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ABSTRACT 

 
A Surfels 3D reconstruction method based on improved KD-Tree is put forward, firstly collecting the 
discrete point cloud data through RGB-D camera, replacing the circular or oval surfel model with 
hexagonal model for modeling and determining the surfel radius in light of neighborhood distribution of 
sample points; Moreover, doing inside and outside relations test between one point model and another 
discrete point model, building KD-Tree for each model, setting the axis with the longest projection length 
as the separating axis, improving segmentation rules, accelerating  the detection of inside and outside and 
intersecting relations. Experiments show this algorithm has great reconstruction effects on the 3D 
reconstruction both of heterogeneous sample points and discrete point cloud with different resolution with 
steady and efficient calculation. 
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1. INTRODUCTION  
 

Surface reconstruction technologies on the object 
or scene are mainly divided into the following 
categories: traditional geometric modeling, 3D 
scanning devices and 3D reconstruction based on 
stereoscopic vision. The traditional modeling 
method requires the size of objects which is 
difficult for irregular curved surface object to be 
measured, the complex creative process, the 
modeling staff with high professional knowledge, 
especially in modeling software including 
AutoCAD, 3D-Max, Maya, OpenGL etc.. The 3D 
scanning devices can be divided into contact and 
non-contact. Although this method is simple to 
reconstruct object and get accurate 3D model, its 
devices cost hugely. 3D reconstruction method 
based on stereoscopic vision uses binocular camera 
or depth camera to obtain three-dimensional 
coordinates of the object or scene through 
triangulation principle and finally have a high-
precision reconstruction effect. It is economical and 
convenient and now widely used around the world. 

Surface reconstruction is mainly divided into 
traditional surface modeling methods and the 
modeling method based on point model. Traditional 
surface modeling methods mainly include the 
following three types: Mesh surface [1-3] uses 
point, line and plane surface patch to represent 
geometric model, which can express three-
dimensional objects with arbitrary topology and 
arbitrary shape; Parametric surface reconstruction 
[4-5], namely explicit surface reconstruction, is 

always the main method to describe geometric 
model with simplicity and convenience and ability 
to determine point location on the curve or curved 
surface; Implicit surface reconstruction [6-7] is a 
kind of curve fitting, which is easy to express the 
geometric model with complex topological 
structure and has no need to parameterize discrete 
point cloud. Surface modeling method is not 
suitable for point cloud modeling, for a polygon 
mesh contains topology among the sampling points 
requiring a lot of resource to store the information, 
and for geometric means of expression based on the 
point model don’t need maintaining a uniform 
topology. 

In 1985, Levoy et al. firstly proposed the thought 
of surface reconstruction setting point as basic 
element and using scattered point set intensively 
sampled from the surface of the object to implicitly 
represent it, and this model became the point 
model. Pfister[8] et al. put forward a point model 
rendering method based on surfels, seeing the point 
locally as a directive thin wafer and all wafers 
covering each other to form a closed-up surface. 
Rusinkiewicz[9] et al. proposed to transform model 
sequences into linear structure through the 
Streaming QSplat concept drawn by the hierarchy 
tree traversal structure. QSplat method uses the 
opaque square to draw point model with high 
efficiency but bad graphics aliasing. Botsch[10] et 
al. chose a point model acceleration method based 
on Gauss filtering with better rendering effect, but 
they did not consider the model hierarchy structure. 
Wu [11] simplified approximately the surface based 
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on surface element and resampled the surface to 
remove the surfels redundancy by the particle 
mutex method. Schaufler [12] et al. proposed to 
store surfels in the octree node and graph data by 
ray tracing algorithm. Botsh[13] et al. expressed 
point model by mixed data structure which can 
accelerate rendering and save space. Coconu [14] et 
al. used hardware acceleration algorithm EWA 
Splatting, all the sampling points stored in the 
octree. Adams [15] et al presented a surface 
element model for Boolean operations, accelerating 
surface element detection with three-color octree. 
Zhang long [16] et al. drew multi-resolution LOD 
for large scale point model using EWA rendering 
algorithm.  Bentley [17] et al. expanded the 
application of bintree to multidimensional space. 
Arya [18] et al. proposed to move the divide planar 
located in the center of the cube box to the nearest 
point. Stückler [19] et al. proposed to do 3D scene 
reconstruction using multi-resolution surface 
element to present depth camera information. 

On the foundation of surfels-based 3D point 
cloud rendering, this paper put forward a kind of 
improved KD-Tree point cloud data index structure 
which improved KD-Tree segmentation rules, took 
bounding box test for surfels, resampled the 
boundary and finally improved the precision of 
curved surface modeling.   

2. MODELS AND ALGORITHMS 
 
2.1 Surfels-based Point Model 
2.1.1 Point model radius 

The definition of point model proposed by Levoy 
is ( , , , , , , )x y z r g b a of which each value is a 

property exclusive of normal vector and radius. 
Point cloud is a sampling collection on unknown 
surfaces, namely 3{ }iQ q R= ∈ , and the definition 

of normal vector is: 
    3{ ,|| || 1}i iN n R n= ∈ = , where {1, , }i m∈ ⋅      ⑴ 

Due to the large cavity on the boundary in 3D 
reconstruction based on circular or oval surfels, we 
utilize hexagon surfel point model to smoother 
surface, as shown in figure 1.  

Estimation formula of the radius of surfel point 
model is : 

*max( ( )), {1, , }, {1, , }i i jr d q q i m j mε= ∈ ⋅ ∈ ⋅    ⑵ 

Where ε is initial radius coefficient, ( )i jd q q is 

the distance between iq and jq .This sampling 
method is suitable for heterogeneous sample points 
which can make surfels cover the entire model 
surface by increasing the radius of surfels on the 

surface with sparse sample points and decreasing 
that with intensive sample points, and at the same 
time reduce overlapping phenomenon. 
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Figure 1: Surface Element 

2.1.2 Normal vector of point model 
The surface profile around the discrete point q  is 

determined by the neighborhood points of the point. 
Normal vector to a tangent plane of the surface on 
point q  is the normal vector of pointq . Through 

least square method, we calculated the tangent 
plane to pointq , ( ) :V x T T

in q n s= , || || 1n =  

when 2( ( ))T
in q s− is the minimum, is is the 

k-orderleast proximal point of point q  or the point 

weighted by local compactly support function δ : 

            2

|| || 1
min ( ( )) (|| ||)T

i in
i

n q s s qδ
=

− −∑             ⑶ 

Because of the constraint|| || 1n = , above 

expression can be simplified to: 

0 1( )( ) ( , ,..., )T T
i i m

i

q s s q Ediag Eσ σ σ− − =∑  ⑷ 

0 1min( ) ( , ,..., )T T
mn n Ediag E nσ σ σ=        ⑸ 

where E  is orthogonal matrix composed of the 
eigenvectors corresponding to0 1, ,..., mσ σ σ . 

When (1,0,0,...,0)T Tn E = , min( )n reaches to the 

least so as to get the normal of the tangent plane to 
point q .  

2.2 Improved KD-Tree 
Point model doesn’t record the topological 

relations between points determined by spatial 
position. Before the complicated surface 3D 
reconstruction, discrete point cloud data is 
organized according to spatial data structure, such 
as octree, KD-Tree etc. 

KD-Tree is a kind of binary tree, each non-leaf 
node of which can be split into two subspaces by 
segmentation plane. According to different 
segmentation planes, usually hyperplanes, the mode 
of construction of KD-Tree includes: balanced KD-



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
885 

 

Tree, middle-point segmented KD-Tree and KD-
Tree with sliding midpoint. Segmentation plane of 
balanced KD-Tree gets through one point of the 
node-containing points, the points on both sides of 
plane substantially equal. Segmentation plane of 
midpoint segmented KD-Tree locates in the center 
of subspace, of which adjacent layers have 
characteristic of shared location between nodes. 
Sliding midpoint KD-Tree moves segmentation 
plane in the center of the subspace to the nearest 
point, and then goes segmentation on KD-Tree.  

Firstly, we determine the local coordinate system 
and the bounding box size of discrete point cloud 

3{ }iQ q R= ∈ during spatial segmentation, to make 

oq  the average position ofQ : 

                             
1

1 m

o i
i

q q
m =

= ∑                          ⑹ 

Then the third order covariance matrix is: 

                 
1

1
( )( )

m
T

i o i o
i

L q q q q
n =

= − −∑                ⑺ 

L  is symmetric positive semi-definite matrix 
with eigenvectors orthogonal to each other, then its 
eigenvalues are: 

                   0, {1,2,3}i iL iλ β− = ∈                    ⑻ 

where iλ  as the eigenvalue, iβ  as the eigenvector. 

We suppose1φ , 2φ and 3φ  are three eigenvectors for 

discrete cloud points along three coordinate axes, 
then: 

1 1 1
1 1

1
(min{ . } max{ . }}

2 i i
i m i m

q qφ β β
≤ ≤ ≤ ≤

= +  

2 2 2
1 1

1
(min{ . } max{ . }}

2 i i
i m i m

q qφ β β
≤ ≤ ≤ ≤

= +  

          3 3 3
1 1

1
(min{ . } max{ . }}

2 i i
i m i m

q qφ β β
≤ ≤ ≤ ≤

= +         ⑼ 

The bounding box center is: 

                 1 1 2 2 3 3oψ φ β φ β φ β= + +                      ⑽ 
It is determined the segmentation plane is to 

divide current point cloud space along one axis. 
This paper projects coordinate of the node into each 
coordinate axis in KD-Tree segmentation, setting 
the axis with the longest projection length as the 
separating axis, also the direction of normal vector 
of segmentation plane. Suppose node 
subspace ( , , )i i i iq x y z , where ix  is the projected 

length on the -axisx  of knot subspace.yi  is the 

projected length on the y-axis of knot subspace.zi  

is the projected length on the z-axis  of knot 
subspace. 

If ( , , )i i i iMax x y z z= , then select the plane 

parallel to z-axis  for segmentation. According to 
these segmentation rules KD-Tree has the same 
space size and the same segmentation direction, and 
can produce the same segmentation sequence 
without saving segmentation information. After the 
production of KD-Tree, same segmentation rules 
can be followed to access knot subspace. 

3. BOOLEAN OPERATIONS ON SURFELS-
BASED POINT MODEL 

 
There are three relations between a surfel model 

and another model: internal relation, external 
relation and intersecting relation. 

Framework of the algorithm is as follows: 
1) Establishing the surfel model of each point, 

and improved KD-Tree data index based on point 
cloud quantity accelerating the neighborhood search. 

2) Calculating surfel radius of sample point 
which is required to cover just the sample point 
surface according to the neighborhood of each 
sample point. 

3) Doing "internal, external, intersecting" 
relationship test on the surface between each of the 
surfel model and another point model.  

Suppose α and β are surfels sets of curved 

surface model, Sα  and Sβ are the point model 

surfaces covered by α and β , Vα ， Vβ are 3D 

spatial entities surrounded by Sα and Sβ  ,and ψ  is 

surfel for a discrete point. Boolean operations on 
the complex curved surface model are performed as:  

out out& & &= & & &α β ψ ψ α β ψ β α∪ ∈ ∈  

& & &= & & &in inα β ψ ψ α β ψ β α∩ ∈ ∈  

out&= & & & & & inβ α ψ ψ β α ψ α β− ∈ ∈  

out&= & & & & & inα β ψ ψ α β ψ β α− ∈ ∈   ⑾ 

Among them, inα , outα , inβ , outβ point ψ is  inside 

and outside of the modelSα  andSβ ,respectively.` 

4)  For intersecting surfels, firstly working out 
the confidence neighborhood, then calculating the 
nearest surfel boundary on the point model, and 
resampling the surfel in the confidence 
neighborhood. 
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Figure 2: Boolean Operation Flowchart Of Point 

Model 

4. EXPERIMENT RESULTS 
 
In order to verify the validity of the algorithm, 

we used the Kinect to collect 3D point cloud data: 
test data is from indoor complex scenes with the 
data size up to 149821 points. The server we used 
for operation is the CPU I73610QM, 4G RAM, 
graphics card GeForce GTX 675M, and operation 
rate is 30 frame / sec. 

 
Table 1 : Surface Reconstruction Complexity Of Three 

Complex Scenes  

Scene 
Reconstruction 
points number 

Surfel 
reconstruction 

Reconstruction 
time 

1 75564 52340 0. 021 
2 149821 117780 0.031 
3 84730 70919 0. 025 
4 69857 58818 0.022                      

As show in table 1, we test the algorithm in 4 
indoor scene using Nvidia Geforce GTX 675m. The 
discrete points was sent to GPU accelerated, has to 
meet the real time requirements.  

The discrete point’s data is quite big in the 4 
indoor scene. By the Surfels and KD-Tree 
algorithm for 3D reconstruction can effectively 
remove the useless point cloud data, and effectively 
carry out the data compression.  

As shown in the below figure is robot plane 
surface reconstruction. Through two different 
resolution three-dimensional reconstruction based 
on this algorithm, it takes the good experimental 
effect. 

 
 

 

 
Figure 3: The 3D Reconstruction Of A Large-Scale 

Landscape 

Up of Figure 3 used the pure point cloud for 3D 
reconstruction, and the below was the surfels model 
of reconstruction. In the 3D reconstruction of pure 
point cloud, apparent voids or continuous cavity 
appeared, and 3D reconstruction effect was not 
good. 3D reconstruction based on the surfels model 
has no cavity with continuous surface and good 3D 
reconstruction effect. 

 

 
Figure 4: Detailed Hierarchical Control 
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As shown up in Figure 4, when modeling target 
is far away from us, under the condition of lower 
resolution, we can only get the less details of the 
scene after amplifying many multiples. As shown 
below in Figure 4, after processing by our 
algorithm, 3D modeling based on the surfels model 
can get the high resolution details and obtained 
more continuous curved surface model. 

5. CONCLUSION 
 
This paper made adjustment of the shape of 

surfels point model, determined the surfels radius 
according to the neighborhood distribution of 
sample points, and put forward a segmentation rule 
of KD-Tree. The detection of inside and outside 
and intersection relations could be accelerated by 
testing the surfels point model inside and outside. 
Great reconstruction effects were demonstrated for 
the 3D reconstruction both of heterogeneous 
sample points and discrete point cloud with 
different resolution. However, improved KD-Tree 
segmentation rules are helpless to the segmentation 
of two-dimension points. Therefore, further 
research will be conducted on processing 
technology of point cloud data. 
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