
Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
983 

 

CONCEPTUAL FRAMEWORK FOR RECURSION IN 
COMPUTER PROGRAMMING 

 

SABAH AL-FEDAGHI 
Assoc. Prof., Computer Engineering Department, Kuwait University 

E-mail:  sabah@alfedaghi.co   
 
 

ABSTRACT 
 

Recursion is an important concept and a fundamental problem-solving technique in computer science. 
Studies have reported that it is considered a very difficult concept for students to learn and teachers to 
teach, and students have many misconceptions about recursion. Tools proposed to overcome these 
difficulties include visualization and algorithm animation. Conceptual models form the basis of methods for 
teaching recursion and influence the instructional tactics used when teaching it. Conceptual models of 
recursion have been found to provide a necessary representation for understanding the mechanics of 
recursion. Several of these models have been proposed, including the Russian dolls model, process tracing 
model, mathematical induction model, and structure template model. These are not based on a systematic 
foundation that visualizes the process in terms of flows of the recursive algorithm from the stages of 
creating (copying) then processing (executing) it. This paper presents such a methodical conceptual picture 
that describes the recursive process in a precise, visual way that assists in teaching and learning. The new 
model is illustrated by several examples, including factorial and binary tree traversing.   

Keywords: Recursive Process, Recursion, Computer Programming, Conceptual Model 
 
1. INTRODUCTION  
 

Recursion is an important notion and a 
fundamental problem-solving technique in 
computer science. Some researchers claim that it 
should be a recurring or “basic concern throughout 
the discipline” [1]. A recursive problem solution is 
built from instances of the same type of problem, 
and then these problems are repeatedly solved using 
the successive application of instantiations. In 
computer programming this is accomplished by a 
“flow of control” that embeds flows until reaching a 
terminating instance then folding backward to end 
unfinished instances [2].  

It is reported that recursion is a very difficult 
concept for students to learn and teachers to teach 
[3][4]. Students have many misconceptions about 
recursion and construct mental models which are 
non-viable [5]-[7]. 

Several reasons have been suggested for such 
problems, including difficulty in understanding 
passive flow of control [2] and suspended 
computation [8], and lack of everyday analogies 
[1]. Er [9] attributes the cause to a lack of 
conceptual model for illustrating recursive flow of 
control and also to the complexity of variable 

binding, parameter passing, and environmental 
closure [9]. 

Many methods of teaching recursion have been 
proposed, such as  concentrating on the concept of 
the base case [10]. Proposed tools include  
visualization [2][11]and algorithm animation [12]. 

According to Gotschi [5], 

Conceptual models form the basis of methods 
for teaching recursion and will influence the 
instructional tactics used when teaching 
recursion. A conceptual model of recursion is 
one which provides an accurate and consistent 
representation of the mechanics of recursion. 

In this context, a model is the conceptual 
representation of an abstract concept or a physical 
system that provides an explanatory instrument for 
understanding a concept or system [3]. It describes 
objects and their relations in the perceived world 
[3][13]. It is claimed that a conceptual model is 
necessary when learning recursion [14] since 
it would reduce misconceptions and enhance 
problem-solving abilities [15].  

Recursion has been conceptualized in different 
ways. The Russian dolls model [16] displays a 
Russian doll recursively in a process that invokes a 
smaller and smaller size of itself until the last doll 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
984 

 

does not contain another. The process tracing 
model [17] traces process generation by recursive 
functions. The mathematical induction model [18] 
uses the mathematical basis of proof by induction. 
The structure template model [14] provides  
programs and descriptions of the base cases and 
recursive cases. The copies model approach utilizes 
a procedure of looping over a stack of function 
calls with self-triggering mechanism and control 
passing back from terminated instantiations [19] 
[20].  

Still, these models are not based on a systematic 
foundation that visualizes the process in terms of 
flows of the recursive algorithm from stages of 
creating (copying) then processing (executing) it. 
This lack of systematic foundation becomes clearer 
when these models are contrasted with a new 
conceptual model proposed in this paper. Our 
proposed methodology describes the recursive 
process in a precise visual way that assists in 
teaching and learning.  

The next section briefly reviews the basic 
framework used to model a recursive process. 
 
2. FLOWTHING MODEL 
 

To make this paper self-contained, the materials 
in this section are summarized from a series of 
papers that have applied the model in several 
application areas [21]-[25].  

The Flowthing Model (FM) was inspired by the 
many types of flows that exist in diverse fields, 
such as, for example, supply chain flow, money 
flow, and data flow in communication models. This 
model is a diagrammatic schema that uses 
flowthings to represent a range of items that can be 
data, information, objects, or signals. FM also 
provides the modeler the freedom to draw the 
system using flowsystems that include six stages, as 
follows:  

• Arrive: A flowthing reaches a new flowsystem 
(e.g., a buffer in a router) 

• Accepted: A flowthing is permitted to enter the 
system (e.g., no wrong address for a delivery); 
if arriving flowthings are also accepted, Arrive 
and Accept can be combined as a Received 
stage. 

• Processed (changed): The flowthing goes 
through some kind of transformation that 
changes its form but not its identity (e.g., 
compressed, colored, etc.) 

• Released: A flowthing is marked as ready to be 
transferred (e.g., airline passengers waiting to 
board) 

• Created: A new flowthing is born (created) in 
the system (a data mining program generates 
the conclusion Application is rejected for input 
data) 

• Transferred: The flowthing is transported 
somewhere outside the flowsystem (e.g., 
packets reaching ports in a router, but still not 
in the arrival buffer) 

These stages are mutually exclusive, i.e., a 
flowthing in the process stage cannot be in the 
created stage or the released stage at the same time.  
Figure 1 shows the structure of a flowsystem. A 
flowthing is a thing that has the capability of being 
created, released, transferred, arrived, accepted, or 
processed while flowing within and between 
systems. A flowsystem depicts the internal flows of 
a system with the six stages and transactions among 
them. FM also uses the following notions: 

• Spheres and subspheres: These are the 
environments of the flowthing, such as a 
company and the departments within it, an 
instrument, a computer, an embedded system, a 
component, and so forth. A sphere can have 
multiple flowsystems in its construction if 
needed. 

• Triggering: Triggering is a transformation 
(denoted in FM diagrams by a dashed arrow) 
from one flow to another, e.g., flow of 
electricity triggers the flow of air. If a sphere 
has one flowsystem, then the two flows can be 
represented by one box. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A flowsystem need not include all the stages; 

for example, an archiving system might use only 
the stages Arrive, Accept, and Release. Multiple 
systems captured by FM can interact with each 
other by triggering events related to one another in 
their spheres and stages. 

          
  

     

          

Figure 1. Flowsystem, Assuming That No Released 
Flowthing Is Returned 

Create 

Process Accept 

Transfer Release 

     Arrive 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
985 

 

It may be argued that data can be in a stored 
state, which is not included as a stage of a 
flowsystem; however, stored is not a primary state, 
because data can be stored after being created, 
hence it is stored created data, or it is stored after 
being processed, hence it is stored processed data, 
and so on. Because current models of software and 
hardware do not differentiate between these states 
of stored data, we will assume flowsystems with 
unified storage.  
 
3. APPLYING FM CONCEPTUALIZATION 

TO RECURSIVE RELATIONS 
 

A flowsystem can be viewed as having recursion 
according to its six stages. In this section we 
consider the situation where there is no recursive 
creation as we apply the notion of “recurring” to 
“objects” as an introduction to the modeling 
technique in FM.  

Consider, for example, the entity-relationship 
(E-R) modeling that depicts a situation where, say, 
one employee manages another employee as a 
unary relationship, sometimes called a recursive 
relationship. Such a relationship is represented by 
drawing an ellipse and then connecting it to the 
entity twice. The semantics in this case mean that 
the entity Employee manages (many) Employee(s). 

The recursion sense in this conceptual picture is 
based on the relationship of an entity with itself. 
But such a perspective comes from an arbitrary 
decision to halt further discreteness of the situation. 
It is analogous to describing marriage as a 
relationship between a person and a person. 
Similarly, manage can describe a relationship 
between a managing Employee and a managed 
Employee, until we reach the base of recursion, 
where there is an instance of an Employee who 
does not manage. This is not apparent in a marriage 
relation because the base is reached on one level, 
since there is no person who is married to another 
person who is in turn married to yet another person. 

This type of recursive feature is represented in 
FM as shown in Figure 2(a), where “Employee i” is 
a sphere/flowsystem of a hierarchy of types of 
entities. Figure 2(b) shows a complete picture of 
each  entity type, and Figure 2(c) shows a 
shorthand representation of the relationship. 

In entity-relationship modeling, we sense the 
strain between the semantics of Employee as a 
person and his/her relationship to other persons, 
and what the data structure representation stands for 

(as a record–a tuple–in a relational table with links 
to other records). 
 

 
 
 
 
 
 
 
 
 

 
 
The E-R representation is a static link between two 
different types of nodes. In FM, semantically, 
Employee stands for a real element (sphere) that is 
defined by a process (flowsystem) called 
management where “management things” (e.g., 
regulation, instructions, …) flow. Other stages 
(transfer, release, …) and processing (besides 
manage) can be added. 

In FM, the recurrence feature is modeled 
through the recurrence of manages by a process 
(sphere/flowsystem, since a sphere, in this example,  
contains a single flowsystem). That is, the 
sphere/flowsystem Employee is a process (not a 
static entity in the E-R model) that processes 
(manages) another process, and so forth. The result 
is a systematic conceptual picture of processes that 
process each other. 

Consider the relationship among several 
massagers: a messenger who uses another 
messenger, who in turn uses another messenger, …  
For example, a visual metaphor is sometimes 
applied to the network communication process 
where computers, one after another, act as 
messengers. This can be represented as in Figure 3, 
where there is an actual flow (solid arrows) and not 
triggering as in Figure 2. Again, we see the 
systemization of a process (computer) that process 
(send to) another process. 

Notice that, for simplicity’s sake, the 
flowsystems (of messages) and sphere (computer) 
are represented by one box. 

 
 
 
 
 
 
 
  

  

 
Computer 

 Receive 

Transfer 

Release 

Figure 3. Recursive Relationships Among Intermediate 
Computers 

  

 Employee 1 
manages 

 Employee 2 
manages 

 Employee n-1
manages 

 Employee n … 

Employee  
i sphere  Process: manages 

management flowsystem 

(a) 

(b) 
Figure 2. FM Representation Of The Recursive 

Relationship 

 Employee  
manages 

(c) 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
986 

 

 

4. APPLYING FM CONCEPTUALIZATION 
TO A RECURSION PROCESS I 

 
In programming, the recurrence feature is applied 

to the method of solution (e.g., algorithm). A 
recursive problem solution clones itself, making 
new copies of the code and the local variables. This 
means: 

1. The flow is a flow of methods, i.e., the 
flowthing is a method. 

2. The flow system creates a copy of the 
method.  

Consider the following famous factorial (n) 
algorithm:  

Factorial (n) 
If n==1 return 1 
else return n* factorial (n-1) 

There are three elements embedded in the term 
factorial (n):  

● Factorial as a method (algorithm) 
● The value as global storage that holds the result, 
and  
● The local variable n 

The method and n  form a sphere; let us call it 
(recursive) Step with its own version of the method 
and local variable n. 

Accordingly, there are: a Step sphere that 
includes method and n, and a final value. The 
method is conceptualized as a flowthing that is 
received, transferred, processed, created, and 
released. The value and n are single flowsystem 
spheres, but for simplicity’s sake we draw them as 
boxes without internal details. Figure 4 shows the 
FM representation of the Factorial (n).   

The execution starts with an outside triggering 
(circle 1) to process (7) or activate the method. We 
assume that the method is already received and 
residing in the system, waiting for execution. For 
example, in the context of a computer, the method 
is a program already loaded into memory, ready to 
be executed. 

Activating process in method (circle 7) causes 
the evaluation of n; if it is zero, then (local) n is set 
to 1 (circle 8), and returned (9) to  resume the 
execution in the parent method. Else (10), a new 
copy of the method and n (Step sphere) are created 
(11) and immediately activated (12 and 13). 

We assume that creating a new step would 
freeze the current step waiting to be reactivated (9). 

If we remove this assumption, we have to add “de-
activating” indicators in the right places. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creating and processing (activating)  that form 
a step that includes a copy of the method and a 
local variable n, continues until n is equal to zero 
(the base of recursion). Figure 5 shows a sample 
calculation of 40. The execution proceeds 
according to the numbers in circles. 

The FM provides a systematic representation of 
recursion instead of sketches of pictures and 
figures, typically used in teaching the concept. It is 
a framework that specifies flowsystems with 
creation and processing stages; thus, the base of 
recursion is a flowsystem that includes processing 
but does not include creation. 

5. APPLYING FM CONCEPTUALIZATION 
TO A RECURSION PROCESS II 

 
To further demonstrate the FM methodology of 

modeling recursion, consider a traversal of a binary 
tree where each element of the binary tree is visited 
exactly once inorder as specified in the following.  

Inorder(x) 
if x = nil then return 
Inorder-Walk(left [x]) 
Print key[x] 
Inorder-Walk(right[x]) 

 

 

Step 

Process 
 

Create factorial (n-1)   
 

n 

 

value == n* value   
return 

value (global value) 

if n == 0, value = 1,        
return 
                                        
         Else   

 

method 

2 

3 

4 

6 

7 

8 

9 

11 12 

10 

13 

Figure 4. FM Representation Of The Factorial Solution 

1 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
987 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, for the binary tree shown in Figure 6, 
the inorder traversing is 2, 3, 4, 5, 6.  

There are many software environments that 
support visual interface for recursive programs. For 
example, LabVIEW [26] uses block diagrams for a 
recursive algorithm with dragged icons. Figure 7 
shows a sample screen view of a binary tree where 
“the value of the current node is compared with the 
new value until an empty child is found and it is 
inserted to the tree” [26]. The point of showing  this 
methodology of visual representation of a binary 
tree is to demonstrate how such a professional 
application is built upon a collection of 
heterogeneous notions from data structures (e.g., 
tree), electrical schemata tools (e.g., inverter!), 
flowcharts, and so forth. These contrast with FM-
based conceptual description constructed from 
spheres and flowsystems based on the notions of 
flow and triggering. 

Figure 8 shows  a general FM model of the 
Inorder algorithm. First, the algorithm is triggered 
(circle 1) from outside, e.g., by an operating system 
as in the case of a program residing in main 
memory.  Inorder is activated (processed) to call 
itself in left (2) and right (3). A recursive call 
means creating a copy of Inorder that is followed 
by processing (4 and 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. The Value Of The Current Node Is Compared 

With The New Value Until An Empty Child Is Found And 
Inserted Into The Tree (From [26]). 

 
 

step 

Process 
 

Create active 
factorial (3) 

if n == 1     
value = 1,                 
return                
Else   

value ==      
n* value    
Return  

n = 4 

method 

 
 

step 

 
Process 
 

Create active 
factorial (2) 

if n == 1     
value = 1,                 
return                
Else   
 

value ==    
n* value    
Return  

Figure 5. FM Representation Of Steps To Calculate Factorial 3 

 

method 

 
 
 

step 

 
Process 
 if n == 1     

value = 1                 
return                

method 

 

value = 1 

 
 

step 

 
Process 
 

Create active 
factorial (1) 

if n == 1     
value = 1,                 
return                
Else   
 

value ==    
n* value  
Return  

method 

 

n = 3 

n = 2 

n = 1 

value = 2 

value = 6 

value = 24 

1 

2 

3 

4 

5 

6 

7 

8 

 

 

Inorder(x) 
 

Process:                      
if x = nil then return 
Inorder(left [x]) 
Print key[x] 
Inorder(right[x]) 

create: Inorder(left [x]) 
 

Create: Inorder(left [x]) 
 

 

1 

2 

3 

4 5 

Figure 8. FM General Modeling Of Inorder 

Figure 6. Sample Binary Search Tree 

0 3 0 

left 6 0 

0 5 0 

0 2 right

left 4 right



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
988 

 

 
 
Figure 9 shows an implementation of this 

algorithm for the binary tree shown in Figure 6. 
The execution starts at the root of the tree when the 
residing copy of the algorithm is activated (circle 
1). Since the root is not nil, then Inorder(left [x]) is 
executed, causing the creation of  a copy of Inorder 
(circle 2) with root of the sub-tree equal to 2. 

Notice that no synchronization tool is 
incorporated into this description. It is assumed that 
the creation of a copy would “freeze” execution of 
the original execution waiting for a return from the 
call. FM description provides a basic conceptual 
map of flows and triggering; nevertheless, other 
tools such as synchronizations, timing, and logical 
operations (e.g., AND, OR) can be superimposed 
on the basic description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, based on our assumption, creating a copy 
(circle 2) is followed by processing of this copy 
(activating – circle 3).  
 

This execution creates a copy of Inforder (circle 
4) where the left links the root (circle 5). Executing 
(processing – circle 6)  if x = nil then return 
causes continuation of the execution in the previous 
copy (7) where 2 is printed. The Inorder(right[x]) 
is executed (8), moving us to the sub-tree with root 
3. The recursive process of creating and processing 
of copies continues for the left link (circle 10), and 
the right link (11) and so forth. 

 
 

 

  

 

 
 

 

 
 

 
 
 
if x = nil then return 
 

                              
 
if x = nil then return 
Inorder(left [x]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Print 4 
 
Inorder(right[x]) 

 
 
if x = nil then return 
Inorder(left [x])            
Print 2         
Inorder(right[x]) 

 
if x = nil then return 
Inorder-Walk(left [x]) 
Print 3 
                    
Inorder(right[x]) 

Process 

Create 

Create 
left 4 right

0 2 right

 
 
 if x = nil then return 
 

Create 
0 3 0 Create 

 
if x = nil then return 
 

Create 

 
 
if x = nil then return 
Inorder(left [x]) 

                                       
Print 6         
Inorder(right[x]) 

Create left 6 0 

 
 
if x = nil then return 
Inorder(left [x])             
Print 5          
Inorder(right[x]) 

Create 0 5 0 

 
 
if x = nil then return 
 

Create 

 
if x = nil then return 
 

Create 

 
if x = nil then return 
 

Create 

Process 

Process 

Process 
Process 

Process Process 

Process 

Process 

Process 

1 2 

3 

4 

5 

6 

7 

8 

9 10 

11 

Figure 9. FM General Modeling Of Inorder 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
989 

 

6. CONCLUSION 
 

This paper introduces a conceptual model that 
provides a suitable representation for understanding 
the mechanics of recursion and assists in teaching 
and learning such a concept. 

The model is analyzed using sample programs 
including factorial and binary tree traversing. The 
resulting conceptual picture points to the viability 
of the proposed methodology as an apparatus for 
understanding recursion. Further investigation aims 
at experimenting with the flow-based description of  
the recursive process in actual teaching 
environments. 

 REFERENCES: 
 

[1] Turner, A. J. (1991). A summary of the 
ACM/IEEE-CS Joint Curriculum Task Force 
Report. Computing Curricula 1991. 
Communications of the ACM, 34(6), 69–84. 

[2]  George, C. (2000). EROSI – Visualising 
recursion and discovering new errors. In 
Proceedings of the 31st SIGCSE technical 
symposium on computer science education (pp. 
305–309), Austin, Texas, USA. 

[3]  Wu, C., Dale, N., & Bethel, L. (1998). 
Conceptual models and cognitive learning styles 
in teaching recursion. In Proceedings of the 
29th SIGCSE technical symposium on computer 
science education (pp. 223–227), Atlanta, 
Georgia, USA. 
http://www.it.uu.se/edu/course/homepage/datadi
daktik/ht06/teaching/p292-wu-dell-bethel.pdf 

[4]  Sooriamurthi, R. (2001). Problems in 
comprehending recursion and suggested 
solutions. In Proceedings of the 6th annual 
conference on innovation and technology in 
computer science education (pp. 25–28), 
Canterbury, UK. ACM Press. 

 [5]  Gotschi, T. (2003). Mental models of recursion. 
(Master’s thesis). University of the 
Witwatersrand, Johannesburg. 
ftp://ftp.cs.wits.ac.za/pub/research/reports/TR-
Wits-CS-2004-1.pdf    

 [6]  Levy, D., & Lapidot, T. (2000). Recursively 
speaking: analyzing students’ discourse of 
recursive phemomena. In Proceedings of the 
31st SIGCSE technical symposium on computer 
science education (pp. 315–319), Austin, Texas, 
USA. 

[7]  Wiedenbeck, S. (1988). Learning recursion as 
concept and as a programming technique. 
SIGCSE Bulletin, 20(1), 275–278. 

[8]  Bhuiyan, S., Greer, J., & McCalla, G. (1994). 
Supporting the learning of recursive problem 
solving. Interactive Learning Environments, 
4(2), 115–139. 

[9]  Er, M. C. (1984). On the complexity of 
recursion in problem-solving. International 
Journal of Man- Machine Studies, 20, 537–544. 

 [10] Haberman, B., & Averbuch, H. (2002). The 
case of base cases: why are they so difficult to 
recognize? Student difficulties with recursion. 
In Proceedings of the 7th annual conference on 
innovation and technology in computer science 
education (pp. 5–8), Aarhaus, Denmark. 

[11] Shih, Y. F., & Alessi, S. M. (1993). Mental 
models and transfer of learning in computer 
programming. Journal of Research on 
Computing in Education, 26(2), 154–175. 

[12] Wilcocks, D., & Sanders, I. (1994). Animating 
recursion as an aid to instruction. Computers 
and Education, 23(3), 221–226. 

[13] Norman, D. A. (1983). Some observation of 
mental models. In D. Gentner and A. L. Stevens 
(Eds.), Mental models (pp. 7-14). Hillsdale, NJ: 
Erlbaum. 

[14] Pirolli, P. L., & Anderson, J. R. (1985). The 
role of learning from examples in the 
acquisition of recursive programming skills. 
Canadian Journal of Psychology, 39, 240–272. 

[15] Mayer, R. E. (1988). Using conceptual models 
to teach BASIC computer programming. 
Journal of Educational Psychology, 80(3), 291–
298.   

[16] Dale, N. B., & Weems, C. (1991). Pascal (3rd 
ed.). Lexington, MA: D. C. Heath.  

[17] Koffman, E. B. (1992). Pascal (4th ed.). 
Reading, MA: Addison Wesley. 

[18] Aho, A. V., & Ullman, J. D. (1992). 
Foundations of computer science. New York: 
W. H. Freeman. 

 [19] Kessler, C. M., & Anderson, J. R. (1989). 
Learning flow of control: recursive and iterative 
procedures. In E. Soloway & J. C. Spohrer 
(Eds.), Studying the novice programmer (pp. 
229-260). Hillsdale, NJ: Lawrence Erlbaum. 

[20] Greer, J. E. (1987). Empirical comparison of 
techniques for teaching recursion in 
introductory computer science. (Doctoral 
dissertation). The University of Texas at Austin. 

[21] Al-Fedaghi, S., & AlZanaidi, D. (2012). Flow-
based scenarios in mobile communication 
systems and networks. International Review on 
Computers and Software, 7(1). 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
990 

 

[22] Al-Fedaghi, S. (2011). Pure conceptualization 
of computer programming instructions. 
International Journal of Advancements in 
Computing Technology,  3(9), 302–313. 

[23] Al-Fedaghi, S. (2011). Awareness of context 
and privacy.  American Society for Information 
Science & Technology (ASIS&T) Bulletin, 
38(2). 

[24] Al-Fedaghi, S. (2011). Information security 
management systems. Fifth Annual IFIP WG 
11.10 International Conference on Critical 
Infrastructure Protection, Dartmouth College, 
Hanover, New Hampshire, USA, March 23–25. 

[25] Al-Fedaghi, S. (2012). Perceived privacy. IEEE 
9th International Conference on Information 
Technology: New Generations, ITNG 2012, Las 
Vegas, Nevada, USA, April 16–18. 

[26] National Instruments. (n.d.). Creating recursive 
VIs. http://www.ni.com/white-paper/9387/en 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


