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ABSTRACT 

 
The probabilistic fuzzy set (PFS) and the related probabilistic fuzzy logic system (PFLS) is designed for 
handling the uncertainties in both stochastic and nonstochastic nature. In this paper, a bell-shaped 
probabilistic fuzzy set is proposed and the related PFLS is constructed and applied to a modeling problem 
to study stochastic modeling capability. It clearly discloses that the bell-shaped PFS performs better than 
the previous PFS under certain stochastic circumstance. The bell-shaped probabilistic fuzzy set gives a 
more general model of fuzzy rules and improving the precision of probabilistic fuzzy logic system. The 
PFLS using bell-shaped probabilistic fuzzy set improves its potential application in engineering. 

 

Keywords: Bell-Shaped Probabilistic Fuzzy Set, Secondary Probability Density Function, Random 
Perturbation 

1. INTRODUCTION  

There exist different uncertainties in many real-
world applications. These uncertainties can be 
classified into stochastic and nonstochastic 
uncertainties [1]. Generally, stochastic uncertainties 
can be captured well by the probabilistic modeling 
[2]. On the other hand, the fuzzy technique has been 
witnessed to be a powerful modeling tool to 
nonstochastic uncertainties. Type-1 fuzzy set [3] is 
often used for modeling imprecise and vague 
information. It is noted that the crisp membership 
grade is used in this traditional fuzzy set. However, 
when the uncertainties are very complex, it may not 
be suitable to use a crisp membership grade in [0, 1]. 
To capture the uncertainties in membership 
function (MF) more sufficiently, the type-2 fuzzy 
set is first defined by Zadeh [4]. It blurs the 
boundaries of the type-1 MF for directly modeling 
the more complex uncertainties and has 
membership grades that are themselves fuzzy [5]. 
Currently, type-1 and type-2 fuzzy set have been 
successfully applied in many fields such as function 
approximation [6] and so on.  

In most of real-world applications, both 
stochastic and deterministic uncertainties exist 
simultaneously. However, the traditional fuzzy 
theory and probabilistic models are only good at 

processing one aspect of uncertainties. So it would 
be valuable to integrate the probability theory with 
the fuzzy theory [7-8]. Consequently, some 
concepts and methods are proposed, such as 
probability measures of fuzzy events [9], fuzzy 
random set [10], fuzzy random variable [11-12], 
nonstationary fuzzy sets [13] and fuzzy model with 
probability-based rule weights [14], etc. 
Fundamentally, two kinds of integration principles 
underlie these methods. One assumption is to 
introduce the fuzzy uncertainties into the statistical 
framework. Another assumption is to introduce the 
stochastic uncertainties into the fuzzy system. 
Based on the second assumption, the probabilistic 
fuzzy set (PFS) is proposed and developed by 
introducing the probabilistic theory into the 
traditional fuzzy set described by center and width 
[15]. As such, the fuzzy grades in the traditional 
fuzzy set become the stochastic variables described 
by the secondary probability density function (PDF). 
Then the probabilistic fuzzy set that integrates the 
fuzzy dimension and the probabilistic dimension is 
able to capture both stochastic and nonstochastic 
uncertainties. Recently, based on probabilistic fuzzy 
set, the probability fuzzy logic system is proposed 
and it has been applied for stochastic modeling and 
control [15], function approximation problem [16] 
and so on. 
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However, research about probabilistic fuzzy sets 
still remains at the beginning phase. The previous 
probabilistic fuzzy set is constructed through 
randomizing the center of the Gaussian type fuzzy 
set, the choice of the primary membership functions 
units of fuzzy remains the important problems for 
such systems. 

In this paper, probabilistic fuzzy logic system 
using bell-shaped primary membership function is 
proposed and it is applied to a modeling problem to 
study stochastic modeling capability. It clearly 
discloses that the bell-shaped PFS perform better 
than the previous PFS under certain stochastic 
circumstance. The bell-shaped probabilistic fuzzy 
set whose shape will be changing with different 
parameter gives a more general model of fuzzy 
rules and improving the precision of probabilistic 
fuzzy logic system. 

This paper is organized as following: the problem 
formulation is presented in section II. In section III, 
the bell-shaped probability fuzzy set will be 
constructed. The modeling analysis of the novel 
probabilistic fuzzy sets is conduced in section IV. 
Finally, the conclusion is given in section V. 

  
2. PROBLEM FORMULATION 

2.1 Probabilistic Fuzzy Set 
The concept of probabilistic fuzzy sets have been 

proposed to capture uncertainties with both 
stochastic and fuzzy features [16] by introducing 
probability into the traditional fuzzy set described 
by center and width. Based on considering the 
random variation from the center of the traditional 
Gaussian fuzzy set, the random variation was 
introduced into the membership functions. So in 
probabilistic fuzzy set, for an inputx , there no 
longer is a single value or values for the 
membership function; instead, the membership 
function becomes a random variable that can be 
described by the secondary PDF as shown in Figure 
1. 

As such, a 3-dimention membership function 
including the fuzzy dimension and the probabilistic 
dimension is hinted in the probabilistic fuzzy set, 
which makes it able to handle the information with 
both fuzzy and stochastic uncertainties existing in 
the process. 
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Figure 1: The Probabilistic Fuzzy Set 

2.2 Probabilistic Fuzzy Logic System 
Similar to the ordinary fuzzy logic system, the 

PFLS still has operations of fuzzification, inference 
engine and defuzzification. Different to the 
ordinary fuzzy logic system, the PFLS uses the 
probabilistic fuzzy set that is described by a three-
dimensional MF. 

The systematic design procedure which is given 
to design the probabilistic fuzzy logic system for 
process modeling is as follows:  

Step 1) The fuzzy c -mean variance (FCMV) 
algorithm is used to obtain the clustering results as 
shown in Figure 2. The ellipses denote the 
clustering, the ic is the fine clustering center, where 

n  is the number of cluster partition.  
Step 2) Cluster centers are projected to 1x  and 

2x  axis to obtain the Gaussian membership 
function of each clustering. With the clustering 
result, the secondary PDF can be determined by 
considering the variation from the mean of 
Gaussian function. 

Step 3) The inference in PFLS is based on the 
fuzzy rules as follows: 
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Figure 2. Systematic Design Procedure For PFLS. 
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Step 4) The defuzzification operation in the 
PFLS is concerned with the probabilistic fuzzy set 
instead of ordinary fuzzy sets. A probabilistic 
defuzzification method is used for the PFLS, where 
mathematical expectation of the centroid output is 
computed as the final crisp output. The 
probabilistic defuzzification improves the 
traditional defuzzification method with the 
probabilistic processing method. 

The previous probabilistic fuzzy set is 
constructed through randomizing the center of the 
Gaussian type fuzzy set, the choice of the primary 
membership functions units of fuzzy remains the 
important problems for such systems. So it may be 
interesting to study the bell-shaped primary MF 
whose shape will be changing with different 
parameter. 

 
3. CONSTRUCTION OF BELL-SHAPED 

PROBABILISTIC FUZZY SET 
In this section, based on bell-shaped membership 

function, a new type of probabilistic fuzzy set will 
be proposed. 

 

3.1 The Bell-shaped Membership Function 
The primary MF as bell type is described in (2) 

shown in Figure 3. 

2
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1
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U
x c

ξ

=
 −+  
 

                     (2) 

Obviously, a bell-shaped membership function is 
characterized by three parameters: center c, width 
ξ , and slopes b. When b=2, the bell-shaped 

membership function degenerates into a π  
membership function which approximates a 
Gaussian function. We see that by adjusting the 
slope b, a bell-shaped membership function can 
approximate Gaussian functions and π  functions. 
With bell-shaped membership function modeling, 
the Gaussian and π  MF consists just in the 
parameter values. 
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Figure 3. Bell-Shaped Fuzzy MF With Different 
Parameter B 

3.2 The Construction of Bell-based Probabilistic 
Fuzzy Set 

3.1.1 The bell-shaped probabilistic fuzzy set with 
randomizing center 

 Based on the central limit theory, the 
distribution of the center c in equation (2) can be 
seen as a random variable following the normal 
distribution described as  

2~ ( , )C N ν τ                          (3) 

Accordingly, shown as in Figure 4, the fuzzy 
grade u  becomes a random variable 

2
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 with a certain 

distribution. Its probability distribution can be 
obtained as: 
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Figure 4. Fuzzy MF In Bell-Shaped Probabilistic 

Fuzzy Set For The Perturbed Center 
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Proof：：：： 
Suppose center C is a random variable following 

normal distribution described as: 
2~ ( , )C N ν τ                              (6) 

Then the density function is  
21( )( )2

1
( )

2

C
C e

ν
τ

πτ
−−Φ =                 (7) 

The random variable fuzzy grade is 
2

1 1 ( (0,1))
b

x c
U u

ξ
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 

. Since U  is non-

monotonic, it is monotonically decreasing in 
(0, )+∞ , so the distribution function of U  can be 

obtained as following: 
Obviously, when 0u ≤ , the distribution function 

is 
( ) ( ) 0UF u P U u= < =               (8) 
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In terms of integral additive, (9) can be written as: 
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Thus, the probabilistic distribution of U  is 
equation (4).            

Again, we consider the first derivative of u , the 
density function can be obtained from Variable 
Limit Integral Derivation Formula as: 
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It follows that the secondary PDF is equation (5). 
 

3.1.2 The bell-shaped probabilistic fuzzy set with 
randomizing width.  

In engineering applications, based on the random 
sampling principle, in the process of repeatedly 
extracting samples that follows the normal 
distribution, if the samples number n  is large 
enough [17], the distribution of variance θ  of these 
samples will gradually approach to the normal 
distribution, which can be described as: 

2( , )Nθ α β�                           (12) 

where θ  is the variance, α  denotes the mean of θ  
and β  denotes the variance of θ .              

In equation (2), the width ξ  is regarded as the 

variance θ  of equation (12), it can be seen as a 
random variable following the normal distribution 
described as  

2~ ( , )N mξ σ                        (13) 

Accordingly, shown as in Figure 5, the fuzzy 
grade u  becomes a random variable 
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probability distribution can be obtained as: 
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And the secondary PDF is:  
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Proof: the proof is the same to equation (5). 
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Figure 5. Fuzzy MF In Bell-Shaped Probabilistic 

Fuzzy Set For The Perturbed Width 

 
4. MODELING ANALYSIS OF BELL-

SHAPED PROBABILISTIC FUZZY SETS 
In this section, based on the proposed PFS, bell-

shaped MF with randomizing center ( centerBell  PFS) 

and bell-shaped MF with randomizing width 
( widthBell  PFS), the related PFLSs are constructed to 

a modeling problem to demonstrate some 
properties, and to investigate their distinctive 
modeling capability in stochastic circumstance. 

4.1 Modeling Process 

4 2

0.9( )

1.4( ) ( ) 0.5

x
y

x x

ξ
ξ ξ

+=
+ + + +

        (16) 

where y  is the output, x  is the input with random 

perturbation ς .  

In engineering progress, there is multiform 
random disturb, for example: Gaussian noise, 
random perturbation with uniform distribution and 
so on. To obtain input with different random 
disturb, the following ten kinds of random 
perturbation ς  are considered: 

(1) Random perturbation with Binomial 
distribution, parameters (5, 0.1), (10, 0.3), and (15, 
0.5) are considered. 

(2) Random perturbation with F distribution, 
parameters (1, 2), (2, 5), and (5, 11) are considered. 

(3) Random perturbation with Gamma 
distribution, parameters (1, 2), (2, 2), and (5, 1) are 
considered. 

(4) Random perturbation with normal 
distribution, parameters (0, 1), (-2, 0.5), and (0, 0.2) 
are considered. 

(5) Random perturbation with geometric 
distribution, parameters 0.2, 0.5, and 0.8 is 
considered. 

(6) Random perturbation with uniform 
distribution, parameters (0, 1), (0, 0.5), and (0, 1.5) 
are considered. 

(7) Random perturbation with chi-square 
distribution, parameters 1, 3, and 5 are considered. 

(8) Random perturbation with Poisson 
distribution, parameters 1, 4, and 10 are considered. 

(9) Random perturbation with T distribution, 
parameters 1, 5, and 10 are considered. 

(10) Random perturbation with exponential 
distribution, parameters 0.5, 1, and 1.5 are 
considered. 

And the strength coefficient is 0.05k = . Three 
kinds of parameters for each random perturbation 
are considered. 

For each input with different random 
perturbation, centerBell -based PFLS  and widthBell -

based PFLS are constructed to model the nonlinear 
system (13) as following: 

Step 1) Collect input–output data 100n = . 
Step 2) Obtain the clustering results parameters 

(clustering center c , width ξ ) by the fuzzy c -

mean variance (FCMV) algorithm. The number of 

clustering center =5c%  and b=2 and b=4. 
Step 3) The bell-shaped membership function of 

the antecedent part is obtained to construct fuzzy 
if then−  rules. Then parameters (the mean ν  and 

m , the variance τ and σ ) for second PDF which 
are expressed in equation (5) and equation (15) can 
be determined by randomizing the center and the 
width. The l th−  rule in PFLS is: 

: ,l lRule l if x is A then y is B              (17) 

Step 4) The simulation comparison of centerBell -

based PFLS, widthBell -based PFLS and centerGau -

based PFLS is carried out. RMSE is used here as: 

2

1

1
( ( ) ( ))

n

e
k

RMSE y k y k
n =

= −∑                    (18) 

where 100n =  is the number of testing data, ( )y k  

is the desired output and ( )ey k  is the estimated 

output.  

4.2 Results 
For each random perturbation, the comparison of 

approximation error | |ey y−  between  centerBell -

based PFLS, widthBell -based PFLS and centerGau -

based PFLS is shown in Figure 6, while the mean-
squared error comparison is given in table 1 
respectively. The simulation comparison is based 
on statistical results. The average parameters are 
obtained from 100 Monte Carlo simulations. 
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Figure 6. The Comparison Of Approximation Error ( | |ey y− ) With centerBell -Based PFLS (Blue Solid), 

widthBell -Based PFLS (Red Dash Dot) And centerGau -Based PFLS (Black Dot) Corresponding To The Input 

With Different Random Disturb. 

Table 1:: The Results Of Approximation Error ( | |ey y− ) With centerBell -Based PFLS, widthBell -Based PFLS  And 

centerGau -Based PFLS Corresponding To The Input With Different Random Disturb. 

distribution parameters 
center

Gau -

based 
PFLS  

center
Bell -

based 
PFLS 

width
Bell -

based 
PFLS 

distribution parameters 
center

Gau -

based 
PFLS 

center
Bell -

based 
PFLS 

width
Bell -

based 
PFLS 

 
binomial 

5, 0.1 0.0178 0.0176  0.0178 uniform 0,1 0.0117 0.0108 0.0095 

10,0.3 0.0329 0.0332 0.0327 0,0.5 0.0046 0.0077 0.0048 

15,0.5 0.0277 0.0274 0.0277 0,1.5 0.0134 0.0145 0.0139 

 
 
F 

1,2 0.0519 0.0530 0.0536 Chi-square 1 0.0334 0.0333 0.0332 

2,5 0.0383 0.0385 0.0308 3 0.0409 0.0405 0.0406 

5,11 0.0209 0.0210 0.0212 5 0.0479 0.0480 0.0480 

 
gamma 

1,2 0.0323 0.0332 0.0327 Poisson 1 0.0306 0.0306 0.0306 

2,2 0.0415 0.0417 0.0425 4 0.0328 0.0326 0.0328 

 5,1 0.0334 0.0359 0.0333 10 0.0409 0.0410 0.0409 

normal 
 

0,1 0.0415 0.0417 0.0425 T 1 0.0750 0.0745 0.0747 

-2,0.5 0.0132 0.0139 0.0130 5 0.0391 0.0387 0.0385 

0,0.2 0.0068 0.0085 0.0072 10 0.0252 0.0232 0.0235 

geometric 0.2 0.0608 0.0603 0.0604 exponential 0.5 0.0174 0.0178 0.0174 

0.5 0.0296 0.0294 0.0295 1.5 0.0307 0.0302 0.0306 

0.8 0.0117 0.0114 0.0108 1.0 0.0232 0.0235 0.0234 

A comprehensive and detailed study to 
modeling capability of PFS is presented above. 
From the performance comparison, it is clearly 
that the modeling performance of centerBell -based 

PFLS and  widthBell -based PFLS is better than that 

of centerGau -based PFLS when input is disturbed 

by random perturbation with Binomial 
distribution, geometric distribution, or T 
distribution. On the other hand, the modeling 
performance of the three PFLSs turns out the same 
when input is disturbed by random perturbation 
with chi-square distribution or Poisson 
distribution. The reason is that the centerBell -based 

PFLS and widthBell -based PFLS whose primary 

MF will be changing with different parameter have 
the better potential ability to handle uncertainties 
than centerGau -based PFLS under certain stochastic 

circumstance. 
 

5. CONCLUSION 

In this paper, a bell-shaped probabilistic fuzzy 
set is proposed and the related PFLS is constructed 
and applied to a modeling problem. It clearly 
discloses that the bell-shaped probabilistic fuzzy 
set gives a more general model of fuzzy rules and 
improving the precision of probabilistic fuzzy 
logic system under certain stochastic circumstance. 
The PFLS using bell-shaped probabilistic fuzzy set 
improves its potential application in engineering. 
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In the future, more designation may be conducted 
for PFS, such as PFS with asymmetrical primary 
MF or secondary PDF. It is believed that the PFS 
will be very promising for many engineering 
application. 
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