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ABSTRACT

The probabilistic fuzzy set (PFS) and the relatagbabilistic fuzzy logic system (PFLS) is desigrfed
handling the uncertainties in both stochastic awdstochastic nature. In this paper, a bell-shaped
probabilistic fuzzy set is proposed and the rel®€&dS is constructed and applied to a modeling Iprab

to study stochastic modeling capability. It cleadigcloses that the bell-shaped PFS performs betser
the previous PFS under certain stochastic circumstaThe bell-shaped probabilistic fuzzy set giges
more general model of fuzzy rules and improving pinecision of probabilistic fuzzy logic system. The
PFLS using bell-shaped probabilistic fuzzy set iowess its potential application in engineering.

Keywords. Bell-Shaped Probabilistic Fuzzy Set, Secondary Probability Density Function, Random

Perturbation
processing one aspect of uncertainties. So it would

1. INTRODUCTION be valuable to integrate the probability theoryhwit

There exist different uncertainties in many realthe fuzzy theory [7-8]. Consequently, some
world applications. These uncertainties can beoncepts and methods are proposed, such as
classified into stochastic and nonstochastiprobability measures of fuzzy events [9], fuzzy
uncertainties [1]. Generally, stochastic uncertagt random set [10], fuzzy random variable [11-12],
can be captured well by the probabilistic modelingionstationary fuzzy sets [13] and fuzzy model with
[2]. On the other hand, the fuzzy technique hambe@robability-based rule  weights [14], etc.
withessed to be a powerful modeling tool td~undamentally, two kinds of integration principles
nonstochastic uncertainties. Type-1 fuzzy set §3] iunderlie these methods. One assumption is to
often used for modeling imprecise and vagu@troduce the fuzzy uncertainties into the statédti
information. It is noted that the crisp membershiframework. Another assumption is to introduce the
grade is used in this traditional fuzzy set. Howevestochastic uncertainties into the fuzzy system.
when the uncertainties are very complex, it may nddased on the second assumption, the probabilistic
be suitable to use a crisp membership grade ib][0, fuzzy set (PFS) is proposed and developed by
To capture the uncertainties in membershiptroducing the probabilistic theory into the
function (MF) more sufficiently, the type-2 fuzzy traditional fuzzy set described by center and width
set is first defined by Zadeh [4]. It blurs the[15]. As such, the fuzzy grades in the traditional
boundaries of the type-1 MF for directly modelingiuzzy set become the stochastic variables described
the more complex uncertainties and haby the secondary probability density function (PDF)
membership grades that are themselves fuzzy [F]hen the probabilistic fuzzy set that integrates th
Currently, type-1 and type-2 fuzzy set have beefuzzy dimension and the probabilistic dimension is
successfully applied in many fields such as fumctioable to capture both stochastic and nonstochastic
approximation [6] and so on. uncertainties. Recently, based on probabilistieyuz

In most of real-world applications, bothset, the probability fuzzy logic system is proposed
stochastic and deterministic uncertainties existnd it has been applied for stochastic modeling and
simultaneously. However, the traditional fuzzycontrol [15], function approximation problem [16]
theory and probabilistic models are only good and so on.
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However, research about probabilistic fuzzy sets
still remains at the beginning phase. The previous 0sl
probabilistic fuzzy set is constructed through 08l
randomizing the center of the Gaussian type fuzzy
set, the choice of the primary membership functions
units of fuzzy remains the important problems for
such systems.

In this paper, probabilistic fuzzy logic system
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proposed and it is applied to a modeling problem to 7

study stochastic modeling capability. It clearly % o5 0 05 1 1s 2z 25 5 a5
discloses that the bell-shaped PFS perform better e

than the previous PFS under certain stochastic Figure 1: The Probabilistic Fuzzy Set

circumstance. The bell-shaped probabilistic fuzz
set whose shape will be changing with differen
parameter gives a more general model of fuz
rules and improving the precision of probabilisti
fuzzy logic system.

This paper is organized as following: the proble
formulation is presented in section Il. In sectitn

the bell-shaped probability fuzzy set will bedin_;ﬁnsionalMF._ desi d hich is ai
constructed. The modeling analysis of the novel e systematic design procedure which Is given

probabilistic fuzzy sets is conduced in section | to design the probabilistic fuzzy logic system for

Finally, the conclusion is given in section V. process modeling is as follows: .
y g Step 1) The fuzzyc -mean variance (FCMV)

.2 Probabilistic Fuzzy Logic System
Similar to the ordinary fuzzy logic system, the
FLS still has operations of fuzzification, infecen
engine and defuzzification. Different to the
nqrdinary fuzzy logic system, the PFLS uses the
probabilistic fuzzy set that is described by a ¢hre

2 PROBLEM FORMULATION algorithm is used to obtain the clustering resalts
' o shown in Figure 2. The ellipses denote the
2.1 Probabilistic Fuzzy Set clustering, theg, is the fine clustering center, where

The concept of probabilistic fuzzy sets have beeH
proposed to capture uncertainties with both .
stochastic and fuzzy features [16] by introducinngSte;(iSz) tgluiﬁ;iﬁenttﬁers graeugsr?ajlﬁa?ndﬁnogzgshi
probability into the traditional fuzzy set descibe ‘ ¢ h ol , With the ol >Nip
by center and width. Based on considering thi/nction of each clustering. With the clustering
random variation from the center of the traditionaieSUlt, the secondary PDF can be determined by
Gaussian fuzzy set, the random variation wagPnsidering the variation from the mean of
introduced into the membership functions. So ifP@ussian function. _ _
probabilistic fuzzy set, for an input, there no _ StéP 3) The inference in PFLS is based on the
longer is a single value or values for thé’uzzy rules as follows:
membership function; instead, the membership Rule j:1f xisiA, and...and X isA |

is the number of cluster partition.

function becomes a random variable that can be .
and...and X isAn,j,
described by the secondary PDF as shown in Figure ol Ao
1. Then y is B; 1)

As such, a 3-dimention membership function (= - i .
including the fuzzy dimension and the probabilisti(\:Nhere Aj(=12,..0) (=12..] andB; are
dimension is hinted in the probabilistic fuzzy setP
which makes it able to handle the information with —
both fuzzy and stochastic uncertainties existing in
the process.

robabilistic fuzzy sets.

Figure 2. Systematic Design Procedure For PFLS
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Step 4) The defuzzification operation in the
PFLS is concerned with the probabilistic fuzzy set
instead of ordinary fuzzy sets. A probabilistic
defuzzification method is used for the PFLS, where
mathematical expectation of the centroid output is
computed as the final crisp output. The
probabilistic  defuzzification  improves the
traditional defuzzification method with the
probabilistic processing method. " os 0 05 1 15 2 25 5 a5

The previous probabilistic fuzzy set is e
constructed through randomizing the center of the  Figure 3. Bell-Shaped Fuzzy MF With Different
Gaussian type fuzzy set, the choice of the primary Parameter B
membershlp functions units of fuzzy remains th%.z The Construction of Bell-based Probabilistic
important problems for such systems. So it may bé Fuzzy Set
interesting to study the bell-shaped primary MF
whose shape will be changing with different3.1.1 The bell-shaped probabilistic fuzzy set with

u(x)(Fuzzy membership grade

parameter. randomizing center
Based on the central limit theory, the
3. CONSTRUCTION OF BELL-SHAPED distribution of the centec in equation (2) can be
PROBABILISTIC FUZZY SET seen as a random variable following the normal
In this section, based on bell-shaped membershistribution described as
function, a new type of probabilistic fuzzy set Iwil C~N(,r?) (3)

be proposed.
Accordingly, shown as in Figure 4, the fuzzy

d b d iabl
3.1 The Bell-shaped M ember ship Function grade - d ecomes & fandom - vanable

The primary MF as bell type is described in (2)U =1/ 1+ x-CY" @O (0,1) with a certain
shown in Figure 3. 3 ’

_ 1 distribution. Its probability distribution can be
U= 2b (2) ;
1+(X_Cj obtained as:
{ 1_ x+{2{7ﬁ71 0< <1
() =) 1 e #(O00 O<u @)

Obviously, a bell-shaped membership function is 0 otherwise
characterized by three parameters: centewidth
&, and slopesb. When b=2, the bell-shaped And the secondary PDF is:

membership function degenerates into = Prab, U)=
membership function which approximates a (R iy oW e

Gaussian function. We see that by adjusting the ﬂ(_l_l)m(e * +e 2 )ocu<
slope b, a bell-shaped membership function can {27 u '
approximate Gaussian functions ardfunctions. 0 athervise
With bell-shaped membership function modeling,

the Gaussian andr MF consists just in the . prmar bty membest et
parameter values. 0s A

uzzy membership grade

o o
PSS

u(x)(F

-1 —0‘5 (‘J 0‘5 ‘1x(c”s1p‘5:npm)‘2 2‘5 l.i 3‘5 4
Figure 4. Fuzzy MF In Bell-Shaped Probabilistic
Fuzzy Set For The Perturbed Center
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1 _Oergafiavy
Proof - ) =- 2 (x+Ei-1)
Suppose centet is a random variable following \/ET
normal distribution described as: 1 -gafiivy?
- 2 - 2r? — Fop/l
C~NW, %) 6) ot (x— &L Ul 1)
Then the density function is 2éb 1
1 ey - N G
®(C)=—e V2 (7) 2rr
amr N P A o & e 2l

The random variable fuzzy grade is (e * te Z )

U }/1+(ch] (ul(0,1)). SinceU is non-

monotonic, it is monotonically decreasing in
(0,+0), so the distribution function dfi can be

It follows that the secondary PDF is equation (5).

3.1.2 The bell-shaped praobabilistic fuzzy set with
randomizing width.
In engineering applications, based on the random

obtained as following: sampling principle, in the process of repeatedly
Obviously, whenu <0, the distribution function extracting samples that follows the normal
is distribution, if the samples numben is large
F,(uy=PU <u)=0 (8) enough [17], the distribution of variane® of these
samples will gradually approach to the normal
WhenO<u<1 distribution, which can be described as:
60 N(a,pB%) (12)
F, (u)
1 where @ is the varianceg denotes the mean &f
=PU <u)= P(—x R <u) and S denotes the variance F.
1+( { ) In equation (2), the widtlf is regarded as the
variance @ of equation (12), it can be seen as a
=P(x=¢&>&31-1) or P(x-c<=£%:-1) (9) random variable following the normal distribution
=P(c< x—{uﬁ)+1—P(c< X+£2\b/r1) described as
i o &~N(mo?) (13)
X=¢2
j p(coc+1- j g(cyc Accordingly, shown as in Figure 5, the fuzzy
In terms of integral additive (9) can be written a grade  u be(z:bomes a random  variable
jx <{2€j—¢( C)dc+1- [j ¢( )dc+ j 53-/:14”( o)dq] u :}/1+(X;CJ with a certain distribution. Its
-eafi1
weredfT (10) probability distribution can be obtained as:
=1- j pdu_lgﬁ(c)dc Jed.

Thus, the probabilistic distribution ot is
equation (4).

Again, we consider the first derivative of, the
density function can be obtained from Variable
Limit Integral Derivation Formula as:

f
Fu(u)_j #(dE  O<u<1 14

u

0 otherwise

And the secondary PDF is:
L BN oo

2#}71 ﬁ,l 1
u u

Prob, ()= ;‘;j(e ¥ ve ¥ )o<u< (15)

0 ahawise

Proof: the proof is the same to equation (5).
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Primay zzy membersi uncton (7) Random perturbation with chi-square
\ distribution, parameters 1, 3, and 5 are considered
(8) Random perturbation with Poisson
distribution, parameters 1, 4, and 10 are consitlere
(9) Random perturbation with T distribution,
parameters 1, 5, and 10 are considered.
(10) Random perturbation with exponential
distribution, parameters 0.5, 1, and 1.5 are

considered.
And the strength coefficient ik =0.05. Three
Figure 5. Fuzzy MF In Bell-Shaped Probabilistic kinds of parameters for each random perturbation
Fuzzy Set For The Perturbed Width are considered.
For each input with different random
4. MODELING ANALYSISOF BELL- perturbation, Bell ., -based PFLS and@dl,;, -

SHAPED PROBABILISTIC FUZZY SETS  based PFLS are constructed to model the nonlinear
In this section, based on the proposed PFS, bedystem (13) as following:

shaped MF with randomizing centeBdl ., PFS) Step 1) Collect input—output date=100.

and bell-shaped MF with randomizing width Step 2) Obtain the clustering results parameters
(Bel,, PFS), the related PFLSs are constructed {glustering centerc, width &) by the fuzzyc -

a modeling problem to demonstrate soménean variance (FCMV) algorithm. The number of
properties, and to investigate their distinctiveclustering centec=5 andb=2 andb=4.

modeling capability in stochastic circumstance. Step 3) The bell-shaped membership function of
4.1 Modeling Process the antecedent part is obtained to construct fuzzy
0.9(x+ &) if —then rules. Then parameters (the mearand

y= LAX+E) + (X+EP+05 (16) m, the varianc_er and a_) for second PD_F which
are expressed in equation (5) and equation (15) can
. be determined by randomizing the center and the
perturbation¢ . width. Thel —th rule in PFLS is:
In engineering progress, there is multiform Rulel :if xisA,then y isB, (17)

random disturb, for example: Gaussian noise - - -
" . ) Co ' Step 4) The simulation comparison Bé|
random perturbation with uniform distribution and P 4) P

so on. To obtain input with different randombPased PFLSBell,;,, -based PFLS an®au,,, -
disturb, the following ten kinds of randombased PFLS is carried out. RMSE is used here as:
perturbation¢ are considered: 1a ,

(1) Random perturbation with Binomial RMSE = ﬁ;(y(k)_ye(k)) (18)
glzt)rgﬁetlgghgigrear?deters (5, 0.1), (10, 0.3), a8, ( wheren =100 is the number of testing dats(k)

(2) Random perturbation with F distribution,is the desired output ang,(k) is the estimated
parameters (1, 2), (2, 5), and (5, 11) are consiler output.

(3) Random perturbation with Gamma
distribution, parameters (1, 2), (2, 2), and (aty 42 Results _ _
considered. For gachn random perturbation, the comparison of

(4) Random perturbation with normal @PProximation errofy-y, | between Bell,, -
distribution, parameters (0, 1), (-2, 0.5), and0@) based PFLSpBdl,,, -based PFLS an®au,,, -
are considered. . . . based PFLS is shown in Figure 6, while the mean-

(5 Random perturbation  with ~ geometricsquared error comparison is given in table 1
distribution, parameters 0.2, 0.5, and 0.8 igespectively. The simulation comparison is based
considered. on statistical results. The average parameters are

(6) Random perturbation ~ with  uniform gptained from 100 Monte Carlo simulations.
distribution, parameters (0, 1), (0, 0.5), and1(®)
are considered.

where y is the outputx is the input with random

center
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Figure 6. The Comparison Of Approximation Error (| y -y, |) With Bell .. -Based PFLS (Blue Solid),

Bell ;. -Based PFLS (Red Dash Dot) And Gau,,., -Based PFLS (Black Dot) Corresponding To The Input
With Different Random Disturb.

Table 1:: The Results Of Approximation Error (| y -y, |) With Bell ., -Based PFLS, Bell ,,, -Based PFLS And

Gau,,. -Based PFLS Corresponding To The Input With Different Random Disturb.
distribution  parameters car_ - Bal__ - Bl distribution  parameters Gay__ - Bal__ - Bl -
based based based based based based
PFLS PFLS PFLS PFLS PFLS PFLS
5,0.1 0.0178 0.0176 0.0178 uniform 0,1 0.0117 1080 0.0095
binomial 10903 0.0329 0.0332 0.0327 0,05 0.0046 0.0077 0480
15,05 0.0277 0.0274 0.0277 0,15 0.0134 0.0145 1390
1.2 0.0519 0.0530 0.0536 Chi-square 1 0.0334 0.0333 0.0332
25 0.0383 0.0385 0.0308 3 0.0409 0.0405 0.0406
F 5,11 0.0209 0.0210 0.0212 5 0.0479 0.0480 0.0480
1.2 0.0323 0.0332 0.0327 Poisson 1 0.0306 0.0306  0306.
gamma 2.2 0.0415 0.0417 0.0425 4 0.0328 0.0326 0.0328
51 0.0334 0.0359 0.0333 10 0.0409 0.0410 0.0409
normal 0,1 0.0415 0.0417 0.0425 T 1 0.0750 0.0745 0.0747
2,05 0.0132 0.0139 0.0130 5 0.0391 0.0387 0.0385
0,0.2 0.0068 0.0085 0.0072 10 0.0252 0.0232 0.0235
geometric 0.2 0.0608 0.0603 0.0604 exponential 0.5 0.0174 0.0178 0.0174
05 0.0296 0.0294 0.0295 15 0.0307 0.0302 0.0306
0.8 0.0117 0.0114 0.0108 1.0 0.0232 0.0235 0.0234

A comprehensive and detailed study to MF will be changing with different parameter have
modeling capability of PFS is presented above.the better potential ability to handle uncertaisitie
From the performance comparison, it is clearly than Gauy,,, -based PFLS under certain stochastic
that the modeling performance &€l . -based  circumstance.

PFLS and Bell ,,-based PFLS is better than that

of Gau,, -based PFLS when input is disturbed 5. CONCLUSION

by random perturbation with  Binomial In this paper, a bell-shaped probabilistic fuzzy
distribution, geometric  distribution, or T setis proposed and the related PFLS is constructed
distribution. On the other hand, the modeling and applied to a modeling problem. It clearly
performance of the three PFLSs turns out the sameliscloses that the bell-shaped probabilistic fuzzy
when input is disturbed by random perturbation set gives a more general model of fuzzy rules and
with  chi-square  distribution or Poisson improving the precision of probabilistic fuzzy
distribution. The reason is that tiesll . -based logic system under certain stochastic circumstance.

PELS andBdl .. -based PELS whose primar The PFLS using bell-shaped probabilistic fuzzy set
width P y improves its potential application in engineering.
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