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ABSTRACT

This paper proposes an optimal design for contnol averspeed protection in Gas turbine by means of
reliability redundancy optimization. In general fgrthe problem is consisting of four control val{s®p
valves), as a subsystem, each of them has the sameonents with reliability, weight and other
parameters. The problem objective is to find a maxn reliability for total system in order to stopntrol
valves in turbine’s overspeed state. The objediivestion is optimized and solved using a new type o
Harmony Search Algorithm (HSA) that authors calEiitism Box-Muller Harmony Search Algorithm
(EBMHSA). The simulation results show that this huet gives a better and accurate solution compared
with the other algorithms.

Keywords: Reliability Redundancy Optimization, Optimal design, overspeed, Gas turbine, Elitism Box-
Muller Harmony Search Algorithm (EBMHSA)

1. INTRODUCTION

Control and protection for a gas turbine is almosrte Iggm,? sgﬁg]t?or}(;to:orstug?/esste;?wz sivn\glltjrllati Ih|gher
like a steam turbine. While the gas turbine works i Y y

. : : ken the trend. A number of studies have also been
high temperature than steam turbine. Thus it shou : .
. one on overspeed protection such as the analysis
under closer control, which called the later (ctose

control) “sequencing”.  Sequencing which canOf instability in the steam turbine [1-3] and arsady

manage the gas turbine automatically. Figure (if the reliability wind turbines [4]. Applicationfo

: reliability redundancy optimization problem is in
shows an example of a gas turbine control SyStem'the protection of the overspeed [5]. Goal-oriented

NPUTS orars  Programming  method is used for overspeed
. s | g conmoL oma  Problem solving. This problem have been studied
ROTORSPEED) ——=| | S | sir SYSTEM i isti i i
E More { using heuristic algorithms and exploration [6],
FUELFLOW Q L co»ingsnom peae  genetic algorithm [7], particle swarm algorithm [8]
VALYE PROTECTION U Puzeégsw NTROL —I SESJSQL and the algorithm NGHS [9].
o G4 H . . .
PATHTEP(S) 5 e | TGS ATHOEADE LT According to Figure 1, the overspeed protection
— G| M| EMSSONSCONTROL of gas turbine is very significant in systems cohtr
PRESSURE. BT [1]. Overspeed control is the first step against
N | MEE | COHOTONMONTORNG excessive speed. That restores the turbine in the
SUPPORT L0 TRPACTON . . .
sz ———— | G 55 PROTECTION TRPACTION steady state condition f_or yvh|ch the turb_me _has
SIGNALS been installed. The application of sequencing is to
reset the units while emergency due to overspeed.
Usually the emergency reset of the system is
SETPONTS e oS designed _indepe.nd_e.nt of the ovgrspeed control.
P RIS ORYED oo Hence, high reliability for operation of control
Figure 1. View Of Gas Turbine Control System And Va_‘lves shall be C_ons_l_dere_d. Here, the. performance
Procedures with maximum reliability will be the main targetrfo

s
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the control valves. In practice, usually four orrmo
parallel control valves are used. Each of ther
allows fuel easily to pass through a narrow channe

Gas Turbine

In normal working mode, control valves are opene|, , ‘
. echanical
sequentially [2]. and I | I I
electrical
2. RELIABILITY REDUNDANCY overspeed | | vi | [va | [va| [va]
OPTIMIZATION PROBLEM T I I I
Many designers are devoted to improve th Air Fuel Mixture

reliability of manufacturing systems or producl . _
components to be more competitive in the market. Figure2. Schematic Diagram For The Overspeed
Typical approaches to achieve higher systems Protection System Of A Gas Turbine

reliability are increasing the reliability of syste ) _
components, and increasing the redundant The control system is modeled as a 4-stage series

components in various systems. system. The control valve (subsystem) has
n; parallel controllers each with the same reliability

In this work, a reliability redundancy allocation
problem of maximizing the system reliability( ri )
subject to multiple nonlinear constraints can be o .
stated as a nonlinearly mixed-integer programming 1Nus the reliability of the subsysteimwould be:
model in general form N

e Re = T R=1-[]e-n=1-a-n)"
@) L

S.t. g(r,n) <1 (2)

+ :
O<ris<lnbz 0s<ism These control valves should work together to cut
WhereRs is the reliability of system, off fuel and thus the reliability of the whole syst

r=(r1,r2.r3....'m) is the vector of the componentwould include:
reliabilities for the systemp=(n,n2,n3.....ny) is the m
vector of the redundancy allocation for the system, _ _ N
ri and nj are the reliability and the number Re=T(rm= I_1I A== 3)
of components in the ith subsystem respectively, 1=
f () is the objective function for the overall Rs is the objective function in the optimization
system reliability, g(.) is the constraint function problem. The objective is to determine an optimal
and | is the resource limitationg() is the level of r; andn; at each stagel such that
constraint function usually associated with systertie system reliability is maximized. This reliatyli
weight, volume and cost, m is the number oproblem is formulated as follows [9]:
subsystems in the system. The goal is to determine Re = f(r.n)
the_ n_u_mb_er of component and the cornp_onentséub]ec,[.to
reliability in each system so as to maximize the
overall system reliability. The problem belongs to 4 2
the category of constrained nonlinear mixed-integer 9u(r,m) = Z""”i “V=<0
optimization problems. Overspeed detection is =1

continuously provided by the electrical and m 025n
mechanical systems. When an overspeed occurs, it gz(r,n)=ZC(ﬁ)-[ni +e” "] -C=<0
is necessary to cut off the fuel supply. For this i=1
purpose, four control valves (V1-V4) must close m (4)
(Figure 2). g3(r.n) = qu e _w<o
i=1
O<r<1rOR"

l1sn<ionOz*
0<i<m
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3.1. Initialize the problem and algorithm
Where Vv is the volume of each component in ~ Parameters
subsystemi , V is the upper limit on the sum of In Step 1, the optimization problem is specified

the subsystems’ products of volume and weight, @S follows:
is the upper Ilimit on the cost of the

system.C (rj) is the cost of each component WithMini_mize f(X)

reliability ri at subsystemi Subjectto g, ()20 1=12...M
h(x=0 j=12..P (6)

C(ri)=ail-T /in(r) P 5) X EXE,% K= 12..N

T is the operating time during which the
component must not fail, and W is_ the upper limit Where f (%) is the objective functionM is the
on the weight of the system. The input parametets,mper of inequality constraints anél is the

defining the overspeed protection system for a 93gmper of equality constraints.is the set of each
turbine are shown in Table 1. The data shown ifecision variablex : N is the number of decision

Table 1 are also available in [6].
(6] variables. The lower and upper bounds for each

Table 1. Data Used In Overspeed Protection System Of decision variable are x, and |, x; respectively. The
Gas Turbine

HSA parameters are also specified in this step.
wage 10%a A v w v c w T These are the harmony memory size (HMS), or the
number of solution vectors in the harmony memory,
1 10 5 1 6 250 400 500  100(h harmony memory considering rate (HMCR), pitch

2 23 5 2 6 adjusting rate (PAR), and the number of
3 03 15 3 8 improvisations (NI), or stopping criterion. The
4 2.3 1.5 2 7

harmony memory (HM) is a memory location
where all the solution vectors (sets of decision
variables) are stored. The HM is similar to the
genetic pool in the genetic algorithms (GAs) [13].

3. HARMONY SEARCH ALGORITHM

The harmony search algorithm (HSA) is a music- Here, HMCR and PAR are parameters that are
inspired evolutionary algorithm, mimicking theused to improve the solution vector. Both are
improvisation process of music players [10, 11]defined in Step 3.

The HS is simple in concept, few in parameters, and

easy in implementation, with theoretical

background of stochastic derivative [11]. The3.2. Initialize the harmony memory

algorithm was originally developed for discrete |n Step 2, the HM matrix is filled with as many

optimization and later expanded for continuougandomly generated solution vectors as the HMS:
optimization [12]. It has been successfully applied

to various benchmark and real-world problems o ! Loy ]
including traveling salesman problem, parameter X12 2 '2“*1 '2“
optimization of river flood model, design of X X Xya Xy

(7)

pipeline network, and design of truss structurediM =

They are as follows [13]: HMS1 HMS HMS1 | HMS1

X X X4 Xn
Step 1: Initialize the problem and algorithm XS NS L NS s

parameters
Step 2: Initialize the harmony memory
Step 3: Improvise a new harmony
Step 4: Update the harmony memory
Step 5: Check the stopping criterion

Infeasible solutions that violate the constraints
have a chance to be included in the HM with hope
of forcing the search towards the feasible solution
area. Static penalty functions are used to caleulat

These steps are described in the next fiv@e penalty cost for an infeasible solution. Thialto
subsections: cost for each solution vector is evaluated using:
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: » . . = uses the PAR parameter, which is the rate of pitch
fitness(X) = (%) + > a; x min|[ 0,g,(%)] | + (8 adiustment as follows:
i=1
P
> By x|min[o.h,®)|. if (rand () < PAR)
j=1

X, < x *rand () Obw

- 10
Where ¢, and B, are the penalty coefficients. else (10)

Generally, it is difficult to find a specific rule X < X

determine the values of the penalty coefficientd an enc.

normally these parameters remain problem-

dependent. Where bw, is an arbitrary distance bandwidth. To
improve the performance of the HSA and eliminate
the drawbacks associated with fixed values of PAR

3.3. Improvise a new harmony and bw

A new harmony vectorx' = (x;, X,,..., Xy ) IS

Reference [14] proposed an improved harmon
generated based on three rules: [14] prop mprov y

search (IHS) algorithm that uses variable PAR and

1) Memory consideration bw in improvisation step. In their method PAR and
2) Pitch adjustment bw change dynamically with generation number as
3) Random selection expressed below:

Generating a new harmony is called (PAR__-PAR )
“improvisation” [13]. In the memory consideration, PAR(gN)=PAR ;, + — mn’ xgn (11)

. L . NI
the value of the first decision variab{e;) for the

new vector is chosen from any of the values in the \where PAR (gn) is the pitch adjusting rate for
specified HM rangex; - x,). Values of the each generationpAR  is the minimum pitch
other decision variablgs;, x,..., x, ) are chosen adjusting rate, PAR 18 the maximum pitch

in the same manner. The HMCR, which variegdjusting rate and gn is the generation number.
between 0 and 1, is the rate of choosing one value

from the historical values stored in the HM, whilepw(gn) = bw e EXP(C gN).

(1-HMCR) is the rate of randomly selecting one b (12)
value from the possible range of values, as shown Ln[wmmj
in (4). c= bW o
NI
if (rand () < HMCR )
X o X O{xE, X2, , xSy Where bw(gn) is the bandwidth for each

(9) generation,bw . is the minimum bandwidth and

n

else
' 0 X bw ., is the maximum bandwidth. Recently other
X — X )

encl ' ' variants of harmony search have been proposed.

Reference [15] proposed a new variant of harmony
Where rand (): is a uniform random number search,_calle_d the global best harmony_search
X -~ (GHS), in which concepts from swarm intelligence

between 0 and 1 angt. is the set of the possible
' o ) are borrowed to enhance the performance of HSA
range of values for each decision variable, thay,ch that the new harmony can mimic the best
IS % < XisyX. harmony in the HM. Reference [16] proposed a
For example, a HMCR of 0.85 indicates that t new stochastic derivative for discrete variables

h : -
HSA will choose the decision variable value fron?’aseoI on a_ harmony seargh algorithm 10 optlml_ze
historically stored values in the HM with an 85%prObIemS with discrete variables and problems in

probability. Every component obtained by thavhich the mathematical derivative of the function
memory consideration is examined to determing@nnot be analytically obtained.
whether it should be pitch adjusted. This operation
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3.4. Update harmony memory R? = -2InU ) (15)

If the new harmony vectory’ = (x;, x,,..., Xy ) and
has better fitness function than the worst harmony - 5 ,. (16)

in the HM, t.he new harmony is |neluded in the HM EBMHSA generates random numbers by means
and the existing worst harmony is excluded fron?)f Box-Muller method. EBMHSA has exactly the
the HM. same steps as the HS with the exception that Step 2
and step 3 is modified as Figure 3. In Figure 3, Z-
3.5. Check stopping criterion rand generates random number in range 0.0~1.0 by
Box—Muller method. Regarding the mixed (discreet

The HSA is terminated when the StOppIngand continues) variables the implementation of

entenop . eg. maximum ”“m,ber of cook regulation can be done discreetly for
improvisations) has been met. Otherwise, Steps 3 ,
nm) vector and continuously

and 4 are repeated. n =£”1’ N2.N3.
for r = (ry,ro,r3,..., 'm ) Vector.
4, THEELITISM BOX-MULLER

HARMONY SEARCH AL GORITHM To achieve this purpose, two parameters of bw
(EBMHSA) respectively as nbw and rbw are introduced. To

maximize of quality of responses we use PAR and

Inspired by the concept of Box-Muller transform,0W (similar variable in [14]). Another change
a new variation of HS is proposed in this section. Which is done to other algorithms is using a
Box—Muller transform is a method of generating?@rameter named Elitism Harmony Memory
pairs of independent standard normally distribute§EHMS) instead of HMS in HMCR (according to
(zero expectation, unit variance) random number&d- 17):

given a source of uniformly distributed random (HMS - EHMSmin )
numbers [17]. It is commonly expressed in twoEHMS(GN = EHMSpin + =——————10=x gn. 17)
forms. The basic form as given by Box and Muller [OEHMSjn < HMS

takes two samples from the uniform distribution on

the interval (0, 1] and maps them to two normally Using this parameter, determination of value for
distributed samples. The polar form takes twdiM variable is limited to the set of elitist or best
samples from a different interval, [-1, +1], andanswers. Hence the new algorithm is known as
maps them to two normally distributed sample&litism Box-Muller Harmony Search Algorithm
without the use of sine or cosine functions. OnéEBMHSA) which is called this name by the
could use the inverse transform sampling method ®uthors for the first time.

generate normally-distributed random number . EXPERIMENTAL RESULTS

instead; the Box—Muller transform was develope

to be more computationally efficient. SUPPASE  yjigyal Basic software and a Pentium (V) 2.6
and u, are independent random variables that argHz processor and 756 MB of RAM were chosen

uniformly distributed in the interval (0, 1] : as the programming language and environment.
Z, =Rcos(@) =/-2InU, cos(2rJ,) (13) PARmin = 015 PARnax= 099 rbwmin= 0001 rbwnax=2

NoWmin =1 nbwWmax=2 are parameters that
have been considered. The maximum NI in
Z, =Rsin(8) = /- 2InU, sin(27U ,). (14) accordance with [9] is 20000, HMCR is 0.95 and
Then z, and z, are independent randomHarmony memory size (HMS) equals to 20.
variables with a normal distribution of standard®smin iS 3 and other data is based on Table 1. In
deviation 1. order to avoid random answers, it has been run 500
o ) times. For measuring the improvement, MPI
The derivation is based on the fact that, in a tWomaximum possible improvement) can be used to

dimensional Cartesian system where X and Yneasure the amount improvement of the solutions
coordinates are described by two independent aggng by the

normally distributed random variables, the random
variables for R2 and ¢ (shown above) in the
corresponding polar coordinates are also
independent and can be expressed as

and
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Step 1: Initialize Parameters |

Step 2: Initialize HM |

f(x): Objective Function

o N
x;: Decision Variable fori=1to HMS do ‘

N: Number of Decision Variables i

HMS: Number of .soiu.tion vectors in HM i - iR
HMCR: HM Considering Rate

PAR: Pitch Adjusting Rate by Box-Millsrmethod
bw: Distance bandwidth v

NI: Number of solution vector generations

Calculate f(x)

Step 3: Improvise New Harmony I h 4
—»{ fori=1toNdo |e
| PAR(g) : Pitch adjusting rate for each
generation
bw(g) : Bandwidth for each generation
PAR = PAR(g) HM(*, *) : Harmony memory matrix

bw = bw(g) Z-rand : Generate random numberin

improvised in Step 3
Dy = int( Z-rand * HMS)+1
Do = HM( Dy, i) Z-rand < PAR
NHV(i) = D2
No
D= NHV(i) + Z-rand * hw‘ PVBI(i) SD>"5°.

range 0.0~1.0 by Box—Muller method
Z-randval( lower, upper) : Generate
__No [NHV(i) = random number in the range
Z rand<HNER Z-randval( PVB®™**(i), PVB“=(i) ) lower~ upper by Box—Mullermethod
PVB(*) : Possible value bound for x;
Yes NHV(*) : A new harmony vector
" Yes
Z-rand< 0.5 D3s=NHV(i) —Z-rand * bw‘
No k
Y k\ 0 o=
e

h 4
Step 5: Check Stopping Criteria I Step 4: Update HM I

‘ Calculate f(x) ‘

Y’es_<>_N‘o No
l l < <__ls botter?

R | Yes
Terminate \ Repeat i Y
Computation / Steps 3and 4 Include neml;:j harmony
e an
Exclude worst harmony

¥

Figure 3. Optimization Procedure Of EBMHSA

EBMHSA to those found by the other two harmonyoptimization is created each time a population th
search algorithms (HIS and NGHS) and it isalgorithm takes less time (each running
described as [9]: approximately 0.4 seconds) is required. Figure 4
_ : B represents convergence of objective function

MP1 (%) = (TEBMHSA ~ fothers) /L~ fothers) (18) reliability (Rs) and Figures 5 to 7 represent
WherefeBmHsa represents the best systemconvergence constraint functions gl, g2, g3 run
reliability  obtained by the EBMHSA after 500 times. Table 2 shows the best response to

and fothers represents the best system reIiabiIit)ﬁhe relevant variables. Obtained results using

obtained by the other algorithms. Since for eac":TB'vn-lSA in Tables 3 and 4 have been compared

steps of the program there is only one answé’Y'th other methods. The best answers, the means

(unlike genetic algorithms and particle swarmand the results show that the proposed method is

more efficient.
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Table 2. Results Obtained By Several Methods

Variables,

Results HIS [9] NGHS [9] EBMHSA
nl 5 5 5
n2 5 6 6
n3 4 4 4
n4 6 5 5
rl 0.899919543442029 0.90186194 0.901468967312829
r2 0.886865132867892 0.84968407 0.849886440968603
r3 0.948537400374158 0.94842696 0.948130069890634
r4 0.852939836019146 0.88800590 0.888337451872764
gl 55 55 55
g2 -0.504961731657261 0.00120356 -0.00216673697553915
g3 -15.3634630874013 24.80188272 -24.8018827221205
Rs 0.999954296769908 0.99995467 0.999954673245242

MPI (%) 0.82374 0.00716 0.000

Table 3. Comparison Of Results Of The Proposed Algorithm And Other Harmony Search (HS) Algorithms

Algorithm Best Worst Mean Standard deviation
HS (Zou et al. [9]) 0.99994993 0.99840124 0.9992650 2.9247e-04
HIS (Zou et al. [9]) 0.99995060 0.99932384 0.99818 1.5780e-04
NGHS (Zou et al. [9]) 0.99995467 0.99982539 0.9%222 2.8874e-05
EBMHSA 0.999954673245242 0.999687966250858 0.999BEBr/1762 1.93043e-05
Table 4. Comparison Of Present Results With Other Method
Parameter Yokotaetal.  Dhingra Chen [6] Coelho [8] Zou etal. EBMHSA
[7] [5] [9
nl 3 6 5 5 5 5
n2 6 6 5 6 6 6
n3 3 3 5 4 4 4
n4 5 5 5 5 5 5
rl 0.965539 0.81604 0.903800 0.902231 0.9018619 0.901468967312829
r2 0.760592 0.80309 0.874992 0.856325 0.8496840 0.849886440968603
r3 0.972646 0.98364 0.919898 0.948145 0.9483269 0.948130069890634
r4 0.804660 0.80373 0.890609 0.883156 0.888D059 0.888337451872764
gl 92 65 50 55 55 -55
g2 -70.733576  -0.064 -0.002152 -0.975465 -0.00120356 0.00216673697553915-
g3 -127.583189 -4.348 -28.803701 -24.801882 -24.80188272  24.8018827221205-
Rs 0.999468 0.99961 0.999942 0.999953 0.9999546 0.999954673245242
MPI (%) 91.47993 88.37776 21.85042 3.56010 0.00716 0.000
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Figure 4. Convergence The Reliability After 500 Runs
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Figure 5. Convergence The Constraint Function G1 After 500 Runs
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Figure 6. Convergence The Constraint Function G2 After 500 Runs
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Figure 7. Convergence The Constraint Function G3 After 500 Runs

CONCLUSION

In this paper based on Elitism Box-Muller

Harmony Search Algorithm (EBMHSA) for solving

reliability redundancy optimization in overspeed7]
gas turbine is proposed and simulated. Parameters

of statistical means and standard deviation of
results are indicated more reliable solution
compared with other heuristic algorithms.

Furthermore MPI shows that EBMHSA compared8]
with other methods gives better and more accurate

[9]

answers.
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