitivity Encoding (SENSE) [2, 3] is 
one of the most optimal parallel image 
reconstruction techniques when the sensitivity maps 
of the coil array are known, one of the most widely 
used parallel MRI technique. All commercial 
scanners use modified versions of the basic SENSE 
method [4, 5], such as Philips (SENSE), Siemens 
(mSENSE), GE (ASSET) and Toshiba (SPEEDER).  

One disadvantage of parallel MRI is that the 
image signal-to-noise ratio (SNR) is degraded 
because of the reduced data samples and the 
spatially correlated nature of multiple RF receivers 
[6]. Regularization is an attractive means of 
restoring stability in the reconstruction mechanism 
where prior information can also be incorporated 
effectively. Furthermore, the regularization is also 
presented for SENSE-based reconstruction in the 
complex wavelet domain [7]. The standard 
Tikhonov regularization was first introduced in 
pMRI literature by Liang in 2002 [8]. A common 

issue with Tikhonov regularization is the smoothing 
effect on edges [9-10]. To overcome this issue, 
Total Variation (TV) based regularization has been 
incorporated into SENSE to improve reconstructed 
image quality [11-14]. A drawback of TV-based 
regularization methods is that nothing else except 
the local information is used, which may cause 
blocky effects with a loss of fine structures while 
preserving edges in reconstruction. Liang et al [15] 
investigate Nonlocal Total Variation (NLTV) for 
SENSE regularization to address the issue of 
blocky effect with TV-regularized SENSE. The 
NLTV-based regularization method not only 
inherits the edge-preserving advantage of TV-based 
regularization but also overcomes the blocky effect, 
which can preserve fine details and reduce noise 
and artifacts. Recently, a sparsifying transform 
based on the Laplacian (LP) transform has been 
introduced as an alternative to the TV-based 
sparsifying transform, which can compress MR 
image signals better than in the conventional TV 
framework [16].    

With the advent of compressed sensing (CS) 
theory [17-18], sparsity-promoting regularization 
criteria (e.g., ℓ1-based regularization) have gained 
popularity in MRI [19-21]. Sparse-MRI [19] 
exploits the sparsity of the signal itself to 
reconstruct the MR images from far fewer samples 
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than conventional methods require, thus 
significantly reducing the scan time. Due to 
different ancillary information (channel sensitivities 
for pMRI and image sparseness for CS), the pMRI 
and CS can be combined together for further 
improvement of the reconstruction quality [22-23].  
The SENSE model with sparsity regularization is 
reformulated as an unconstrained minimization 
problem to reconstruct the MRI, proving to be very 
successful in pMRI processing [24-25]. In the 
sparsity regularized reconstruction methods, the 
augmented Lagrangian (AL) framework is 
developed for solving regularized SENSE-
reconstruction optimization problems [24], and a 
fast MR image reconstruction algorithm is 
proposed for SENSE with arbitrary k-space 
trajectories by Ye et al [25].  In the sparsity 
regularization term, how to sparsify the MR images 
plays a key role. The most commonly used sparsity 
bases are predefined transforms, such as the 
discrete cosine transform (DCT), and the discrete 
wavelet transform (DWT). In the recent works [24-
25], the ℓ1 norm of wavelet coefficients by using 
DWT is introduced as the sparsity regularization 
term in the SENSE reconstruction. Recently, Hong 
et al[26] presents singular value 
decomposition(SVD) as the data-adaptive sparsity 
basis in Compressed sensing MRI (CS-MRI), 
which can significantly accelerate the 
reconstruction process and achieve better image 
quality than other commonly used sparsifying 
transforms(DCT and DWT).  And Majumdar et al 
propose to exploit the nuclear norm regularization 
to implement the Sparse-MRI[27] and SENSE[28] 
reconstruction, where the nuclear norm is defined 
as the sum of singular values of the MR image, and 
the results show that the proposed reconstruction 
method is considerably faster than the Sparse-
SENSE. It can be found that the SVD-based 
sparsifying transform method has better 
reconstruction quality and faster reconstruction 
speed than the DWT-based method. The main 
purpose of this paper is to develop a combined 
saprsifying transform for SENSE reconstruction, 
which integrates the features of SVD and Laplacian 
transform.  

The rest of the article is organized as follows. 
Section 2 formulates the sparsity-based 
regularization algorithm for SENSE reconstruction. 
And then the focus is shifted to the construction of 
the saprsifying transform by using SVD and 
Laplacian transform. Section 3 describes the 
experimental setup and the reconstruction algorithm. 
Section 4 shows the experiment results. In section 5, 
the features about the proposed method are 

discussed.  Finally, in section 6, the conclusions of 
the work are presented. 

2. THEORY 

2.1 Formulation of Standard SENSE 
SENSE is one of the standard reconstruction 

methods for parallel imaging, and the acquisition 
process of SENSE can be formulated as a linear 
operation in the following equation: 

Au f=                                 (1) 
where f is the vector formed from k-space data 
acquired in all channels and u is the unknown 
vector describing the desired full field-of-view 
(FOV) image to be reconstructed. The system 
matrix A consists of the product of the Fourier 
encoding and coil sensitivity. The sensitivity 
encoding matrix A is formulated as follows: 

  
2 ( )

{ , }, ( , )x yj k x k y
l m n lA e s x yπ− +=       (2)  

 where kx and ky indicate the k-space sampling 
position for the mth element, (x, y) denotes the pixel 
for the nth element in u, and sl is the sensitivity 
profile of the l-th receiver channel.  

2.2 Laplacian Transform based Sparse-SENSE 
In Sparse-MRI reconstruction[17], the 

sparsifying transform is often implemented by 
using the combination of Total-Variation(TV) with 
other transforms(such as DWT), which can be 
considered as requiring the image to be sparse by 
both the specific transform and finite- differences at 
the same time. The reconstruction of Sparse-MRI 
can be formulated by solving the following 
constrained optimization problem. 

1

2

min ( ) ( )

. .   
u

u u

u TV u

s t F u f

ψ α

ε

+

− ≤
                 (3)  

Here, ψ denotes the transforming from pixel 
representation into a sparse representation, uF  is 
the undersampled Fourier transform, u is the 
reconstructed image, and uf  is the measured k-
space data from the scanner. Here α trades ψ  
sparsity with TV sparsity, and ε  controls the 
fidelity of the reconstruction to the measured data.  

The Sparse-SENSE reconstructs image from the 
multi-channel data using the same nonlinear convex 
program as that of Sparse-MRI, except that the 
Fourier encoding matrix uF  is replaced by the 
sensitivity encoding matrix A. Therefore, the 
reconstruction process of the Sparse-SENSE can be 
described as: 
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In this paper, the Laplicain transform, based on 
the second-order difference, is introduced as an 
alternative to the TV sparsity. Then the 
reconstruction process of the Sparse-SENSE can be 
reformulated as: 

1
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       (7) 

The constrained minimization in Eq. (6) is 
usually achieved by solving the equivalent 
unconstrained regularization problem 

2 1
min  ( ) ( )

u
Au f u LP uβ ψ γ− + +      (8) 

where 0β >  and 0γ >  are weights for the 1  
norm and LP norm respectively. 

2.3 Constructing the sparsifying transform ψ  
In the Sparse-SENSE reconstruction, the 

sparsifying transform plays an important role in 
improving the MR imaging quality. The commonly 
used sparsity base in the sparse-SENSE is the DWT 
[24-25]. And Hong et al proposes that the SVD-
based sparsifying transform can sparsify a broad 
range of MR images and perform effective image 
reconstruction. In this work, we aim to construct 
the SVD-based sparsifying transform for Sparse-
SENSE reconstruction. 

The image SENSEI  reconstructed by standard 
SENSE method is used as the initial MR imaging. 
The SVD is performed on the SENSEI , then we can 
get the transforming matrices U  andV : 

'SENSE SENSEI U V= Σ                       (9) 

where U  and V are two unitary matrices, 
and SENSEΣ , is a diagonal matrix with nonnegative 
diagonal elements in decreasing order, a very 
sparse representation of SENSEI . With U andV , the 
SVD-based sparsifying transform and its inverse 
can be derived as follows: 

 1

( ) '
( ) '

u U uV
x UxV

ψ

ψ −

=

=                         (10) 

Based on the Esq. (8) and (10), a SVD-based 
sparsity regularization can reconstruct MR image 
better than the SENSEI . To obtain a more sparse and 
robust representation of the reconstructed image, 
the unitary matrices U and V can be updated 
iteratively by decomposing the reconstructed image 
of Eq. (8). After several iterations, the 
reconstructed MR image can obtain the stable case. 

3. MATERIALS AND METHODS 
One brain dataset is acquired on a 3 Tesla whole-

body GE scanner (GE Healthcare, Waukesha, WI) 
from a healthy male volunteer using an eight-
channel head array with fast spoiled gradient-echo 
sequence. The acquisition parameters are TR 300 
ms , TE 10 ms, FOV 22×22 cm2, and matrix 
256×256×8[29]. The channel sensitivity maps are 
estimated from 32 central k-space phase-encoding 
lines and processed using an electromagnetic 
reverse method [30]. Multichannel images are then 
created by multiplying the object images with the 
simulated sensitivity maps. To investigate the effect 
of noise on the proposed method, 30dB complex 
Gaussian noise are added to generate the 
multichannel k-space data. To simulate 
undersampled datasets, k-space datas are decimated 
using reduction factors of R=2 and R=4 
respectively. Here, two different object images are 
used to test the reconstruction performance, one is a 
brain MR image as in the Figure 1(a), the other is 
an angiogram MR image shown in Figure 1(b).  

 

  
(a) 
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(b) 

Figure1. Two Objective MR Images. (A) A Brain MR 
Image, Left: Reference Image, Right: Zoomed-In Of The 

Box In The Reference Image; (B) An Angiogram MR 
Image, Left: Reference Image, Right: Zoomed-In Of The 

Box In The Reference Image. 

The proposed algorithm is implemented by 
modifying the non-linear conjugate gradient 
(NLCG) used in the Sparse-MRI [19, 26], where 
the total variation (TV) regularization is replaced 
by the Laplician filters. In this paper, the Symmlet 
4 was used as the wavelet basis in the DWT-based 
reconstruction methods. All reconstruction methods 
were implemented in the Matlab programming 
environment (Version2008a, Math Works, Natick, 
MA), and the experiments are performed on a 
ThinkPad laptop with 2.67GHz Intel Core 2Duo 
processor, 4G of memory and Windows7 operating 
system. 

To quantitatively evaluate the efficiency and 
accuracy of the proposed sparsifying transform 
method, three different indexes are introduced: (i) 
the peak SNR (PSNR) for quality of the 
reconstructed image; (ii) Relative Error (RE) to the 
reference image u0; (iii) the image reconstruction 
time. Furthermore, the reconstructed images and 
their zoomed-in regions are also compared visually 
for R=4 and SNR=30dB. The PSNR and RE are 
calculated as follows: 

10
110logPSNR

MSE
=                     (11) 

where MSE is the mean square error between the 
reconstructed and the reference images. 

0 2

0 2

u uRE u
−

=                    (12) 

where u is the reconstructed image and u0 is the 
reference one. 

4. RESULTS  
All images are labeled by the method used on the 

top-left corner, where “SENSE” denotes the 
conventional SENSE method, “SVD-TV” indicates 
the combination of SVD sparsifying transform and 
TV norm, “SVD-LP” the combination of SVD and 
LP norm, “DWT-TV” the combination of DWT 
and TV norm, “DWT-LP” the combination of 

DWT and LP norm, “IDT-TV” the combination of 
identity transform (IDT) and TV norm, and “IDT-
LP” the combination of IDT and LP norm. 

4.1 The Brain Imaging Experiment 
The brain image is obtained by scanning a 

healthy male volunteer’s brain with a Bruker 2T 
whole-body MRI system, and the MR brain image 
is a complex form with more contrast in pixel 
domain. Figure 2 shows the reconstructed MR 
images of SENSE, SVD-TV, SVD-LP, DWT-TV 
and DWT-LP for R=4 and SNR=30. For each sub-
figure, the left column is the reconstructed MR 
image with PSNR, and the right column is the 
zoomed-in regions with RE. Visually one can find 
that the reconstructed MR images by Sparse-
SENSE methods (SVD-TV, SVD-LP, DWT-TV 
and DWT-LP) outperform that by conventional 
SENSE method. And among the four Sparsifying 
methods, the SVD-LP method can reconstruct the 
MR image with the highest PSNR and the lowest 
RE. Table 1 shows the PSNRs, REs and 
reconstruction time (in seconds) by these methods 
with different reduction factors (R=2, 4) and adding 
30dB measurement noise. As is expected, the 
reconstructed MR image has higher PSNR and 
smaller RE as the SNR increases and or the 
reduction factor decreases. In these sparsifying 
transform, the SVD-based sparsity methods 
considerably outperforms the DWT-based methods 
on computing efficiency, and the computing time of 
the SVD-based methods is about one forth of the 
DWT-based methods. Moreover, SVD-based 
method can improve the reconstructed image 
quality with slightly higher PSNR and smaller RE 
than DWT-based method. Compared with TV-norm 
based method, the LP-norm based methods can 
improve the MR image reconstruction with higher 
PSNR and lower RE. However, the LP-norm based 
methods take slight longer time than the TV-norm 
based methods. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2. The Reconstructed Brain MR Images (The Left 
Column) And Zoomed-In Regions (The Right Column) 

By Using Different Methods With Reduction Factor R=4 
And SNR=30db. (A) Conventional SENSE Method 

(B)SVD-TV Method (C) SVD-LP Method (D) DWT-TV 
Method (E) DWT-LP Method. The PSNR And RE Of 
Each Method Are Shown Of The Top-Left Corner Of 

Each Sub-Image. 
 
 
 

Table 1: The Psnrs, Res And Reconstruction TIME (In 
Seconds) Of The Reconstructed Brain MR Images By 

Using These Methods With Different Reduction Factors 
(R=2, 4) And SNR=30. 

SNR 
(dB) R Sparsity 

Method PSNR REs 
(%) 

Time 
(s) 

30 

2 

SENSE 58.75 0.32 6.14 
SVD-TV 60.46 0.26 11.30 
SVD-LP 61.23 0.21 11.48 
DWT-TV 59.97 0.28 45.05 
DWT-LP 60.56 0.24 45.53 

4 

SNESE 40.12 2.75 5.74 
SVD-TV 43.50 1.86 9.98 
SVD-LP 44.80 1.60 10.60 
DWT-TV 43.15 1.94 44.71 
DWT-LP 44.28 1.70 44.99 

4.2 The Angiogram Imaging Experiment 
The reconstruction performance of Sparse-

SENSE with SVD-LP sparsity bases is also tested 
on the sparse MR image, such as angiogram. The 
angiogram MR image itself is sparse in the pixel 
domain naturally, and it is obtained using a Simens 
MAGNETOM Avanto 1.5T system. The identity 
transform (IDT) is commonly used for the sparse 
images as the sparsity basis in many previous 
studies [22, 26]. For comparing the performance, 
IDT, DWT and SVD bases combined with TV 
norm and LP norm are applied in the sparse MR 
image reconstruction.  

As shown in Figure 3, the angiogram MR image 
can be reconstructed from the reduced k-space data 
with R=4 and SNR=30dB by using these sparsity 
regularization methods. It can be seen that the 
SVD-LP method is able to reconstruct the sparse 
MR image with higher PSNR and lower RE than 
the other methods. The LP-norm based methods 
slightly outperform the TV-norm based methods on 
PSNR and RE. As shown in Table 2, the PSNR, RE 
and reconstruction time of different methods are 
presented in the case of SNR=30dB and R=2, 4. For 
a low reduction factor (R=2), the reconstructed MR 
image qualities of these sparsity regularization 
methods are quite close to each other. As the 
reduction factor increases (R=4), the performance 
of SVD-LP method become more obvious than the 
other methods, which can reconstruct the sparse 
MR image with the highest PSNR and lowest RE. 
In terms of the computing efficiency, it seems that 
the IDT-based sparsifying transform provides the 
most efficient computing solution for the 
angiogram MR image, which is only slight faster 
than the SVD-based methods. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

 
(f) 

 
(g) 

Figure 3. The Reconstructed Angiogram MR Images (The 
Left Column) And Zoomed-In Regions (The Right Column) 
By Using Different Methods With Reduction Factor R=4 

And SNR=30db. (A) Conventional SENSE Method; 
(B)SVD-TV Method; (C) SVD-LP Method; (D) DWT-TV 
Method; (E) DWT-LP Method; (F) IDT-TV Method; (G) 
IDT-LP Method. The PSNR And RE Of Each Method Are 

Shown Of The Top-Left Corner Of Each Sub-Image. 
 
 

Table 2: The Psnrs, Res And Reconstruction TIME (In 
Seconds) Of The Reconstructed Angiogram MR Images 

By Using These Methods With Different Reduction 
Factors (R=2, 4) And SNR=30. 

SNR 
(dB) R Sparsity 

Method PSNR REs 
(%) 

Time 
(s) 

30 

2 

SENSE 62.00 0.56 6.21 
SVD-TV 63.33 0.48 11.13 
SVD-LP 63.69 0.46 12.02 
DWT-TV 62.98 0.50 44.85 
DWT-LP 63.32 0.49 48.77 
IDT-TV 62.58 0.53 9.88 
IDT -LP 62.87 0.51 11.08 

4 

SNESE 41.15 6.12 5.14 
SVD-TV 43.89 4.47 10.16 
SVD-LP 44.01 4.41 11.07 
DWT-TV 43.28 4.79 43.12 
DWT-LP 43.56 4.64 44.87 
IDT-TV 42.45 5.28 8.91 
IDT -LP 43.19 4.85 10.55 
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5. DISCUSSION 
 
In this paper, the combination of SVD and 

Laplacian transform sparsity regularization is 
proposed to implement the parallel MRI. And 
different sparsifying strategies are provided to 
compare with the proposed SVD-LP method in 
reconstructing two different MR images on 
reconstruction properties and computational 
efficiency. 

Sparse-SENSE is a sparsity regularized SENSE 
reconstruction, which can act as the SENSE model 
with sparsity constraints. The sparser the MR image 
is in the sparsifying transform results, the more 
accurate the sparsity constraint is, and thus the 
better the reconstructed MR image is. For sparsity, 
the SVD-based transform generates more sparse 
coefficients and exhibits better sparsity than the 
DWT-based transform. In addition, the Laplacian 
transform, a sparisfying transform based on the 
second-order difference, transforms the MR image 
to a sparser representation than TV do. That is, the 
second-order difference of the MR image is much 
closer to zero than the first-order difference, i.e. 
TV. The proposed SVD-LP method combines the 
SVD with Laplacian transform to implement the 
sparsity, which can generate a sparser 
representation of MR image than the DWT-TV 
method, the sparsifying method used in the Sparse-
SENSE. Table 1, 2 and Figure 2, 3 demonstrate that 
the SVD-based method outperforms other transfer 
domain methods (DWT-based, IDT-based) in 
reconstructing the MR images (including the 
complex brain MR image and the sparse angiogram 
MR image), and LP-norm based methods can 
reconstruct the MR images better than the 
conventional TV-norm based method. Among all 
those sparsity methods, the reconstruction of the 
proposed SVD-LP is the best one with the highest 
PSNR and the lowest RE. 

The computational efficiency of the parallel MR 
image reconstruction with different sparsity 
constraints were demonstrated with two typical 
types of MR image. The reconstruction based on 
the SVD sparsity strategy is significantly faster than 
that based on the DWT-based sparse method. And 
the computation time of the LP-norm based 
reconstruction methods is slight longer than that of 
the TV-norm based methods, because it takes some 
more time to calculate the LP-norm than the TV-
norm of the MR image.  

In this work, the proposed SVD-LP sparsity 
constraints is only used in the Cartesian trajectory, 
but it can apply to wide use in the arbitrary k-space 
trajectories. In addition, the non-linear conjugate 

gradient (NLCG) is exploited to implement the 
reconstruction of parallel MR image. A fast 
reconstruction method has recently been proposed 
for parallel MR image [25], which is a combination 
of variable splitting, the quadratic penalty technique 
and an optimal gradient method. In the further 
work, the idea can be integrated with our proposed 
method for parallel MR imaging reconstruction 
with arbitrary k-space trajectories. What’s more, the 
SVD-LP based sparsifying transform method is 
also available in the compress sensing based MR 
image reconstruction, which generates sparser 
representation of the MR image than the 
conventional sparsity method. 

6. CONCLUSION 
 
In this paper, a novel sparsifying transform based 

on the combination of SVD and Laplacian 
transform is proposed for parallel MR image 
reconstruction. The proposed algorithm adopts the 
SVD instead of the wavelet domain sparsity of the 
MR image as sparsifying transform in the SENSE 
reconstruction, and uses the LP-norm as an 
alternative to TV-norm in the Sparse-SENSE 
method. The computational efficiency and 
reconstruction quality of the proposed method are 
evaluated on two typical types of MR image. The 
experimental results indicate that, compared with 
the conventional DWT-TV sparisfying transform 
strategy, the proposed method is capable of 
improving the computation efficiency and 
achieving more accurate reconstruction.  
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