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ABSTRACT 
 

This paper proposes an optimal design for control and overspeed protection in Gas turbine by means of 
reliability redundancy optimization. In general form, the problem is consisting of four control valves (stop 
valves), as a subsystem, each of them has the same components with reliability, weight and other 
parameters. The problem objective is to find a maximum reliability for total system in order to stop control 
valves in turbine’s overspeed state. The objective function is optimized and solved using a new type of 
Harmony Search Algorithm (HSA) that authors call it Elitism Box-Muller Harmony Search Algorithm 
(EBMHSA). The simulation results show that this method gives a better and accurate solution compared 
with the other algorithms. 

Keywords: Reliability Redundancy Optimization, Optimal design, overspeed, Gas turbine, Elitism Box-
Muller Harmony Search Algorithm (EBMHSA) 

 
1. INTRODUCTION  
 

Control and protection for a gas turbine is almost 
like a steam turbine. While the gas turbine works in 
high temperature than steam turbine. Thus it should 
under closer control, which called the later (closer 
control) “sequencing”.  Sequencing which can 
manage the gas turbine automatically. Figure 1 
shows an example of a gas turbine control system. 

 

Figure 1. View Of Gas Turbine Control System And 
Procedures 

 

Rising demand for systems with higher 
reliability, so laboratory studies and simulations has 
taken the trend. A number of studies have also been 
done on overspeed protection such as the analysis 
of instability in the steam turbine [1-3] and analysis 
of the reliability wind turbines [4]. Application of 
reliability redundancy optimization problem is in 
the protection of the overspeed [5]. Goal-oriented 
programming method is used for overspeed 
problem solving. This problem have been studied 
using heuristic algorithms and exploration [6], 
genetic algorithm [7], particle swarm algorithm [8] 
and the algorithm NGHS [9]. 

According to Figure 1, the overspeed protection 
of gas turbine is very significant in systems control 
[1]. Overspeed control is the first step against 
excessive speed. That   restores the turbine in the 
steady state condition for which the turbine has 
been installed. The application of sequencing is to 
reset the units while emergency due to overspeed. 
Usually the emergency reset of the system is 
designed independent of the overspeed control. 
Hence, high reliability for operation of control 
valves shall be considered. Here, the performance 
with maximum reliability will be the main target for 
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the control valves. In practice, usually four or more 
parallel control valves are used. Each of them 
allows fuel easily to pass through a narrow channel. 
In normal working mode, control valves are opened 
sequentially [2].  

2. RELIABILITY REDUNDANCY 
OPTIMIZATION PROBLEM   

 
Many designers are devoted to improve the 

reliability of manufacturing systems or product 
components to be more competitive in the market. 
Typical approaches to achieve higher systems 
reliability are increasing the reliability of system 
components, and increasing the redundant 
components in various systems.  

In this work, a reliability redundancy allocation 
problem of maximizing the system reliability 
subject to multiple nonlinear constraints can be 
stated as a nonlinearly mixed-integer programming 
model in general form 
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Where sR is the reliability of system, 
),...,3,2,1( mrrrrr = is the vector of the component 

reliabilities for the system, ),...,3,2,1( mnnnnn = is the 
vector of the redundancy allocation for the system, 

ir  and in are the reliability and the number 
of components in the ith subsystem respectively, 

(.)f  is the objective function for the overall 
system reliability, (.)g  is the constraint function 
and l is the resource limitation, (.)g  is the 
constraint function usually associated with system 
weight, volume and  cost, m is the number of 
subsystems in the system. The goal is to determine 
the number of component and the components’ 
reliability in each system so as to maximize the 
overall system reliability. The problem belongs to 
the category of constrained nonlinear mixed-integer 
optimization problems. Overspeed detection is 
continuously provided by the electrical and 
mechanical systems. When an overspeed occurs, it 
is necessary to cut off the fuel supply. For this 
purpose, four control valves (V1–V4) must close 
(Figure 2). 

 

 
Figure 2.  Schematic Diagram For The Overspeed 

Protection System Of A Gas Turbine 
 

The control system is modeled as a 4-stage series 

system. The control valve (subsystem)i has 

in parallel controllers each with the same reliability 
( ir ).  

Thus the reliability of the subsystemi would be:  

∏
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These control valves should work together to cut 
off fuel and thus the reliability of the whole system 
would include: 
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sR is the objective function in the optimization 
problem. The objective is to determine an optimal 
level of ir  and in at each stage i such that 
the system reliability is maximized. This reliability 
problem is formulated as follows [9]: 
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Where iv is the volume of each component in 

subsystem i , V is the upper limit on the sum of 
the subsystems’ products of volume and weight, C 
is the upper limit on the cost of the 
system. )( irC is the cost of each component with 

reliability ir  at subsystem i : 

iiii rTrC βα )]ln(/.[)( −=
                          

(5) 
T is the operating time during which the 

component must not fail, and W is the upper limit 
on the weight of the system. The input parameters 
defining the overspeed protection system for a gas 
turbine are shown in Table 1. The data shown in 
Table 1 are also available in [6]. 

Table 1. Data Used In Overspeed Protection System Of 
Gas Turbine 

T  W  C  V  iw  iv  iβ  
iα510  stage 

h1000  500  400  250  6  1  1.5  1.0  1  

        6  2  1.5  2.3  2  
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3. HARMONY SEARCH ALGORITHM 
 

    The harmony search algorithm (HSA) is a music-
inspired evolutionary algorithm, mimicking the 
improvisation process of music players [10, 11]. 
The HS is simple in concept, few in parameters, and 
easy in implementation, with theoretical 
background of stochastic derivative [11]. The 
algorithm was originally developed for discrete 
optimization and later expanded for continuous 
optimization [12]. It has been successfully applied 
to various benchmark and real-world problems 
including traveling salesman problem, parameter 
optimization of river flood model, design of 
pipeline network, and design of truss structures. 
They are as follows [13]: 

Step 1: Initialize the problem and algorithm      
parameters 

Step 2: Initialize the harmony memory 
Step 3: Improvise a new harmony  
Step 4: Update the harmony memory 
Step 5: Check the stopping criterion 

 
These steps are described in the next five 

subsections: 

3.1. Initialize the problem and algorithm 
parameters 

In Step 1, the optimization problem is specified 
as follows: 

 
Minimize     )(xf

r  
Subject to    .,...,2,10)( Mixg i =≥r                   
                  .,...,2,10)( Pjxh j ==r          (6)                                                                                             
                  .,...,2,1 Nkxxx kUkkL =≤≤  

 
Where )(xf

r  is the objective function, M is the 

number of inequality constraints and P is the 
number of equality constraints. x is the set of each 
decision variable 

ix  ; N is the number of decision 

variables. The lower and upper bounds for each 
decision variable are 

iL x and 
iU x  respectively. The 

HSA parameters are also specified in this step. 
These are the harmony memory size (HMS), or the 
number of solution vectors in the harmony memory, 
harmony memory considering rate (HMCR), pitch 
adjusting rate (PAR), and the number of 
improvisations (NI), or stopping criterion. The 
harmony memory (HM) is a memory location 
where all the solution vectors (sets of decision 
variables) are stored. The HM is similar to the 
genetic pool in the genetic algorithms (GAs) [13].  

Here, HMCR and PAR are parameters that are 
used to improve the solution vector. Both are 
defined in Step 3. 

 

3.2. Initialize the harmony memory 

In Step 2, the HM matrix is filled with as many 
randomly generated solution vectors as the HMS: 
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     (7)         

Infeasible solutions that violate the constraints 
have a chance to be included in the HM with hope 
of forcing the search towards the feasible solution 
area. Static penalty functions are used to calculate 
the penalty cost for an infeasible solution. The total 
cost for each solution vector is evaluated using: 
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Where 

iα and 
jβ  are the penalty coefficients. 

Generally, it is difficult to find a specific rule to 
determine the values of the penalty coefficients and 
normally these parameters remain problem-
dependent. 

 

3.3. Improvise a new harmony 

A new harmony vector ),,,( 21 Nxxxx ′′′=′ K

r  is 

generated based on three rules: 

1) Memory consideration 
2) Pitch adjustment 
3) Random selection 

 
Generating a new harmony is called 

“improvisation” [13]. In the memory consideration, 
the value of the first decision variable )( 1x′  for the 

new vector is chosen from any of the values in the 
specified HM range )( HMS

11 xx −′ . Values of the 

other decision variables ),,,( 32 Nxxx ′′′
K

are chosen 

in the same manner. The HMCR, which varies 
between 0 and 1, is the rate of choosing one value 
from the historical values stored in the HM, while 
(1-HMCR) is the rate of randomly selecting one 
value from the possible range of values, as shown 
in (4). 

 

.end
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                         (9)  

 
Where rand (): is a uniform random number 

between 0 and 1 and 
iX  is the set of the possible 

range of values for each decision variable, that 
is .iUiiL xXx ≤≤  

For example, a HMCR of 0.85 indicates that the 
HSA will choose the decision variable value from 
historically stored values in the HM with an 85% 
probability. Every component obtained by the 
memory consideration is examined to determine 
whether it should be pitch adjusted. This operation 

uses the PAR parameter, which is the rate of pitch 
adjustment as follows: 
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Where bw, is an arbitrary distance bandwidth. To 

improve the performance of the HSA and eliminate 
the drawbacks associated with fixed values of PAR 
and bw.  

Reference [14] proposed an improved harmony 
search (IHS) algorithm that uses variable PAR and 
bw in improvisation step. In their method PAR and 
bw change dynamically with generation number as 
expressed below: 

 

.gn
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PARPAR(gn) minmax

min ×
−

+=   (11)  

 
Where PAR (gn) is the pitch adjusting rate for 

each generation, 
minPAR  is the minimum pitch 

adjusting rate, 
maxPAR  is the maximum pitch 

adjusting rate and gn is the generation number. 
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Where bw(gn) is the bandwidth for each 

generation, 
minbw  is the minimum bandwidth and 

maxbw  is the maximum bandwidth. Recently other 

variants of harmony search have been proposed. 
Reference [15] proposed a new variant of harmony 
search, called the global best harmony search 
(GHS), in which concepts from swarm intelligence 
are borrowed to enhance the performance of HSA 
such that the new harmony can mimic the best 
harmony in the HM. Reference [16] proposed a 
new stochastic derivative for discrete variables 
based on a harmony search algorithm to optimize 
problems with discrete variables and problems in 
which the mathematical derivative of the function 
cannot be analytically obtained. 
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3.4. Update harmony memory 

If the new harmony vector, ),,,( 21 Nxxxx ′′′=′ K

r , 

has better fitness function than the worst harmony 
in the HM, the new harmony is included in the HM 
and the existing worst harmony is excluded from 
the HM. 
 

3.5. Check stopping criterion 

The HSA is terminated when the stopping 
criterion (e.g., maximum number of 
improvisations) has been met. Otherwise, Steps 3 
and 4 are repeated. 
 
4. THE ELITISM BOX-MULLER 

HARMONY SEARCH ALGORITHM 
(EBMHSA)    

 
Inspired by the concept of Box-Muller transform, 

a new variation of HS is proposed in this section. A 
Box–Muller transform is a method of generating 
pairs of independent standard normally distributed 
(zero expectation, unit variance) random numbers, 
given a source of uniformly distributed random 
numbers [17]. It is commonly expressed in two 
forms. The basic form as given by Box and Muller 
takes two samples from the uniform distribution on 
the interval (0, 1] and maps them to two normally 
distributed samples. The polar form takes two 
samples from a different interval, [−1, +1], and 
maps them to two normally distributed samples 
without the use of sine or cosine functions. One 
could use the inverse transform sampling method to 
generate normally-distributed random numbers 
instead; the Box–Muller transform was developed 
to be more computationally efficient. Suppose 1U  

and 2U  are independent random variables that are 

uniformly distributed in the interval (0, 1] : 

)2cos(ln2)cos( 211 UURZ πθ −==           (13) 

and  

).2sin(ln2)sin( 212 UURZ πθ −==           (14)                                                                              

Then 1Z  and 2Z  are independent random 

variables with a normal distribution of standard 
deviation 1. 

The derivation is based on the fact that, in a two-
dimensional Cartesian system where X and Y 
coordinates are described by two independent and 
normally distributed random variables, the random 
variables for 2R  and θ  (shown above) in the 
corresponding polar coordinates are also 
independent and can be expressed as 

1
2 ln2 UR −=                                                      (15)                                                                                        

and 

.2 2Uπθ =                                                          (16)  

EBMHSA generates random numbers by means 
of Box–Muller method. EBMHSA has exactly the 
same steps as the HS with the exception that Step 2 
and step 3 is modified as Figure 3. In Figure 3, Z-
rand generates random number in range 0.0~1.0 by 
Box–Muller method. Regarding the mixed (discreet 
and continues) variables the implementation of 
cook regulation can be done discreetly for 

),...,3,2,1( mnnnnn = vector and continuously 

for ),...,3,2,1( mrrrrr = vector.  

To achieve this purpose, two parameters of bw 
respectively as nbw and rbw are introduced. To 
maximize of quality of responses we use PAR and 
bw (similar variable in [14]). Another change 
which is done to other algorithms is using a 
parameter named Elitism Harmony Memory 
(EHMS) instead of HMS in HMCR (according to 
Eq. 17):  

HMSminEHMS, 

gn.
NI

)minHMSE(HMS
EHMSgnEHMS

<∀

×−+= min)(
     (17) 

Using this parameter, determination of value for 
HM variable is limited to the set of elitist or better 
answers. Hence the new algorithm is known as 
Elitism Box-Muller Harmony Search Algorithm 
(EBMHSA) which is called this name by the 
authors for the first time.   

5. EXPERIMENTAL RESULTS 
 

Visual Basic software and a Pentium (V) 2.6 
GHz processor and 756 MB of RAM were chosen 
as the programming language and environment.  

2max,001.0min,99.0max,15.0min ==== rbwrbwPARPAR

 2max,1min == nbwnbw  are parameters that 
have been considered. The maximum NI in 
accordance with [9] is 20000, HMCR is 0.95 and 
Harmony memory size (HMS) equals to 20.  

minEHMS  is 3 and other data is based on Table 1. In 
order to avoid random answers, it has been run 500 
times. For measuring the improvement, MPI 
(maximum possible improvement) can be used to 
measure the amount improvement of the solutions 
found by the  
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Figure 3. Optimization Procedure Of EBMHSA 

EBMHSA to those found by the other two harmony 
search algorithms (HIS and NGHS) and it is 
described as [9]:  

)1/()((%) othersothersEBMHSA fffMPI −−=  (18) 

Where EBMHSAf represents the best system 
reliability obtained by the EBMHSA 

and othersf represents the best system reliability 
obtained by the other algorithms. Since for each 
steps of the program there is only one answer 
(unlike genetic algorithms and particle swarm 

optimization is created each time a population), this 
algorithm takes less time (each running 
approximately 0.4 seconds) is required. Figure 4 
represents convergence of objective function 
reliability (Rs) and Figures 5 to 7 represent 
convergence constraint functions g1, g2, g3 run 
after 500 times. Table 2 shows the best response to 
the relevant variables. Obtained results using 
EBMHSA in Tables 3 and 4 have been compared 
with other methods. The best answers, the means 
and the results show that the proposed method is 
more efficient.  
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Table 2. Results Obtained By Several Methods 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison Of Results Of The Proposed Algorithm And Other Harmony Search (HS) Algorithms 

Algorithm Best Worst Mean Standard deviation 
HS (Zou et al. [9]) 0.99994993 0.99840124 0.99976502 2.9247e-04 

HIS (Zou et al. [9]) 0.99995060 0.99932384 0.99981880 1.5780e-04 

NGHS (Zou et al. [9]) 0.99995467 0.99982539 0.99992642 2.8874e-05 

EBMHSA 0.999954673245242 0.999687966250858 0.999943913871762 1.93043e-05 

 
 

 

Table 4. Comparison Of Present Results With Other Method

Parameter 
Yokota et al. 

[7] 
Dhingra 

[5] 
  Chen [6]  Coelho [8]  

Zou et al.       
[9] 

EBMHSA    

n1 3 6   5  5  5 5   

n2 6 6   5  6  6 6   

n3 3 3   5  4  4 4   

n4 5 5   5  5  5 5   

r1 0.965539 0.81604   0.903800  0.902231  0.90186194 0.901468967312829   

r2 0.760592 0.80309   0.874992  0.856325  0.84968407 0.849886440968603   

r3 0.972646 0.98364   0.919898  0.948145  0.94842696 0.948130069890634   

r4 0.804660 0.80373   0.890609  0.883156  0.88800590 0.888337451872764   

g1 92-  65-    50-   55-   55-  -55   

g2 70.733576 -  0.064-    0.002152-   0.975465-   0.00120356-  0.00216673697553915-   

g3 127.583189-  4.348-    28.803701 -   24.801882 -   24.80188272-  24.8018827221205-   

Rs 0.999468 0.99961   0.999942  0.999953  0.99995467 0.999954673245242   

MPI (%) 91.47993 88.37776   21.85042  3.56010  0.00716  0.000    

 

 

 

 

 

 

 

EBMHSA  NGHS [9] HIS [9] 
Variables, 

Results 
5  5  5  n1  
6  6  5  n2  
4  4  4  n3  
5  5  6  n4 

0.901468967312829  0.90186194  0.899919543442029  r1 
0.849886440968603  0.84968407  0.886865132867892  r2 
0.948130069890634  0.94842696  0.948537400374158  r3 
0.888337451872764  0.88800590  0.852939836019146  r4 

55-  55-  55-  g1 
0.00216673697553915-  0.00120356  0.504961731657261-  g2 

24.8018827221205-  24.80188272  15.3634630874013-  g3 
0.999954673245242  0.99995467  0.999954296769908  Rs 

0.000  0.00716  0.82374  MPI (%) 
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6. CONCLUSION  
 

In this paper based on Elitism Box-Muller 
Harmony Search Algorithm (EBMHSA) for solving 
reliability redundancy optimization in overspeed 
gas turbine is proposed and simulated. Parameters 
of statistical means and standard deviation of 
results are indicated more reliable solution 
compared with other heuristic algorithms. 
Furthermore MPI shows that EBMHSA compared 
with other methods gives better and more accurate 
answers. 
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