
Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
158 

 

K-SCHEMA: A NEW APPROACH, BASED ON THE DISTRI-
BUTION OF USER QUERIES, TO CREATE VIEWS TO MA-

TERIALIZE IN A HYBRID INTEGRATION SYSTEM 
 

1SAMIR ANTER, 2AHMED ZELLOU, 3ALI IDRI 
1, 2, 3Software Project Management (SPM) Team 

Computer Science and Systems Analysis National Higher School (ENSIAS), 
Mohammed V Souissi University, Rabat 

E-mail:  1samir.anter@um5s.net.ma, 2zellou@ensias.ma, 3idri@ensias.ma   
 
 

ABSTRACT 
 

The explosion of information technologies and telecommunications has made easy the access and produc-
tion of information. That is how a very large mass of the latter has generated. This situation has made the 
integration systems a major need. Among these systems, there is the hybrid mediator. The latter interrogates 
one part of data on demand as in the virtual approach, while charging, filtering and storing the second part, 
as views, in a local database. The choice of this second part is a critical task. This paper presents a selective 
approach, which based, essentially, to create these views, on the queries previously posed on the system. 
Based on the distribution of previous user queries, our approach extract all data most queried by users. The 
obtained data are classified as candidate views for materialization. Then selecting which one to materialize 
among all those created in the first step. 

 
Keywords: Information Integration; Hybrid Integration System; Materialization; Views Creation; K-

Schema; 
 
1. INTRODUCTION  
 

The constant evolution in terms of networks has 
led to a vulgarization of information on the quantity 
and quality. This vulgarization has generated in-
formation, not only heterogeneous, but also stored 
in distributed and autonomous sources. According 
to a study done by IBM in 2008, 89% of companies 
have more than two sources and 25% more than 
fifteen [1]. In conclusion, the information systems 
today are composed of several sources produced 
independently, and are in general autonomous, 
heterogeneous and distributed [2]. 

Thus, it becomes necessary to introduce an in-
termediate and intelligent system. This one should 
satisfy the following requirements: on one hand it 
should provide a single point of access to these 
sources, on the other hand, it should make the as-
pects of autonomy, distribution and heterogeneity 
transparent. 

One of the solutions proposed to remedy this 
problem is the virtual approach or mediation. It is 
defined as "an approach to providing an intermedi-
ate tool between users or applications on one side, 

and a set of autonomous, heterogeneous, distributed 
and scalable information sources on the other hand. 
This tool offers an access service to transparent 
sources through an interface and a single query 
language". [3] 

Several systems have implemented this approach. 
List all these systems is impossible. Citing some of 
them as examples: Sims [4], Tsimmis [5], Hermes 
[6], Manifold [7][8], Picsel [9] et Xyleme [10]. 

This approach has the advantage to provide an 
updated result, because the information is extracted 
directly from sources. However, it suffers from 
certain defects. On the one hand, the response time 
is rather high. This is mainly due to the time spent 
in retrieving information from the remote sources, 
in response to user queries. On the other hand, the 
sources are not always available. Therefore, the 
queries posed on these sources, will not be satisfied. 

To remedy this, another approach was proposed. 
It is the hybrid approach. This one can be defined as 
“a system where a part of data is queried 
on demand as in the virtual approach, while anoth-
er part is extracted, filtered and stored in a local 
database” [11], or else as “a system that supports 

http://www.jatit.org/
mailto:samir.anter@um5s.net.ma
mailto:zellou@ensias.ma
mailto:idri@ensias.ma


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
159 

 

the materialization of some relations in the global 
view, the virtualization of other relations, and par-
tial materialization of some relations (some attrib-
utes are materialized, and others are virtual)” [12]. 

Different systems have implemented this ap-
proach. For example: Squirrel [10], Lore [11], Ari-
adne [14][15][16], EXIP [17] et IXIA [18]. 

The problem to which we should answer in this 
approaches is the choice among all data manipulat-
ed by the system, those that will be materialized. 
According to a study of various existing hybrid 
integration systems [19][20], the approaches that 
have made proposals to this end are three. These are 
Ariadne [14][15][16], CRDB (Cancer Research Da-
taBase) [21] and Fulvis [22]. 

The latter two approaches are based essentially 
on a set of selection criteria, namely: the frequency 
of data change, size, availability, predictability and 
the access cost of queries to sources. 

CRDB uses these criteria to choose from the data 
sources integrated by the system, those that will be 
fully materialized or fully integrated virtually. In 
other words, CRDB materializes or not a source 
entirely. This choice seems inappropriate. Indeed, 
in a single data source, there may be attributes that 
respond to selection criteria, as there may be others 
that do not respond. 

Fulvis by cons has not made a proposal in this 
regard. It assumes that the views are already creat-
ed. 

Ariadne, As for him, has proposed an algorithm 
to identify the classes of data to materialize by 
analyzing the distribution of user queries, the struc-
ture of sources and the update of data in the 
sources. 

In this paper, we present an approach to material-
ize data selectively by creating candidate views for 
materialization based on the distribution of user 
queries. Thereafter, choosing among them, those 
that will be effectively materialized. 

The following paper is divided into five sections. 
After the introduction, the second section presents 
the approach used in Ariadne, our approach is pre-
sented in the third section. In the fourth section, we 
present the experimentation of our approach before 
ending with a conclusion and future works. 

2. STATE OF THE ART 

As we mentioned above, Fulvis has not made a 
proposal as to the creation of views to materialize, 
while CRDB materializes or not a source entirely. 

Ariadne, by cons, has proposed a solution to create 
a set of classes to materialize based on the distribu-
tion of user queries. In the next section, we will 
detail the approach used by the latter. 

Ariadne is a hybrid integration system. It sup-
ports the sources of semi-structured data in a web 
environment. Its architecture is based on that of 
Wiederhold [23] at three levels: mediator, wrappers 
and sources. 

The approach used in this mediator [14] tries to 
identify the portion of data to materialize based on 
three factors: 

• The first factor considered is the distribution of 
user queries. Thus, the data classes most que-
ried are the best candidates for materialization. 

• The second factor is the structure of the inte-
grated sources. Indeed, the interrogation of 
some sources is very expensive, especially in 
the phase of the translation in the wrappers. 
Thus, it is useful to determine in advance the 
classes of data to materialize. 

•  Finally, the cost of updating the materialized 
part is also taken into account. Thus, a class of 
stable data is a good candidate for materializa-
tion. 

To identify classes of data most queried, an algo-
rithm called CM (Cluster and Merge) [14][15][16] 
was proposed. This algorithm receives as input a 
description of the distribution of user queries, and 
provides in output a set of classes, compact, repre-
senting data patterns present in those queries. 

To do this, CM determines the data in which the 
user is interested. These latter are then classified 
and merged for obtain the classes most compacts. 

2.1. Classification Of Queries 

In this step, the algorithm determines the set of 
subclasses of each query, and the subclasses of 
interest. Those are inserted in the ontology if they 
are not already present. For example, a query of the 
form: 

SELECT A 
FROM S 
WHERE P 

Where A is the set of attributes queried in S, P = 
{P1, P2, ..., Pn} predicates specifying constraints of 
the query, and SP the subclass of S satisfying P. All 
subclasses of interest is expressed by {SP1, SP2, ..., 
SPn}, where Pi are forming individual predicates P, 
and SPi subclass of S satisfying Pi. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
160 

 

For example, consider the following query: 
SELECT  POPULATION, AREA 
FROM COUNTRY 
WHERE REGION=“EUROPE” AND GOVERN-

MENT=“REPUBLIC” 
In this query, the subclasses of interest are “Eu-

ropean Country” and “Republic Country”. 

Thus, for a set of queries in which the constraints 
concern the region attribute (with values such as 
Europe, Asia, ...) or government (with values such 
as Republic, Monarchy, Communist, ...) or both, an 
ontology is created “Fig. 1”. 

 

 

 

 

 

 

 

 

The algorithm also saves for each subclass, the 
attribute groups that have been queried and with 
what frequency. 

2.2. Classification Of Attribute Groups 

After the step of classification of queries, an on-
tology of classes is obtained, and for each class, the 
attribute groups queried and with what frequency. 
In this step, CM merges the attribute groups with 
similar frequencies to reduce the number of groups 
for each class. The merger, is accomplished if the 
difference between their frequencies is less than a 
threshold known as CLUSTER-DIFFERENCE. 

2.3. Merging Classes 

It is important that the number of data classes be 
reduced to improve queries processing. Thus, we 
should merge them when it is possible. Consider, 
for example, the classes of information: 

EUROPEAN-COUNTRY, {POPULATION, AREA} 

ASIAN-COUNTRY, {POPULATION, AREA} 

AFRICAN-COUNTRY, {POPULATION, AREA} 

N.AMERICAN-COUNTRY, {POPULATION, AREA} 

S.AMERICAN-COUNTRY, {POPULATION, AREA} 

AUSTRALIAN-COUNTRY, {POPULATION, AREA} 

The six classes above are replaced by one class 
(COUNTRY, {POPULATION, AREA}) that represents 
the same data. In general, the classes of the form 
(C1, A1), (C2, A2),… , (CN, AN)  are replaced by the 
class (S, A) where C1, C2,…and CN are a subclasses 
of S that form a covering. However, A1, A2, …, AN 
are not necessarily equal. It is enough that they 
overlap and thus A=A1 U A1 U … U An. 

The disadvantage here is that some data that have 
rarely figured in the subclasses will appear in the 
final class. 

To merge these classes, CM provides the proce-
dure MERGE-CLASS() to merging classes. The pro-
cedure takes as input a super-class S and a set of 
subclasses C of S that form a covering of S. For 
each class of C, we have also all attribute groups 
that have been queried. 

The basic idea is to take an attributes group of 
class Ci of C and see if we can merge them with 
other groups of other classes of C in Group A of the 
super-class S. Consider the example below, which 
represents all classes of C with their attributes 
groups. 

EUROPEAN-COUNTRY: {IMPORTS, EXPORTS}, {AR-
EA, GDP, ECONOMY} 

ASIAN-COUNTRY: {IMPORTS, EXPORTS, CLIMATE}, 
{DEBT, ECONOMY} 

AFRICAN-COUNTRY: {IMPORTS}, {POPULATION, 
LANGUAGES} 

N.AMERICAN-COUNTRY: {CLIMATE, TERRAIN}, 
{GOVERNMENT}, {LITERACY} 

S.AMERICAN-COUNTRY: {AREA, COASTLINE}, {IM-
PORTS, EXPORTS} 

AUSTRALIAN-COUNTRY: {IMPORTS, EXPORTS, 
DEBT}, {GDP, DEFENSE} 

We choose a set of attributes such is the largest 
possible, and that we can find in most classes. In our 
example, the largest group found in the majority of 
classes is the group {IMPORTS, EXPORTS}. We try 
then to find the groups that resemble it in other clas-
ses. We extract it, and we get the result shown be-
low: 

 

 

 

 

 

Fig.1. The Ontology Of Subclasses of 
COUNTRY. 

COMMUNIST-
COUNTRY 

COUNTRY 
ASIAN-

COUNTRY 

EUROPEAN-
COUNTRY 

AUSTRALIAN-
COUNTRY 

REPUBLIC-
COUNTRY 

EUROPEAN- 
REPUBLIC-
COUNTRY 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
161 

 

 
Table 1: Attribute Groups And Their Sizes 

Attribute groups Size 

{IMPORTS, EXPORTS} 2 

{IMPORTS, EXPORTS} 2 

{IMPORTS} 1 

{} 0 
{IMPORTS, EXPORTS} 2 

{IMPORTS, EXPORTS} 2 

Then, we will calculate the ratio of the space oc-
cupied by the matching groups in the classes of C to 
the space needed to store the group A for the super-
class S. Then, we compare it with a fusion threshold 
to decide whether to proceeds to merger or not. 

In our example, this ratio is equal to 0.75. Indeed, 
the space occupied by all groups is 2 +2 +1 +0 +2 
+2 = 9 units. While the space that will be occupied 
after the merger is 6 * 2 = 12 units. The report is 
equal to 9/12 = 0.75. Assuming that the merging 
threshold is 0.7, then we should proceed to merger 
in the group {IMPORTS, EXPORTS} of the super-class 
COUNTRY. 

After the merger, we remove the attributes EX-
PORTS and IMPORTS from all classes Ci and we start 
again the same process of another group of attrib-
utes until we obtain all data classes. In the next 
section, we will present our approach. 

3. OUR APPROACH 

Based on user interactions with the system, par-
ticularly the distribution of their queries, we try in 
our approach to select the information more request-
ed.  The obtained data are classified for create the 
set of views candidates for materialization. Among 
the latter, we select those that will be effectively 
materialized. 

3.1. Creating Candidate Views For Materializa-
tion 

In our approach, we assumed that a data pattern is 
present in user queries. i.e. some categories of data 
will be queried more frequently than other. Thus, it 
will be very useful to extract these patterns given the 
basis of which we will create the candidate views for 
materialization. 

To do this, we will retrieve the attributes of inter-
est. The latter are, then, classified as view schemas. 
Thereafter, we extract the most frequent constraints 
for each attribute and creating views. Now, we de-
scribe each step in more detail. 

 

3.1.1. Extracting attributes of interest. 
Generally, in a mediation system, a global sche-

ma representing the domain of use is provided. It is 
in the terms of the latter are expressed the user que-
ries. We analyze these queries in order to determine, 
among all the attributes of this schema, those in 
which users are interested. 

Based on a set SQ = �Q1, Q2, … QNQ � of queries 
posed previously, we calculate for each attribute Ai 
its frequency of appearance 𝑓𝐴𝑖expressed by: 

𝑓𝐴𝑖=
NA 𝑖

NQ 
 

Where NAi is the number of appearance of the at-
tribute Ai and NQ the number of queries. 

An attribute is considered as an attribute of inter-
est if its frequency is higher than a threshold known 
as ATTRIBUTE-FREQUENCY. For this, we have de-
fined the procedure EXTRACT-ATTRIBUTES. 

SA={}; /*set of attribute of interest*/ 
EXTRACT-ATTRIBUTES(SQ) 
begin 
SA0=get_All_Attributes(SQ); 

    NA0=cardinality(SA0) ; 
    for i=1 TO NA0 then 
     NAi =0 ; 
        for ALL Q IN SQ then 
            S=get_All_Attributes(Q) ; 
            if Ai IN S then 
                NAi = NAi+1; 
            end if 
        end for 

        𝑓𝐴𝑖=NAi/NA0; 

    end for 
    for i=1 TO NA0 then 

        if 𝑓𝐴𝑖>INTEREST-FREQUENCY then 

            SA = SA UNION {Ai} 
        end if 
    end for 
end 

We then obtain the set SA={ A1, A2, … , AN} of at-
tributes that will appear in the candidate views. It 
should be collected in compact classes, or what we 
called the “views schemas”. Thus, is that we present 
in the next section. 

3.1.2. Creating view schemas 
The problem of creating schemas is equivalent to 

a classification problem. Thus, we seek to create a 
compact set of attributes classes. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
162 

 

Different classification algorithms have been 
proposed. The most popular is k-means [24]. It 
partitions a dataset or points in k classes. Each class 
is represented by a center of gravity or centroid. 
From these centers, k-means calculates the distanc-
es to various points and they are attributed to the 
nearest centroid. 

Consider for example a dataset x1, x2,..., xN  to 
classified into k disjoint classes Ci where  𝑖 ∈ [1, 𝑘], 
each one contains Ni points where  𝑁𝑖 ∈]0, 𝑁[. 

The basic idea is to share the points between dif-
ferent classes while minimizing the intra-class dis-
tance expressed by: 

𝜏 = � � ‖𝑥𝑡 − 𝑐𝑖‖2

𝑥𝑡∈𝐶𝑖

𝑘

𝑖=1

 

where: 

xt is a vector representing the tth point of the class 
Ci, and ci it's centroid. ‖xt − ci‖2 is the geometric 
distance between the point xt and the center of the 
class Ci. 

Thus, k-means is in three steps: 

(i) Initialize randomly k center c1, c2, …, ck by 
data points. 

For each point xt, and all k classes, repeating 
steps (ii) and (iii) until the sum of intra-
classes distances cannot decrease. 

(ii) Calculate the distance from xt to different 
cluster centers and assign it to that who’s 
centroid is the nearest. 

(iii) Recalculate the centroids of the different 
classes. 

In our case, it is impossible to define the cen-
troids, and so we will not have the ability to calcu-
late the distances. 

To remedy this, we have associated to each pair 
of attributes, a value that represents the degree of 
dependency. The latter will be used to calculate the 
degree of dependency of an attribute to a class, also 
to calculate the degree of intra-class dependency. 
These values will be used, thereafter, to implement 
an algorithm, which we named k-schema to classi-
fying attributes in classes or views schemas. 

3.1.2.1. Degree of attribute-attribute dependency 
This value is calculated by using the principle of 

voting. In other words, we votes 'one' for each pair 
of attributes appeared in the same query. We obtain, 
then, for each pair (A, B) ∈ SA × SA, a degree of 
dependency expressed by the following function: 

 

 𝜑 ∶  𝑆𝐴 𝑋 𝑆𝐴 → ℕ 

(𝐴, 𝐵) → �
 𝜑(𝐴, 𝐵)    𝑖𝑓  𝐴 ≠ 𝐵

 
  0              𝑖𝑓 𝐴 = 𝐵

 
 

This function will be useful, then, to define the 
degree of dependency of an attribute to a class. 

3.1.2.2. Degree of attribute-class dependency 
Let 𝐶 = {𝐴1, 𝐴2, … , 𝐴𝑁 } a class and A an attrib-

ute. 

The degree of dependency of attribute A to the 
class C is expressed by: 

µ(𝐴, 𝐶) =
1
𝑁

� 𝜑(𝐴, 𝐴𝑖)
𝑁

𝑖=1

 

We now have to define the graph of dependency 
between attributes of the same class. 

3.1.2.3. Matrix of attribute-attribute dependency 
From the set of attributes selected in the first 

step, we constructed the square matrix M = (mij) in 
NA size, defined by: 

𝑚𝑖𝑗 = �𝜑�𝐴𝑖 , 𝐴𝑗�     𝑖𝑓  𝑖 < 𝑗 
0                 𝑖𝑓 𝑖 ≥ 𝑗

 

TABLE I.  MATRIX OF ATTRIBUTE-ATTRIBUTE DEPENDENCY 

 A1 A2 ... ANA 
A1 0 𝜑(A1, A2) … 𝜑�A1, ANA� 
A2 0 0 … 𝜑�A2, ANA� 

…
 

…
 

…
  …
 

Ai 0 0 … 𝜑�Ai, ANA� 

…
 

…
 

…
  …
 

ANA R- 1 0 0 … 𝜑�ANA−1, ANA� 

ANA 0 0 … 0 

 
3.1.2.4. Degree of intra-class dependency  

The degree of intra-class dependency is the sum 
of degrees of attributes dependencies in pairs. Thus 
for a class 𝐶 = �𝐴1, 𝐴2, … , 𝐴𝑁𝐴  �, the Degree of 
intra-class dependency is expressed by: 

𝛿(𝐶) =
2

𝑁𝐴(𝑁𝐴 − 1)
� � 𝜑(𝐴𝑖 , 𝐴𝑗)

𝑁𝐴

𝑗=𝑖+1

𝑁𝐴

𝑖=1

 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
163 

 

In the next section, we will present our algorithm. 
The latter is used to gather the classes of attributes 
that are most compact. 

3.1.2.5. K- schema 
K-schemas is an iterative algorithm to divide the 

attributes into k classes (schemas), while maximiz-
ing the sum of intra-class dependencies expressed 
by: 

τ = � δ(Ci)
K

i=1

 

In other words, the objective is to maximize the 
dependency between the attributes of the same 
view. This is justified by the fact that if the views 
are more dependent the queries become less expen-
sive in space and time. 

Consider an example of a global schema with 
five attributes A1, A2, A3, A4, A5, and a matrix of 
attribute-attribute dependency as follows: 

TABLE II.  MATRIX OF ATTRIBUTE-ATTRIBUTE DEPENDENCY 

 A1 A2 A3 A4 A5 

A1  2 6 3 8 

A2   3 5 7 

A3    2 1 

A4     6 

A5      

 
We notice that the dependency between the at-

tributes A1 and A5 is very high. This means that the 
chance that they appear in the same query is very 
high. Thus, our solution recommends to assign 
them to the same view. 

Let us suppose that this recommendation has not 
been taken into account and these two attributes 
have been assigned to two different schemesV1(A3, 
A5) and V2( A1, A2). In this case, it becomes neces-
sary for satisfying queries that require the both 
attributes A1 and A5, and they are indeed many, to 
access to both views V1 and V2. 

This query will contain a joint, thereby increas-
ing its cost, which will be less high as if A1 and A5 
were assigned to the same view. 

 

 

K-schema has three steps: 

(i) Define the number k of classes and initialize 
each one by an attribute such that they are 

less dependent upon each other, in order to 
optimize the algorithm. 

(ii) For each attribute, calculate its degree of de-
pendency to different classes and assign it to 
the class to which is more dependent. 

(iii) Stop if the sum of degree of intra-class de-
pendencies τ cannot increase, otherwise re-
turn to step (ii). 

The result obtained in this step is a set of com-
pact view schemas, subject we chose the right value 
of k number of views. Our solution is to calculate 
the value of k from the average number of attributes 
appeared in user queries. Thus, it is obtained by the 
following formula: 

𝑘 =
N
𝜔

 
Where: 

N: the number of attributes of interest. 

𝜔: the average number of attributes per query. 

In the next section, we should define for each 
schema, the values that will be taken by its attrib-
utes. 

3.1.3. Assigning constraints to attributes 
Until now, we have defined the attributes most 

queried. We have gathered these attributes in com-
pact classes. We should then define the attribute 
values (or constraints) for each view schema. 

This phase is divided into three steps: 

(i) Extracting values of interest. 

(ii) Definition of the most compact instances by 
assigning the values selected in the previous 
step to different attributes of each class. 

(iii) Merging instances of each class in a single. 
3.1.3.1. Extracting values of interest 

The extraction of values is to define for each at-
tribute A, the set VA={ vi / 1 ≤ i ≤ NVA} of values 
taken by this attribute. However, sometimes an 
attribute appears in a query without value. In this 
case, we add value ALL to the set of values taken 
by this attribute. This is justified by the fact that the 
user is interested in all values of this attribute. 

Consider for example the following query: 

SELECT A 
FROM S 

The values of interest in this query are all values 
of A. However, it is possible that the same attribute 
appears in the same query with and without value, 
like in the following example: 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
164 

 

SELECT A 
FROM S 
WHERE A = val 
 

The attribute A has appeared with the value ‘val’ 
and also without value. In this case, the user is not 
interested in all values of attribute A, but only by 
the value 'val'. 

In the example above, the query contains a con-
straint expressed by the operator ‘=’. However, 
there may be other operators than ‘=’. These opera-
tors depend on the type of the attribute A. We will 
subsequently define a procedure EXTRACT-VALUES 
that receives the predicate specifying constraints as 
input and returns, as output, the set of values of 
interest, according to the operator and the type of 
the attribute: 

The predicates specifying constraints are in gen-
eral as ‘A operator V’ or ‘A operator B’, where A and 
B are the attributes, and where V can be, according 
to the operator, either a value or a set of values. 

In this paper we will limited to treating the first 
case ('A operator V') while postponing the second to 
future works. 

EXTRACT-VALUES (Predicate) 
begin 
switch Type of A begin 
case ‘Boolean’: 
switch operator begin 
case ‘=’  
  VA= VA ∪ {v} 
case‘≠’  
  VA= VA ∪ {V�} 

 /*𝑉�  is the complement of V*/ 
end switch 

end case 
case ‘Text: 
switch operator begin 
case ‘=’:  
  VA=VA ∪ {V} 
case ‘≠’:  
  VA=VA ∪ {Vali/Vali≠V} 
case ‘LIKE’:  
  VA=VA ∪ {Vali/Vali LIKE V} 
case ‘NOT LIKE’:  
  VA=VA ∪ {Vali/Vali NOT LIKE V} 

end switch 
end case 
case ‘Numeric’:{ 
switch operator begin 

case ‘=’:  
  VA=VA ∪ {V} 
case ‘≠’:  
  VA=VA ∪ {Vali/Vali≠V} 
case ‘≥’:  
  VA=VA ∪ [V, MAX(Vali)] 
case ‘≤’:  
  VA=VA ∪ [MIN(Vali),V] 
case ‘>’:  
  VA=VA ∪ ]V, MAX(Vali)] 
case ‘<’:  
  VA=VA ∪ [MIN(Vali),V[ 
/*In the two following cases V is a set of       
   values*/ 
case ‘IN’:  
  VA=VA ∪ V 
case ‘NOT IN’:  
  VA=VA ∪  V�  

end switch 
end case 

end switch 
end 

We have extracted for each attribute A, the set of 
values VA that he took. However, it is useless to 
keep them all. We will eliminate those with the 
frequency less than a threshold known as VALUE-
FREQUENCY. 

3.1.3.2. Definition of instances of classes 
After selecting all values of attributes, we define, 

of each class, all instances possible by assigning 
values to their attributes. However, these instances 
should not appear in the final views. For selecting 
those that we will keep, we associate a degree of 
dependency on each pair of values taken by the pair 
of attributes (A, B). 

3.1.3.2.1. Degree of attribute-attribute-values 
dependency 

The degree of attribute-attribute-values depend-
ency is calculated for each pair of values taken by a 
couple of attributes (A, B). Thus, is obtained for 
each pair of values (Vi, Vj) ∈ VA × VB, a degree of 
dependency expressed by the following function: 

 𝜗A,B:  VA × VB  →   ℕ 
       (Vi, Vj)     →   ϑA,B (Vi, Vj) 

 

Where 𝜗 (Vi, Vj) is the frequency in which the at-
tributes A and B has appeared, in a same query, 
respectively, with the values  Vi and Vj. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
165 

 

3.1.3.2.2. Matrix of attribute-attribute-values 
dependency 

From a sets SVA and SVB of values of the attrib-
utes A and B, we constructed a matrix T=(tij)  “TA-
BLE III.” in NVA× NVB size, where rows represent 
the values taken by attribute A and columns the 
values taken by the attribute B, and where: 

tij= 𝜗A,B (VAi,VBj). 

Table III: Matrix Of Attribute-Attribute-Values Depend-
ency 

 VB1 …     VBNVB 

VA1 𝜗A,B(VA1, VB1) … 𝜗A,B(VA1, VBNVB) 

…
 

…
 

…
 

…
 

VAi 𝜗A,B(VAi, VB1) … 𝜗A,B(VAi, VBNVB) 

…
 

…
 

…
 

…
 

VANVA 𝜗A,B(VANVA , VB1) … 𝜗A,B(VANVA , VBNVB) 

 
3.1.3.2.3. Degree of intra-instance dependency 

The degree of intra-instance dependency is the 
sum of degrees of dependency per pairs of values. 
Thus, for instance I = {A1 = V1, A2 = V2, … , AN =
VN }, the intra-instance dependency is expressed by: 

δ(I) =
1

NVANVB
� � 𝜗A,B�VAi, VBj�

NVB

j=1

NVA

i=1

 

 
3.1.3.2.4. Definition of instances 

It only remains now to define the instances of 
each class by assigning values to attributes. Then, 
we will keep, only, those in the degree of intra-
instance dependency is higher than a threshold 
known as INSTANCE-DEPENDENCY. 

Similarly, to the definition of view schemas, the 
objective at this stage also is to maximize the intra-
instance dependencies. This is justified by the fact 
that if intra-instance dependencies are high, the data 
loads will occupy less storage space and at the same 
time satisfy more queries. 

Consider the same matrix of attribute-attribute 
dependency ‘TABLE V.”, and Assuming that the 
attributes A1 and A5 often appear, respectively, with 
the values  val1 and val5.  

We have, in the case where A1 and A5 do not be-
long to the same view, to load all data such as 
A3=val3 and A5=val5for V1, and all data such as 
A1=val1 and A2=val2 for V2. 

In this case, we will have data that is more re-
quested and that will not be materialized or other 
that are rarely requested and that will be material-
ized. However, if we assigned A1 and A5 to the 
same view, in this case we will have to materialize, 
exactly the data that are requested by the majority 
of users. i.e. data such as A1=val1 et A5=val5. 

3.1.4. Merging instances of each class 
Until here, we have defined for each class, all in-

stances. We selected those most queried. We will 
merge all instances of the same class in a single. 
We obtain thus, a candidate views for materializa-
tion. The latter cannot be materialized all. Indeed, 
the space for materialization, the frequency of up-
date and the cost of access to sources is critical. A 
set of selection criteria have been defined in [21] 
and [22], namely: 

(i) The frequency of change: the views that rarely 
change are good candidates for materialization. 

(ii) The size of views: the views of small sizes are 
favored for materialization than large ones. 

(iii) The availability of sources: The views, whose 
data resides in sources that are rarely available, 
should be materialized. 

(iv) The cost of access: the materialization of views 
whose data resides in sources with a high cost 
of access will improve the system perfor-
mance. 

Thus, a view will be materialized, if it satisfies at 
least two criteria. 

4. EXPERIMENTATION AND  
EVALUATION 

For the experimentation of our solution, we have 
developed a prototype “Fig. 2”. The latter allowed 
us to test our approach on two levels. First, it al-
lowed us to present an example of use, and the 
results obtained by checking the convergence of the 
algorithm k-schema. Second, to evaluate its per-
formance by calculating the rate of queries posed 
on the system, which are satisfied in the material-
ized part also the space occupied by this part as 
compared to the data processed by the system. 

  

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
166 

 

 
 
 
4.1. Experimentation 

 We have generated randomly a global schema. It 
is made up of 50 attributes A1, A2, …, A50. Then we 
generated also a random 100 queries Q1, Q2, … Q100 
on this schema and wherein the threshold ATTRIB-
UTE-FREQUENCY is equal to the average of the fre-
quencies of attributes. 

Our system has selected, based on the queries 
posed, the attributes of interest.(i.e. attributes highly 
requested). “Fig. 3” 

 

 
 

Then, the algorithm k-schema was called. The 
latter has formed k classes of attributes or view 
schemas, where k is calculated by the formula 
𝑘 = N

𝜔
 presented above. 

 These schemas are then powered by assigning 
attributes to which they are more dependent. Thus, 
we have obtained the structure of the views pre-
sented in “Fig.4”. 

 
 

Starting from this initial state, k-schema ex-
change the attributes between schemas, while max-
imizing the sum of the intra-class dependencies 
“Fig.5”.  

 

 
 

 
 
 
 
 

Fig. 3: Attributs Of Interests 

Fig. 4: Initial state of viewschemas 

1st iteration : 

2nd  iteration : 

Fig.2 : Prototype Of Our Solution 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
167 

 

 

 
 

 
 

 
 

 

During the progress of the algorithm, the intra-
classe dependencies vary depending on the immi-
gration of attributes between schemas. Thus, we 
have represented that variation below “Fig.6”.

 

In this graph, the intra-class dependencies of cer-
tain views increase while decreasing for others. 
However, we see in the graph below “Fig.7” That, 
despite the decrease in intra-class dependencies of 
certain patterns, the sum of these dependencies 
increases. This is justified by the fact that if an 
attribute migrates from one schema to another, it is 
because it is very dependent on the second than the 
first, which increases the final sum. 

 
 

We then reiterate the algorithm a seventh and 
eighth once. We observed that the sum of the intra-
class dependencies becomes constant. “Fig.8” 

 
 

We repeated this operation with different exam-
ples of global schema and different queries. Each 
time, we observe that the algorithm converges to a 
maximum value of the sum of the intra-class de-
pendencies. 

Until now, we have formed the view schemas. In 
the next section, we will assign values to the attrib-
utes of each schema. To do this, our system has 
selected, based on queries posed on the system, a 
set of values for each attribute. For reasons of sim-
plification, we will be limited to a single schema, 
and the same principle will be applied to the other. 
For example, consider the following schema: 
“Fig.9” 

 
 

From the queries posed, the system has extracted 
for each attribute the set of values with which he 
appears through EXTRACT-VALUES function defined 

1.00

1.50

2.00

2.50

3.00

0 1 2 3 4 5Su
m

 o
f i

nt
ra

-c
la

ss
e 

de
pe

nc
ie

s 

Iterations 
View Schema 1 View Schema 2
View Schema 3 View Schema 4
View Schema 5 View Schema 6

11.50

12.00

12.50

13.00

0 1 2 3 4 5 6 7

Su
m

 o
f i

nt
ra

-c
la

ss
e 

de
pe

nd
en

ci
es

 

Iterations 

 

11.40
11.60
11.80
12.00
12.20
12.40
12.60
12.80

0 1 2 3 4 5

Su
m

 o
f i

nt
ra

-c
la

ss
e 

de
pe

nd
en

ci
es

 

iterations 

Fig. 8: Convergence  Of  K-Schema 

3rd iteration : 

4th iteration : 

Fig. 5: Evolution Of The Structure Of View Schemas 

Fig. 7: Variation Of The Sum Of Intra-Classe 
Dependencies 5th iteration : 

Fig. 9: Example Of A View Schema 

Fig. 6: Variation Of Intra-Classe Dependencies 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
168 

 

above, and for each two attributes, he extracted the 
degree of dependency in which they have appeared 
with two different values. 

For reasons of simplification, we will not take all 
the values taken by the attributes. Thus, we ob-
tained, for each pair of attributes, the matrices of 
attribute-attribute-value dependency presented 
below “Fig.10”. 

 
 

 

Subsequently, the system will generate all in-
stances of the schema in question by calculating the 
intra-instance dependencies. Then it will keep only 
those whose intra-instance dependence is greater 
than INSTANCE-DEPENDENCY, which is equal, in this 
case, to the average of intra-instance dependencies. 

 
 

The following figure shows the intra-instance 
dependencies of each generated instances, and the 
threshold INSTANCE-DEPENDENCY that we took in 
this case equal to the average intra-instance de-
pendencies. 

 
 

According to the table in “Fig.12”, we keep I1, I2, 
I3, I4, I5, I6, I8, I9. However, these last are included 
in I6. Then it will be itself a final candidate view for 
materialization. 

By applying the same process for the other 
schemas, we will obtain all candidate views for 
materialization. Subsequently, we apply the selec-

tion criteria for choosing among them those that 
will be materialized. 

4.2. Evaluation of the  performance 

In this section, we will compare the rate of que-
ries satisfied in the materialized part on the one 
hand, with the size of the materialized part relative 
to the size of data processed by the system on the 
other hand. To do this, we called our algorithm on 
several occasions and we calculated in each case the 
rate of satisfaction of queries in the materialized 
part. We calculated also the memory space occu-
pied by the latter part compared to total memory 
space occupied by the data processed by the system. 
We obtained the graph shown in “Fig.13”. 

 

 
 

In this graph, the black bars represent the rate of 
the queries satisfied in the materialized part, rela-
tive to those satisfied virtually. As to the gray bars, 
they represent the rate of the space occupied by the 
materialized part relative to the total space occupied 
by the data processed by the system. For example, 
in test T3, the materialized data occupy 52.13%, 
whereas it satisfies 66.33% of queries. 

We note that the rate of the space occupied by 
the materialized part is always less than the rate of 
queries satisfied in this part. 

5. CONCLUSION AND OUTLOOKS 

Selecting data to materialize in a hybrid mediator 
is a task crucial to the performance of the latter. 
Thus, a system of which the materialized part is 
well chosen is a system that consumes less memory 
space and in same time satisfies more queries. This 
will significantly reduce the response time of que-
ries. Indeed, the response time of a query satisfied 
in whole or in part in the materialized part is always 
less than that satisfied virtually. 

However, the materialized data is organized as 
views. Based on the distribution of user queries, we 

 -

 20.00

 40.00

 60.00

 80.00

T1 T2 T3 T4 T5 T6 T7 T8 T9Sa
tis

fa
ct

io
n 

ra
te

/S
ize

 

Tests 
Satisfaction rate of views in the materialized part
Size of the materialized part

Fig. 13: Satisfaction Rate Of Views In The 
Materialized Part 

Fig. 10: Matrices Of Attribut-Attribut-Value 
Dependencies 

Fig. 12: Intra-Instance Depencies 

Fig. 11: Instances 

I1 I2 I3 I4 

I5 I6 I7 I8 

I9 I10 I11 I12 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
169 

 

proposed in this paper an approach to create these 
views.  

In the first step, we extract the attributes most re-
quested by users. These are classified as view 
schemas. To do this, we proposed an algorithm that 
we called k-schema. This iterative algorithm tries to 
maximize the sum of the intra-class dependencies. 

We then extracted for each attribute, the most 
frequent values. The latter are assigned to the vari-
ous attributes of each schema forming instances. 
We kept only those whose degree of intra-instance 
dependence is more than a threshold. 

In our approach, we based only on the distribu-
tion of user queries for the selection of attributes 
that will appear in the views. It will be useful to 
exploit the user profile to obtain information about 
its interests and thus consider it in this phase. 

We are based, also, on the appearance of attrib-
utes in queries to calculate the degree of dependen-
cy. It is possible to exploit the domain ontology to 
calculate this dependency. 

In our approach, the selection of data to material-
ize is a task done at the time of the establishment of 
the system. This makes static our solution. In other 
words, there will be no evolution of the material-
ized part. However, the choices and the interests of 
users may change over time. It is very important to 
add a dynamic aspect, taking into account the 
changes that may appear in the choices and the 
interests of users. 

REFRENCES: 

[1]  Haas, L. M. Beauty and the beast: The theory 
and practice of information integration. In 
ICDT, pages 27_43. (2008). 

[2]  A. Elmagarmidet al. Management of Hetero-
geneous and Autonomous Database Systems. 
Morgan Kaufmann, San Francisco, 1999. 

[3]  A. Zellou. Contribution à la réécriture LAV 
dans le contexte de WASSIT, vers un Frame-
work d’intégration de ressources. Thèse de Doc-
torat. Rabat. Maroc. Avril 2008. 

[4]    Y. Arens, C. Y. Chee, C.-N. Hsu and C. A. 
Knoblock. Retrieving and Integrating Data from 
Multiple Information Sources," in Intl Journal 
of Intelligent and Cooperative Informations 
Systems. June 1993. 

[5]  S. Chawathe, H. Garcia-Molina, J. Hammer, 
K. Ireland, Y. Papakonstantinou, J. Ullman, and 
J. Widom. The TSIMMIS pro ject: integration 
of heterogeneous information sources. IPSJ 
Conference, Tokyo, 1994. 

[6]  V.S. Subrahmanian, S. Adali, A. Brink, R. 
Emery, J. Lu, A. Ra jput, T. Rogers, R. Ross, 
and C. Ward. HERMES: A heterogeneous rea-
soning and mediator system. Technical report, 
University of Maryland, 1995. 

[7]  T. Kirk, A. Y. Levy, Y. Sagiv, D. Srivastava . 
The Information Manifold.  In proceedings of 
the AAAI-95 Spring Symposium on Infor-
mation Gathering from Heterogeneous, Distrib-
uted Environments.1995 

[8]  A. Y. Levy, A. Rajaraman and J. Ordille 
(1996). Query answering algorithms for infor-
mation agents.  In proceedings of the 13the Na-
tional Conference on Artificial Intelligence 
(AAAI-96). 1996. 

[9]  V. Lattes and M. Rousset. The use of CARIN 
language and algorithms for Information Inte-
gration: the PICSEL project. proceedings of the 
2nd international and workshop on intelligent 
information integration, Brighton Centre, 
Brighton, interdisciplinary UK, August 1998. 

[10]  V. Aguilera, S. Cluet, P. Veltri, D. Vodislav 
and F. Wattez. Querying XML Documents in 
Xyleme. in Proceedings of the ACM SIGIR 
2000 Workshop on XML and Information Re-
trieval. 2000. 

[11]  J. Widom. « Integrating Heterogeneous Da-
tabases: Lazy or Eager? », ACM Computing 
Surveys 28A(4), Décembre 1996 

[12]  R. Hull, G. Zhou, University of Colorado. 
« A Framework for Supporting Data Integration 
Using the Materialized and Virtual Approach-
es”. SIGMOD ’96 6/96 Montreal, Canada.1996. 

[13]  J. McHugh, et al., Stanford University.Lore: 
A Database Management System for Semistruc-
tured Data. 1997. 

[14]  N. Ashish, C. A. Knoblock and C. Shahabi, 
“selectively materializing data in mediators by 
analyzing user queries”, in Fourth IFCIS Con-
ference on Cooperative Information Systems, 
pages, 1999. 

[15]  N. Ashish, “optimizing information media-
tors by selectively meterializing data”,Ph.D dis-
sertation, Departement of computer Science. 
faculty of the graduate school, university of 
southern california, 2000. 

[16]  N. Ashish, “selectively materializing data in 
mediators by analyzing user queries”, in Inter-
national Journal of Cooperative Information 
Systems Vol. 11, Nos. 1 & 2, 2002. 

 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
170 

 

[17]  Y. Papakonstantinou,V. Vassalos . Architec-
ture and Implementation of an XQuery-based 
Information Integration Platform. Bulletin of 
the Technical Committee on Data Engineering 
March 2002 Vol. 25 No. 1.pages 18-26. 2002. 

[18]  S. Kermanshahani : “IXIA (IndeX-based 
Integration Approach) A Hybrid Approach to 
Data Integration”, Thèse, Université Joseph 
Fourier – Grenoble I, 2009. 

[19]  W. Hadi., A. Zellou, B. Bounabat, “Toward 
classification of hybrid integration systems”, in 
22nd edition of ICSSEA, Paris, France, 2010. 

[20]  S. Anter, A. Zellou, W. Hadi, “the hybrid 
integration systems: A comparative study”, in 
1th edition of JDSIRT, Rabat, Maroc, 2012. 

[21]  V. Y. Bichutskiy, R. Colman, R. K.. 
Barchmann and R. H. Lathrop, “Heterogeneous 
Biomedical Database Integration Using a Hy-
brid Strategy: A p53 Cancer Research Data-
base”. Cancer Informatics 2006. 

[22]   W. Hadi., A. Zellou and B. Bounabat, “Hy-
brid information integration: fuzzy controller 
for selecting views to materialize”, in 7th edi-
tion of SITA, Mohmmedia, Maroc, 2012. 

[23]  G. Wiederhold. Mediators in the architecture 
of future information systems, The IEEE Com-
puter Magazine, Mars 1992. 

[24]  J. A. Hartigan and M. A. Wong, “A K-Means 
Clustering Algorithm”, in journal of the royal 
statistical society, 1979. 

 
 

http://www.jatit.org/

	1SAMIR ANTER, 2AHMED ZELLOU, 3ALI IDRI
	,𝑓-,𝐴-𝑖..=,,na- 𝑖.-nq .
	,𝜗-A,B.:  va × vb  →   ℕ

