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ABSTRACT 
 

This paper proposed a neural network model algorithm control (NNMAC) method for the path tracking 
control of differentially steered wheeled mobile robots (WMRs) subject to nonholonomic constraints. The 
model algorithm control (MAC) is a one-step-ahead predictive controller, in which the control law is 
obtained by minimizing the output error. The MAC method needs the well known model of the controlled 
system to design the controller. But sometimes it is difficult to get the accurate model of the controlled 
system or the model of the controlled system is not good because of the inside and outside disturbances and 
unknown parameters. Neural network has the ability to estimate the nonlinear system’s model and its 
corresponding inverse model. In this paper the NNMAC method which combines two neural networks and 
MAC method is proposed to do the path tracking control of a wheeled mobile robot. Some simulations are 
conducted to show the performance and feasibility of the proposed control strategy. In these simulations the 
WMR is controlled to track two difference reference paths such as the circular shape path and the “8” shape 
path. 
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1. INTRODUCTION  
 

The differentially steered wheeled mobile robot 
which possesses the advantages of high mobility, 
high traction with pneumatic tires, and a simple 
wheel configuration is a kind of nonholonomic 
system [1]. Nonholonomic systems most commonly 
arise in finite dimensional mechanical systems 
where constraints are imposed on the motions that 
are not integrable. In the case of the differentially 
driven WMRs, the constraints involved are based 
on the assumption that there is no slipping of the 
wheels. There are two fundamental statuses in 
controlling a mobile robot: posture stabilization and 
path tracking. The aim of posture stabilization is to 
stabilize the robot to a reference point, while that of 
path tracking is to have the robot follow a reference 
path. For WMRs, path tracking is easier to achieve 
than posture stabilization. This comes from the 
assumption that the wheels make perfect contact 
with the ground, resulting in nonholonomic 
constraints. 

The tracking control of nonholonomic mobile 
robots aims at getting them to track a given time 
varying path (reference path). It is a fundamental 
motion control problem and has been intensively 
investigated in the robotic domain [2-5]. Felipe et 
al. [6] proposed an adaptive controller for 

autonomous mobile robot trajectory tracking. Ye 
[7] proposed a tracking control approach for 
nonholonomic mobile robots by integrating the 
neural network into the backstepping technique. 
Sun [8] designed a trajectory tracking controller for 
the mobile robot based on pole assignment 
approach. Park et al. [9] solved the point 
stabilization of mobile robots via state-space exact 
feedback linearization. 

This paper proposed a NNMAC method for the 
path tracking control of a WMR. MAC is a one-step 
ahead predictive controller, in which the control 
law is obtained from the minimization of the output 
error at timek r+ [10]. The closed-loop MAC 
method still requires a plant model which is 
sufficiently accurate to obtain good control 
performance. However, in practice, because of the 
inside and outside disturbance and the unknown 
parameters the model of the WMR is not good. 
Neural networks have the ability to “learn” the 
system characteristics through nonlinear mapping to 
represent arbitrary nonlinear functions and their 
inverse functions and provide a strong degree of 
robustness because of their ability to exhibit fault 
tolerance. MAC control method can be designed 
basing on this neural network model. And neural 
networks can improve the adaptability of the 
control scheme through both off-line and on-line 
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weight adaptation. We propose in this paper a MAC 
method using back propagation (BP) neural 
networks to do the path tracking control of a WMR. 
Simulations are conducted to show the performance 
and feasibility of the proposed control method. 

 
2. MAC CONTROL METHOD 

 
Consider the nonlinear systems described by a 

discrete-time state-space model of the form: 
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wherex denotes the state variables,u denotes the 
input, y represents the output to be controlled and 

the subscriptm is added to indicate the estimates 
of x and y obtained in the model simulations and 

differentiate the measuredx and y . ( , )x uΦ is an 

analytic vector function on X U× , and ( )h x is an 

analytic scalar function onX . Here,r is the relative 
order of the system (1), i.e.r is the smallest number 
of sampling periods after which the manipulated 
inputu affects the outputy . 

The online simulation of the model described by 
Eq. (1) can be used to predict the future changes in 
the outputy as follows: 
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Here the following notation is used: 
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System (1) has the relative orderr means that 
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Furthermore, the following relations will hold: 
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Therefore,r is the smallest number of sampling 
periods after which the manipulated input u affects 
the output y . With a finite relative 

order r ,
( )1 ( , )

0
rh x u

u

−∂ Φ
≠

∂
implies that the 

algebraic equation: 

1[ ( , )]rh x u y− Φ =                         (6) 

is locally solvable inu . The corresponding implicit 
function is denoted by: 

0( ) ( ( ), ( ))u k x k y k r= Ψ +                  (7) 

and is assumed to be well-defined and unique 
on ( )X h X× . 

When the predicted changes shown in Eq. (2) are 
added to the measured output signaly , one obtains 

the following “closed-loop” predictions of the 
output: 
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where ˆ( )y k represents a prediction of the 

output ( )y k . 

Here a desirable value,dy , of the output at 

the( )thk r+ time step is designed by: 

ˆ( ) (1 ) ( ) ( 1)d spy k r y k y k rα α+ = − + + −         (9) 

whereα is a tunable filter parameter such that 
0 1α< <  and spy is the set-point value. Equation (9) is 

referred to as the “reference trajectory” in the MAC 
literature. 

One can derive a nonlinear MAC controller by 
requesting that the output prediction match the 
reference path in the sense of minimizing the 
performance index of Eq. (10): 

2

( )
ˆmin[ ( ) ( )]d

u k
y k r y k r+ − +                  (10) 

Considering Eqs. (8) and (9), this becomes 
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wheree(k)= ( ) ( )spy k y k− . 

In the absence of input constraints, this 
minimization problem is trivially solvable. 
Input ( )u k  is the solution of the nonlinear algebraic 

equation: 

( ) ( )1 ( ( ), ( )) ( ), ( )r
m mh x k u k b x k e k− Φ =        (12) 

where ( )1( , ) ( ) (1 ) ( )rb x e h x h x eα α−= + − + . 

Recalling the definition of 0Ψ (Eq. (7)), the 

solution can be represented as: 

( )( )0( ) ( ), ( ), ( )m mu k x k b x k e k= Ψ            (13) 

Therefore, the derived control law is given by 
Eq. (13). 

 

3. MAC USING NEURAL NETWORKS 
 
Two neural networks, NN1 and NN2, are 

employed in deriving the NNMAC method. In this 
proposed control scheme, the neural network NN1 
is trained as the model of the controlled system and 
the neural network NN2 is trained to produce the 
control inputs. In this paper, we adopt the BP neural 
network and use the NNARX (AutoRegressive 
External input) model structure as the structure of 
the two neural networks. For this model structure, 
the inputs of the neural network are the past data of 
the system output and input of the system. Figure 1 
shows the configuration of the BP neural network. 
Figure 2 depicts the NNARX model structure. The 
parametersaandcare the numbers of past data of 
the system output and control input, 
respectively.x is the estimated system’s output,u is 

the system’s input, mx is the neural network’s 

output andr is the relative order of the nonlinear 
system. 
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Figure 1: Configuration Of The BP Neural Networks 
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Figure 2: The NNARX Model Structure 

 
The neural network NN1 is used to estimate the 

model of the controlled system and the neural 
network NN2 is trained as the inverse model of the 
controlled system. For the controlled system the 
experiment is first conducted to get the training data 
and test data for the neural networks NN1 and NN2. 
In the experiment the input signaluwill be designed 
carefully in order to cover all of the operating range 
of the controlled system. After doing the 
experiment a series of input signalsu and their 
corresponding controlled system’s outputx are 
obtained. The half of the data gotten in the 
experiment is used as the training data of the neural 
networks NN1 and NN2, and the rest of the data is 
used as the test data. Based on the NNARX model 
structure the inputs of the neural network NN1 are 
the present sampling time system input and several 
past sampling times system output and input. The 
error signal used to adjust the weights of the neural 
network NN1 is the difference between the 
controlled system’s output and the neural network’s 
output. Figure 3 shows the structure used to train 
the neural network NN1. The inputs of the neural 
network NN2 are the present sampling time 
system’s output and several past sampling times 
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system output and input. The error signal used to 
adjust the weights of the neural network NN2 is the 
difference between the controlled system’s input 
and the neural network’s output. Figure 4 shows the 
structure used to train the neural network NN2. 

( )u k r−
Controlled System
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Neural

Network

( )x k
+

−E

( )mx k

2q−
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3q−
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Figure 3: Structure Used To Train The Neural Network 
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Figure 4: Structure Used To Train The Neural Network 

Nn2 
 
For MAC method the control input can be 

calculated using Eq. (13). In Eq. (13) the function 

0Ψ is obtained from Eq. (7) and ( )mx k comes from 

Eq. (1). Analogizing to the MAC method presented 
in Section 2, the NNMAC method presented in 
Section 3 uses the two neural networks, NN1 and 
NN2, to do the control job. In this case it is 
assumed that the model and inverse model of the 
controlled system are hard to obtain. This means 
that Eq. (1) and Eq. (7) are unknown. In this case 
the neural network NN1 is trained to estimate the 
controlled system’s model Eq. (1) to 

generate ( )mx k ; and the neural network NN2 is 

trained to estimate the function of0Ψ . Then the 

control input can be generated by using the neural 
networks NN1 and NN2. The diagram of the 
proposed control system is shown in Figure 5. 

u y

mx

spy
( ) ( ),mb x k e k  

 
Figure 5: Principle Of The Nnmac Control System 

 

4. SIMULATION 
 

The proposed NNMAC control method can be 
used to do the path tracking control of the WMR. 
Consider a nonholonomic WMR with two 
differentially steered wheels, as shown in Figure 6. 
This WMR has two driving wheels (radiusr ) and 
one caster. Point ( , )H HH x y defines the intersection 

of the axis of symmetry with the driving wheel axis, 
and is assumed to be the origin of the coordinate 
frame{ , }H HX Y . Point ( , )c cC x y is the center of 

mass of the mobile robot. Lengthc is the distance 
between pointH and pointC , andl is the length of 
the rear wheel axis. 

HX

HY

H

C

θ

l 2r

c

 
Figure 6: Sketch Of A Nonholonomic Wmr 

 
First the neural networks NN1 and NN2 are 

trained to estimate the model and inverse model of 
the WMR. Then apply these two neural networks to 
the NNMAC method described in Section 3. After 
obtaining the NNMAC controller, it is used to do 
the path tracking control of a WMR. We simulated 
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the proposed control law to demonstrate its 
effectiveness. First a circular reference path is used 
to do the simulation. The tracking performance of 
the NNMAC controller for the circular reference 
path is shown in Figure 7. And Figure 8 shows the 
linear and angular velocities of the mobile robot in 
this case. 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x (m)

y 
(m

)

 

 
reference path

tracking path

 
Figure 7: Tracking Performance In The Case Of Circular 

Reference path 
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Figure 8: Linear And Angular Velocities In The Case Of 

Circular Reference Path 
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Figure 9: Tracking Performance In The Case Of “8” 

Shape Reference Path 
 
Next we choose the reference path as an “8” 

shape path. The tracking performance of the 
NNMAC controller for the “8” shape reference path 
is shown in Figure 9. And Figure 10 shows the 
linear and angular velocities of the mobile robot in 
this case. 
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Figure 10: Linear And Angular Velocities In The Case Of 

“8” Shape Reference Path 
 
From the accurate performance of the simulation 

it can be seen that the proposed NNMAC control 
method can provide a good control result for the 
path tracking of the WMRs. 

 

5. CONCLUSION 
 
In this paper we study the path tracking problem 

of the wheeled mobile robots subject to 
nonholonomic constrains. The NNMAC control 
method is proposed for tracking control of the 



Journal of Theoretical and Applied Information Technology 
 31st December 2012. Vol. 46 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
799 

 

wheeled mobile robot. MAC is a one-step-ahead 
predictive controller, in which the control law is 
obtained by minimizing the output error. Two 
neural networks, NN1 and NN2, are introduced to 
cooperate with the MAC control method. The 
neural network NN1 was trained as the model of 
the controlled system and the neural network NN2 
was trained to generate the control inputs. The 
numerical simulation is conducted to show the 
promise of the proposed NNMAC control method 
in terms of tracking performance. In the simulation 
a circular reference path and an “8” shape reference 
path are used. 
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