
Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

766

A SIMULATION ARCHITECTURE DESCRIPTION
LANGUAGE FOR HARDWARE-IN-LOOP SIMULATION OF

SAFETY CRITICAL SYSTEMS

YUJUN ZHU, ZHONGWEI XU, MENG MEI
School of Electronics & Information Engineering, Tongji University, Shanghai 201804, Shanghai, China

ABSTRACT

The architecture is a key aspect of the design of any system including simulation systems. An architecture
description should provide a formal specification of the architecture in terms of components and connectors
and how they are composed together. Further, a simulation architecture description for safety critical
system must provide a specification of how the architecture can satisfy safety and execution characteristics.
This paper introduces the simulation architecture description language for hardware-in-loop simulation of
safety critical systems (SCS-SADL) to support the real-time simulation of safety critical systems. SCS-
SADL is a graphical language with constructs and semantics defined to provide the user with the capability
to define the simulation at various levels. A supporting toolset is proposed and provided the interface to
SCS-SADL for the design simulation description. With a case study, SCS-SADL is illustrated its ability to
represent the simulation of safety critical systems.

Keywords: Multicast Architecture Description Language, Safety Critical System, Hardware-in-loop
Simulation, Software Architecture

1. INTRODUCTION

Safety critical systems are those systems whose
failure could result in loss of life, significant
property damage, or damage to the environment.
There are many well known examples in
application areas such as medical devices, aircraft
flight control, weapons, and nuclear systems. Future
safety-critical systems will be more common and
more powerful [1].The development of a safety
critical system typically involves a period of
simulation, especially, hardware-in-loop
simulation(HILS). HILS provides a precise
environment, access to physically immeasurable
variables and rapid redesign and testing, not to
mention sparing wear and damage on equipment.
Additionally, some systems may present a danger in
the event of system failure. For several decades,
HILS has been a bridge between simulation and
implementation [2]. Although each project is
different, HILS of safety critical systems have
requirements, characteristics and behaviors that can
be used to define simulation architecture.

The simulation architecture is a description of the
simulation and represents specific simulation
methods. It includes architectural information such
as the types of hardware and software components
in the simulation, the interfaces among components,

and the software architecture. Simulation
architectural design has always played a strong role
in determining the success of HILS of safety critical
system. However, the practice of simulation
architectural design has been largely ad hoc,
informal, and idiosyncratic. As a result, simulation
architectural designs are often poorly understood by
developers; simulation architectural choices are
based more on default than solid engineering
principles; simulation architectural designs cannot
be analyzed for consistency or completeness;
simulation architectural constraints assumed in the
initial design are not enforced as a system evolves;
and there are virtually no tools to help the
simulation architectural designers with their tasks.

 In response to above problems a number of
researchers in industry and academia have proposed
formal notations for representing and analyzing
architectural designs, generically, referred to as
Simulation Architecture Description Language
(SADL). This notation usually provides both a
conceptual framework and a concrete syntax for
characterizing software architectures. It also
typically provides tools for parsing, displaying,
compiling, analyzing, or simulating architectural
descriptions written in its associated language
[3].This paper also introduces a tailored SADL for

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

767

the hardware-in-loop simulation of safety critical
systems.

2. RELATED WORK

In the last several years, There has been much
research done involving ADL or SADL[4,5] and in
the related area of hardware/software design [6].
Although all of the languages are concerned with
architectural design, each provides certain
distinctive capabilities: Aesop supports the use of
architectural styles [7]; Adage supports the
description of architectural frameworks for avionics
navigation and guidance [8]; Meta-H provides
specific guidance for designers of real-time avionics
control software [9]; C2 supports the description of
user interface systems using a message-based style
[10]; Rapide allows architectural designs to be
simulated, and has tools for analyzing the results of
those simulations [11]; UniCon has a high-level
compiler for architectural designs that supp ort a
mixture of heterogeneous component and connector
types [12]. A large challenge for an SADL is the
ability to describe static but also dynamic software
architectures from structural and behavioral
viewpoints. The above languages cannot satisfy the
real-time execution and support the hardware-in-
loop activities, because the simulation software
and/or hardware must meet the deadlines, periodic
and aperiodic behavior imposed in the real
environment, in addition, some attributes of
language elements needed for completeness cannot
be represented graphically. Exiting tools designed
do not apply to the HILS of safety critical systems,
creating a need for the tools tailored to this
application domain. The objective of this paper is to
present a simulation architecture description
language for hardware-in-loop simulation of safety
critical systems, called SCS-SADL, for the design,
specification and implementation of the HILS. The
constructs and semantics combine to provide the
ability to define the HILS including the execution
characteristics. SCS-SADL provides the designers
with the capability to define the HILS at various
levels.

3. SCS-SADL

SCS-SADL is an ADL specifically tailored to the
design and representation of real-time safety critical
system simulations. The focus on this application
domain is what differentiates SADL from the
existing ADLs discussed in the previous section.
We now describe SCS-SADL, highlighting its key
features. These key features are:

1. Components composing basic architectural
design elements, representing the hardware devices
and simulation software process.

2. Connectors describing the relationships those
exit among the components, including the
interactions among the hardware and software as
well as abstract components.

3. Semantic reasoning about architectural
descriptions, providing the basic structural
semantics.

3.1 Components Definition

Components represent the primary computational
elements and data stores of simulation system.
Intuitively, they correspond to the boxes in box-
and-line descriptions of simulation software
architectures. Typical examples of components
include such things as clients, servers, filters,
objects, blackboards, and databases. Components
are the locus of computation and state. Each
component in SCS-SADL has:
� a name
� an interface
� a type
� an implementation.
The component in SCS-SADL is depicted in

Figure 1.

Figure 1: The SCS-SADL component

Component name is used to label the component
and it is unique. An interface specifies the
capabilities the component exports and imports; it
must be consistent with its implementation. A
component type expresses the designer's intention
about the general functionality to be provided by
the component. The implementation level provides
fundamental description needed for the
implementation for the HILS system. The
implementation is divided into three kinds of
processes: periodic process, aperiodic process and
continuous process. Figure 2 shows the three kinds
of processes defined within SCS-SADL component

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

768

specification that can be used as nodes in the graph
representation.

Figure 2: The SCS-SADL Processes Representation

Periodic process, as its name implies, is used to
represent simulation processes that execute
periodically. A series of jobs associated with the
process are invoked at regular time intervals. It can
typically represent the simulation software having
hard real-time requirements. Aperiodic process is
used to represent simulation processes that execute
aperiodically during the simulation. The jobs
associated with this process do not instantiated at
regular, predictable time intervals. Continuous
process is invoked once at the beginning of the
simulation and never suspends its execution by
blocking. Instead, It polls, or busy waits, for
external events or conditions consuming all of the
computational resources of a processor for the
entire duration of the simulation.

3.2 Connectors Definition

Connectors must represent all the timing and data

relationships that exit among the simulation
components and define the synchronization and
communication requirements of each simulation
software process of the simulation system, and they
also represent the constraints imposed on the
execution order of the processes, in effect defining
the partial orders of execution among them. SCS-
SADL uses a set of predefined directed arcs to
connect the components in high-level diagrams and
the nodes in low-level diagrams in a manner that
represents the data flow, control flow, timing, and
hierarchical relationships among the simulation
components. The connectors defined in SCS-SADL
include a component communication arc, a data
transfer arc, a synchronization (sync) arc, and a
synchronization-with-data (sync-with-data) arc
[13].
The component communication is defined in the
component level. The other three connectors are

used to describe the communication among the
processes.

The arcs are differentiated graphically using
different line type, as shown in Table 1, and each
has its own semantics that are described in the
following sections.

Table 1: Connector Types And Their Associated Line
Type In SCS-SADL

Connector type Line

Component
Communication

Data Transfer

Synchronization

Synchronization-with-
Data

The component communication is used for

abstraction purposes; it can only be used to connect
the simulation component. So the component
communication contains all the arcs that exist
between the process nodes contained in a
simulation component but do not represent any
functionality of the simulation. Figure 3 shows a
Client/Server pattern example for SCS-SADL
component description using a component
communication. A black line describes the
component communication, one end of which is
connected to the Server component interface, and
other end to the Client component interface. The
two components have a communication.

 Figure 3: The Component Communication Connector Of
High-Level Abstract

The other three types of connectors are used to

define general communications that exist within a
simulation component. The data transfer is just a
pure data transmission,the arrow represents the
direction of data tranfer. The synchronization type
is also a pure synchronization communication,
which is used to synchronize the time, data or
server. The synchronization-with-data type is a
communication that serves as a point of

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

769

synchronization and transfers data. The semantics
associated with these types of connectors are
different because of the different type of nodes that
are connected. Figure 4 shows a example to express
the difference of the connectors, here is not to
enumerate.

Figure 4: The Different Type Of Connectors With

Different Nodes

3.3 Semantic Description

The graphs described in above sections represent

only a single communication between one pair of
simulation components. These relationships form
the fundamental building blocks needed for the
specification of more complex systems. The
following content will give the semantic
relationships for more complex systems.

Figure 5: A HILS Subsystem Graph Described Within

SCS-SADL

Fig 5 shows a HILS subsystem graph described
within SCS-SADL, such a graph can be specified in
the following manner.

 1 2 3C(G)={ , , }C C C (1)

11 12 21 31V(G)={ , , , }p p p p (2)

11 21 31 12E(G)={(,), (,)}p p p p (3)

31 12 11 21P(G)={ , }swd df− − (4)

Where G represents the graph, C(G) is the set

of components of graphG , V(G) is the set of

vertices of graphG , E(G) is the set of arcs of

graph G where the ordered pair 11 21(,)p p

represents an arc from vertex 11p to vertex 21p .

P(G) is the set of connector properties of graph

G where 11 21df − represents a data transfer

connector between 11p and 21p , 31 11swd −

represents a synchronization-with-data connector

property between 31p and 12p . 11 21df − and

31 11swd − can express the meaning showed in table

2. The properties about frequency and execution
time are important for the interface of HILS system
which will connect with the safety critical system;
those properties can be represented in SCS-SADL.

Table 2
A property description of SCS-SADL semantic

Property Name Frequency Execution Time

11 21df − 100HZ 5ms

31 11swd −
30HZ 20ms

4. TOOLSET FOR SCS-SADL

In order to use the SCS-SADL for the

development of HILS of safety critical systems,
there must be a toolset that can provide the
engineers designing and implementing HILS
systems. A prototype of SCS-SADL tool has been
implemented to support the SCS-SADL. SCS-
SADL tool allows engineers to design applications
in a visualized way showed in Figure 6.

Figure 6: The SCS-SADL Toolset

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

770

The SCS-SADL Toolset can provide the
component design in the high-level abstract; it also
can describe the process design in the low-level
implementation. However, its function is only to
provide the design view similar to the UML, the
code can not be achieved automatically converted.

5. CASE STUDIES

A motivation example about the railway signal

system will be illustrated. It needs to develop a
HILS system for testing and evaluating the
interlocking system, a typical safety critical system.
The HILS system structure is showed in Figure 7.

Figure 7: The HILS System For Interlocking System.
There are three important components of this

HILS system: Computation component, IO
component, View component. Figure 8 shows using
SCS-SADL to represent the partial architecture of
the HILS for Interlocking system.

Figure 8: The Partial Architecture Description Of HILS

For Interlocking System.

 Where 21p is the process represented in View

component， 11p in Computation component and

31p ， 32p in IO component. 11 21df − , 31 11df − and

11 32swd − are expressed like Table 2 to describe

some safety critical properties.

6. CONCLUSION

This paper presents an architecture description

language, SCS-SADL, especially for applications in
hardware-in-loop simulation because most existing

tools do not apply to the design of HILS of safety
critical systems. This graphical specification
language represents the simulation using a process
graph representation as well as nonfunctional
properties associated with each of the simulation
components. A toolset has been developed and it
provides the interfaces to complete the SCS-SADL.
The future works is to setup an HILS framework
for SCS-SADL and transforming SCS-SADL into
UML or skeleton codes.

ACKNOWLEDGEMENTS

This work was supported by National Natural

Science Foundation of P.R. China (61075002,
61273180).

REFERENCES:

 [1] J. C. Knight, "Safety-critical systems: challenges
and directions", Proceedings of International
Conference on Software Engineering, ACM
Press, May 19-25, 2002, pp.547-550.

[2] N. R. Gans, W.E. Dixon, R. Lind, A. Kurdila,
"A hardware in the loop simulation platform for
vision-based control of unmanned air vehicles",
Mechatronics, Vol. 19, No. 7,2009,pp.1043–
1056.

[3] D. Garlan, B. Monroe, D. Wile, "ACME: an
interchange language for software architecture",
Proceedings of Centre for Advanced Studies
Conference, IBM, November 10-13, 1997,
pp.159-173.

[4] P. Clements, "A survey of architectural
description languages", Eight International
Workshop on Software Specification and
Design, IEEE Computer Society Press, March
22-23, 1996, pp.16-25.

[5] P. Kogut, P. Clements, "Features of architecture
description languages", Proceedings of Software
Technology Conference, Meridian, April 28-30,
1995, pp.1-10

 [6] D. Garlan, R. Allen, J. Ockerbloom. "Exploiting
style in architectural design environments",
Proceedings of the Second ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, ACM Press, December 6-9, 1994,
pp.179-185.

[7] W. Tracz, "DSSA(domain-specific software
architecture) pedagogical example", Software
Engineering Notes, Vol.20, No. 3, 1995, pp.49-
62.

[8] J. J. Biesiadecki, D. A. Henriquez, A. Jain, "A
Reusable, Real-Time spacecraft dynamics

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

771

simulator", Proceedings of Digital Avionics
Systems Conference, AIAA/IEEE, October 26-
30, 1997, pp.8-14.

[9] N. Medvidovic, P. Oreizy, J. E. Robbins, R. N.
Taylor, "Using object-oriented typing to support
architectural design in the C2 style",
Proceedings of the Fourth ACM Symposium on
the Foundations of Software Engineering, ACM
Press, October 16-18, 1996, pp.24-32.

[10] D. C. Luckham, L. M. Augustin, J. J. Kenney, J.
Veera, D. Bryan, W. Mann, "Specication and
analysis of system architecture using Rapide",
IEEE Transactions on Software Engineering,
Special Issue on Software Architecture, Vol. 21,
No. 4, 1995, pp.336-354.

[11] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D.
M. Young, G. Zelesnik, "Abstractions for
software architecture and tools to support
them", IEEE Transactions on Software
Engineering, Special Issue on Software
Architecture, Vol. 21, No. 4, 1995, pp.314-335.

[12] K. G. Ricks. J. M. Weir. B. E. Wells, "SADL:
simulation architecture description language",
International Journal of Computers and their
Applications, Vol. 9, No. 4, 2002, pp.219-224.

