Journal of Theoretical and Applied Information Technology
31" December 2012. Vol. 46 No.2 B

© 2005 - 2012 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

AN AUTOMATIC TESTING FRAMEWORK APPLIED ON
LIW AND IMPLEMENTATION

JIE YIN, DAN YU, SHILONG MA
State Key Lab. of Software Development EnvironmBeihang University, Beijing 100191, Beijing,

China

ABSTRACT

Software is an important component of Large Infdioma Weapon (LIW). We propose a data-driven
distributed automatic testing framework, which &séd on the analysis of LIW testing requirementd, it
supports the whole process of distributed softviase The main components of the framework comdist
distributed test designing environment, executiod aontrol environment and test results show enviro
ment. We present a set of GUI scripting languageeifipation for automatic testing, the script langa
with object-oriented features. Unlike the previo@Jl automatic testing scripting language, this
specification records the information of the nodeeve the test cases will be running. As an apjdinaif
the framework, we develop an automatic testingesysfDMATS). DMATS has been put into practices in
XXX-business electronic system, and it is provesl ferasibility of the framework.

Keywords: Automatic Testing; Large Information Weapons; Test Language

1. INTRODUCTION The domestic and overseas scholars for software
testing automation technologies usually focus on
Large Information Weapon (LIW) is highly solving unique part of test automation processhsuc
information based weapon, and software plays as test cases generation[1-3], test expected sesult
important role in LIW. LIW is characterized by validation[4], test management[5,6], test oraci],7,
complexity, multi-platform, distribution and etc. Although they put forward some technology
collaboration. Software testing is a method tofyeri and independently developed support tools, its
whether the LIW satisfies specification andscope is limited. LIW testing consists of different
performance requirement. LIW is a safety criticakinds of testing, including functional test, intecé
system, therefore, software testing is an effectiiest and user interface test, etc. Current teds too
means to improve the quality LIW. cannot satisfy the testing requirements of LIW.
The LIW consists of several subsystems, an@/hen several nodes are running their own test
each subsystem is developed by a uniquecripts, there is problem of synergistic action
organization. In order to guarantee the correctnebgtween nodes during test implementation [9,10].
of the software, it usually takes several stages dleanwhile, different kinds of tool can not be
testing for LIW, including software configuration compatible, and the results produced by different
testing, subsystem level testing and system leviols cannot use directly. Thus, the development
testing. The implementation of interior functiordan trend of software test method is to develop a
interface is focused during the period of softwareomplete set general software automatic testing
configuration and subsystem level testing. Thé&amework.
validation and correctness of multiple interface The paper is organized as follows: In section 2,
interaction between subsystem and operation flothe foundation of automatic testing framework is
is focused on during the period of system levadescribed. In section 3, we state the testing
testing. requirement of LIW. In section 4 and 5, we put
At present, the testing of LIW is completed byforward a software automatic testing framework for
testers manually. A large amount of functiondIW testing, and an automatic testing system is
depend on manual testing is not realistic andesigned which based on the framework. Finally,
wasted. Only by manual test ways already cannate apply the automatic testing system to our ptojec
satisfy the existing demanding, therefore, autoenatand it proves the feasibility of the automatic itegt
testing is an effective way to improve efficiencyframework.
and quality in software testing.

648

Journal of Theoretical and Applied Information Technology
31" December 2012. Vol. 46 No.2 B

© 2005 - 2012 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSI¢17-3195
2. BASICAUTOMATICTESTING framework is what most frameworks evolve into
FRAMEWORKS over time and multiple projects.

An automatic testing framework is a set of3, REQUIREMENTSANALYSIS
assumptions, concepts, and practices that provide
support for automatic software test. In the Tphe automatic testing system of LIW is an
following, five basic frameworks will be describedjnformation- oriented and data-driven testing
and demonstrated. system. The purpose of developing the test
* The Test Modularity Framework _ automation system is to make a higher efficiency
The test modularity framework requires theang |ower cost, and to make a comprehensive test
creation of small, independent scripts that represeynich will find the problems existing in LIW.
modules, sections, and functions of the applicatiomnerefore, we can ensure the functions of the
under-test. These small scripts are then used i”s?stem meet the demand.
hierarchical fashion to construct larger tests, Test automation system task orientation
realizing a particular test case. electronic systems of different testing phase
* The Test Library Architecture Framework (including the subsystem level testing, systemlleve
The test library architecture framework is verytesting and regression testing), in view of the

similar to the test script modularity framework andjifferent test type test automation services
offers the same advantages, but it divides theovided, its main features include:

application-under-test into procedures and funetion 1. Functional testing

instead of scripts. This framework requires the Eynctional test should be taken on each
creation of library files that represent modulessubsystem of LIW to confirm weather the function
sections, and functions of the application-undefis normal or not. Each subsystem of LIW is running
test. These library files are then called direftyn in environment of each testing node which the
the test case script. operation platform is Windows or Linux.
» The Keyword-Driven Testing Framework 2. Interface testing
Keyword-driven testing and table-driven testing The interface testing is to test the interface Wwhic
are interchangeable terms that refer to ajg between two subsystems or in itself. While the
application-independent automation frameworkLIW is working, Communication and Information
This framework requires the development of datExchanged between two subsystems, and the
tables and keywords, independent of the tesbrrectness of internal and external interfacenés t
automation tool used to execute them and the tegésurance of normal working.
script code that "drives” the application-undet-tes 3. GUI testing
and the data. Keyword-driven tests look very Verify the following content: the interface
similar to manual test cases. In a keyword-driveaccuracy (characters used in the user interface,
test, the functionality of the application-undestte words and the correctness of the GUI, etc.),
is documented in a table as well as in step-by-steyffectiveness (each function button the realization
instructions for each test. of the function of the effectiveness) and consisgen
* The Data-Driven Testing Framework (the user interface is consistent with the content
Data-driven testing is a framework where tesivhich described in the software manuals). Ensure
input and output values are read from data filethe actual operation interface is in accordancé wit
(data pools, ODBC sources, cvs files, Excel fileajser manual specification.
DAO objects, ADO objects, and such) and are 4. Validating the Test results
loaded into variables in captured or manually coded Verify the software automatically according to
scripts. In this framework, variables are used fathe operational results.
both input values and output verification values. 5. Generating the test report
Navigation through the program, reading of the data With the test report automatic generating
files, and logging of test status and informatioa a function that allows users to create and customize
all coded in the test script. meet certain need formatted report, and test sesult
+ The Hybrid Test Automation Framework shall be in a friendly way show at the end of &t t
The most commonly implemented framework is 6. Managing the test resources
a combination of all of the above techniques, The tester can manage the test resource including
pulling from their strengths and trying to mitigatetest data, test scripts, test cases, the docurimmtat

their weaknesses. This hybrid test automatiotesting results and other test resources.
7. Distributing test

R
649

Journal of Theoretical and Applied Information Technology
31" December 2012. Vol. 46 No.2 N

© 2005 - 2012 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

The test automation system has the followinghe test task. Users need to select the test task
features multi-platform, distributed and networkbefore performing the test task.
interaction. Automatic testing platform should have
the support of the distributed test. Specifi¢
functions include:
* The test can be done in console which ca
centralized control of execution of the script on

Automatic testing system

The console side of ATS

distributed test designing control of test test results show

! Festing the test
each node for remote operation; m cnimmmen
« The test automation system can control th = R
st case design sk

execution of test cases, pause, stop, af e
. . est seript desig i
conditional execuuon;

. . . Test data Test resulis
« To test a distributed environment, each nod L bt) L e 5

send and receive messages, the messg i

includes two types: data instructions ang e

Contr0| InStrUCtlonS Gicnerate testing control test test data system

(SCI'Lp{) (execution) (ﬂl‘qULS[UD]]) (rommunimsmn)
4, SYSTEM DESIGN =
<5
We propose a data-driven distributed automat Testing support environment

testing framework, which is based on the analys application runtime environment
Of LIW teStIng I’eqUIrementS, as ShOWﬂ |n f|g 1 W(integration testing environment system testing environment
describe the structure of the automatic testin i
framework. Next, we elaborate the modules of th R mr—
framework.

The automatic testing framework of LIW
consists of automatic testing system and testing Figure 1: The Architecture Of Automatic Testing
support environment. The automatic testing systems Framework.
consist of the console side and the client-side.

Automatic testing system control side contain the Test case design: A test case is test unit which
following sections: distributed test designcan be executed independently, and it contains a
execution and control of test, and test results\shonumber of test scripts. Users can create, modify,
The client-side is deployed in LIW which provideand delete test cases on the test client of automat
the testing environment, and the client-side realiz test system.
the following functions: generation of testing tryi ~ Test script design: Test script is a set of test
control test execution, test data acquisition angperation or instructions. Tester can manager the
system communication. test script, including creation of test scripts,difip

The testing support environment consists ofind delete. Users can edit the test script on the
application runtime environment and basic runtimeesting client, including modifying the script,
environment. inserting and modifying the test point, and the tes

Application runtime environment is the testingscript can also be generated by way of recording.
object of automatic testing, for example, integnati Test data management: The content of data file
testing environment and system testingncludes the parameters which used in the tegutscri
environment. The Automatic testing system angnd the test criteria of results. The user canterea
Application runtime environment are both deploye@data files, import and export the test data. In
in the basic runtime environment. Testindaddition to recording, the test data which is chlle
supporting environ-ment provides the runtime ang@y a test script can also be generated by previous

provides the necessary services. test data. The testing system can use the criteria
5. THEMAIN COMPONENTSOF THE judge whether the test case is pass or not. Ibeam
FRAMEWORK collection of data, and it can be predefined exgebct
output, such as the field value in the test of
5.1 Distributed Test Designing Environment interface.

Test task design: Test task is a set of severtl tes
cases which are designed by the tester. The user & Execution And Control Environment
create, edit and modify the test tasks. When test Testing the test environment: In order to ensure
task creation is complete, you can view the defail the normal test environment, Detection of the

R
650

Journal of Theoretical and Applied Information Technology
31" December 2012. Vol. 46 No.2 B

© 2005 - 2012 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

environment is necessary, such as the detection ridw test task, control the test and view test tesul
network status and the detection of softwaren the test client. All test data that include test
configuration item. Network connectivity is ascript, test case and test task are stored in the
prerequisite for the normal test, such as the nd&twodatabase serve. The test server distributes the tes
is not connected or tested the softwaréask when it starts, and receives the test result
configuration item is not working, need to provideduring the period of testing.

alarm information.

Pre-treatment of task: The distribution of tasks
should be done before the execution of the tekt tas
The test task will be distributed to different s+
and hosts according to the scripts of test tasl %
Means of implementation is defined according tc #
the style of test task,

Test Execution Control: Users can perform the

test tasks corresponding operations, including ope ‘ y)lr
test tasks, test tasks, and to stop the test ssispen X -

Test client

Database server

Test result Store test data

Read test data

of the task. During the test, operator can disphey °

; ; ; RS
running status of the test items. The input of tes L~
case consist test scripts, test data and checkspoin T S

Test task

and the corresponding output is the testing proce:
checkpoint program output, status, and specify th
output. Means of implementation is to parse the
script.

Test results verification: In the process of tes
case execution, test result of the need to b
compared with the expected result. Test result
verification is very important for automatic tegtin
process. Test results verification includes funlo
test results verification, interface test results

Figure 2: The component of DMATS

verification, Ul verification and so on. DMATS is implemented based on the .NET
platform. The development language of it is C++,
53 Test Results Show Environment and the database is Oracle 10g. Fig.3 is one of the

Test report generation: Automatic testing systedfitérfaces of DMATS. Now, DMATS has been put
should provide automatic generation of test reportto practices in XXX-business electronic system.
and it allow users to create and customize t0 MEE i & bewr v v oot ocmert) Uimat) Vst 5ot
their specific demands which the user can defin ® > =% @& ' * °
specific report format. At the end of testing, the-

Type
= project

automatic testing system generates a test repc <@ = ser e
according to the test result. O e
Document template setting: Testers can impol °= ="

the template of the test document, and choose
specific test template before test begins. At the e
of testing, the result will put into the template
automatically and generate test report.

6. SYSTEM DEPLOYMENT AND
REALIZATION

Figure 3: The Main Interfaces Of DMATS

We design an automatic testing system named |, the follow part, we'll go over an example that
DMATS on the basis of automatic testinggemonstrates how to execute a test case in DMATS.
framework, and we apply the system to theqor the user login interface test, the tester shoul
automatic test of XXX-business electronic systeMinish a series of operation and verify the
which is LIW. System hardware consists of thggrectness and the time sequence of the login

following components: test _clie_nt, database SelVehessage. The steps of the user login test case are
and test server, as showed in Fig. 2. Test canecre@nowed below:

R
651

Journal of Theoretical and Applied Information Technology
31" December 2012. Vol. 46 No.2 B

© 2005 - 2012 JATIT & LLS. All rights reserved- o ———

-:l'\lll

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

Stepl: input “userl” in the texbox “UserName”; <tableClass>::="table("<widgetld>")."<tableRowClas
Step2: input “passwordl” in the texboxs> _ _ _

“PassWord”; <listClass>::="list("<widgetld>")."<listitemClass>
Step3: click the drop down box "Authority”; <tableRowClass>::="tableRow("<rowld>").

. p n <tableRowActionInfor>
IOOitep4. choose the “operator” on the drop down <listitemClass>::=listltem(*<widgetid>").”

o ey <listitemActionInfor>

StepS: click button “Login”. <pushButtonActioninfor>::="click()”

Step6: capture the message between DCSA and<checkBoxActionInfor>::="select()"|"unselect()”
SCM, and verify all the messages in the login <textActioninfor>::="setvalue(’<value>")’|
process. "assertvalue("<value>")"|

The messages exchange between different "waitvalue("<value>")"
processes when the user login test case execstes, a~ComboxActioninfor>::="select(’<value>")
showed in Fig. 4. Both DCSA and SCM are <t@bleRowActioninfor>:="setvalue(
different processes running in different machines. <value>{’,"<value>}y'

- " tvalue("<value>
When the user login, DCSA sends the message (1): asserva ue('<value

,’<value>}")"|"addvalue(”

DCSA_SCM_LOGIN_REPORT to SCM; SCM cyajue>{’ "<value>}’)’

verifies the message(1) and sends message(2)xlistitemActioninfor>::="setvalue(” <value>

SCM_DCSA_LOGIN_ACK to DCSA; We should {*,"<value>}")"|"assertvalue(”

check all the fields of the messages between SCM <value>{","<value>}")"|

and DCSA. "addvalue("<value>{","<value>}")"
<windowld>::=<string>

(0 Login <stationld>::=<string>
<widgetld>::=<string>
<value>::=<Alphabet >|<NaturalDigit>|<value>
(2 <Alphabet>|<value><Digit>
Figure 4: The Message Exchange In User Login Test <string>::=<Alphabet>|<string><Alphabet>
Case |<string><Digit>
<Digit>:=0|1]2|3|4]|5|6|7|8]|9
We define a test case script to describe the user’'s<NaturalDigit>::=1 2|3 |4|5|6|7 |89
operations and make it automatic to execute in the <Alphabet>:=A|B]...[Z|a|b]|...|z
DMATS. The following are usage description.
Next, we present a set of GUI scripting language <scriptSentence> is on behalf of a script, contains

specification for automatic testing, the scripfi0d€ information, the window information and testian
information and test synergistic implementation

language with object-oriented features. Unlike thﬁﬁormation. The information of node is optiond,the

previous GUI automatic testing scripting languagesode information is not recorded, it will be thengawith
this specification recorded the information of thenhe script statements’ above.

node where the test will be running. Here are the <cooperateClass> is on behalf of two types

Database

EBNF definitions of test script language: information of test synergistic statements: senchags()
<scriptSentence>::=<testaction>|<cooperateClass> and recvmessage().
<testaction>::=[<stationInfor>"."]<windowInfor>"." <actionClass> is on behalf of all types of tesiaact
<actionClass>::=<pushButtonClass>|<checkBoxClassAction types are divided by type of widget, inclngithe

> button test action type, check box test action tgpe
|<textClass>|<comboxClass> table testing action types and so on.
|<tableClass>|<listClass> Each type of test action contains the widget type
<cooperateClass>::=<sendmessage>|<recvmessage identification, widget Id, and the specific actioantent.
<sendmessage>::="sendmessage("<stationld>")" For example, the information contained by the busto
<recvmessage >::="recvmessage("<stationld>")" test action is
<stationInfor>::="station("<stationld>")" "pushbutton("<widgetld>")."<pushButtonActionInfor
<widnowlInfor>::="window("<windowld>")" >
<pushButtonClass>::="pushbutton("<widgetld>").” Some information can be added into the parentheses,
<pushButtonActioninfor> connecting the contents of the widget operatiom ‘it
<checkBoxClass>::="checkBox("<widgetld >").” The script below is an example of main script ahso
<checkBoxActionInfor> test case written under the specifications above.
<textClass>::="text("<widgetld>")."<textActionInfor The content of the script:

> station(al).window(Dialogl).text(sendtexta).
<comboxClass>::="combox("<widgetld>").” setvalue(hello)
<comboxActionInfor> station(al).window(Dialog1).pushbutton(send).cljck(

652

Journal of Theoretical and Applied Information Technology

31% December 2012. Vol. 46 No.2 N

N

© 2005 - 2012 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645

www.jatit.org

E-ISSI¥17-3195

station(b1).window(Dialog2).text(recvtextb).waitual
(hello)

REFERENCES:

station(b1).window(Dialog?).text(sendtextb). semeal ;) j. Offutt, Shaoying Liu, A. Abdurazik,

(hello)

station(b1).window(Dialog2).pushbutton(send).cljck(

station(al).window(Dialogl).text(recvtexta). waita
(hello)

This script tests the functions of sending
messages of a system. Script contents are @b

follows:

1) Set the value of text box sendtexta to be hello in
the window named Dialogl at station named

al;

2) Click the pushbutton send in the window namega]

Dialogl at station named al;

3) Wait the value of text box recvtextb to be hello
in the window named Dialog2 at station named

b1;

4) Set the value of text box sendtextb to be hello i
the window named Dialog2 at station named

b1;

5) Click the pushbutton send in the window named

Dialog2 at station named b1,

. [5]
6) Wait the value of text box recvtexta to be hello
in the window named Dialogl at station named

al;

7. CONCLUSION

Traditional software testing mainly accomplished
by manual testing, and the domestic and overseas
scholars for software testing automation technology
focused on solving GUI test automation process$/]
We have purposed an automatic testing framework
which supports a whole process of software testing,
and designed an automatic testing system named
DMATS on the basis of the automatic testings)
framework. DMATS has been put into practices in
XXX-business electronic system. We have
presented a set of GUI scripting language speeifica
tion with object-oriented features. It improves thqg]

efficiency of test, and it can help the test talfthe
fault of software more easily. In the future wonke
will improve the performance of DMATS.

ACKNOWLEDGEMENTS

This work was supported by the National
Natural Science Foundation of China (Grant No.

61003016).

653

“Generating Test Data From State-based
Specifications”, The Journal of Software
Testing, Verification and Reliability, Vol.
13,No. 1, 2005, pp. 25-53.

A. M. Memon, M. E. Pollack, M. L. Soffa,
“Hierarchical GUI Test Case Generation Using
Automated Planning”]EEE Transactions on
Software Engineering, Vol. 27, No. 2, 2006,
pp.144-155.

Jeff Offutt, Shaoying Liu, “Generating Test
Data from SOFL SpecificationsThe Journal

of Systems and Software, Vol. 49, No. 1, 2004,
pp.49-62.

Wu Hengshan and Wang Jinhong, “Automatic
testing model based on the validity of GUI
states”,J. Huazhong Univ. of ci. & Tech., Vol.
32, No. 12, 2004, pp.34-36.

T. Parveen, S. Tilley, G. Gonzalez, "A Case
Study in Test ManagementProceedings of
The 45th Annual Southeast Regional
Conference, Mar. 23-24, 2007, pp. 82-87.

E. Koh, A. Kerne, S. Berry, Test Collection
Management and Labeling System,
Proceedings of The 9th ACM Symposium on
Document Engineering, Sep. 15-18, 2009, pp.
39-42.

AM. Memon, M.E. Pollack, M.L. Soffa,
“Automated test oracles for GUISSGSOFT
Software Engineering Notes, Vol. 25, 2000, pp.
30-39.

S.R. Shahamiri et al., “An automated
framework for software test oracle”,
Information and Software Technology, Vol. 53,
2011, pp. 774-788.

R. M. Hierons, “Using status messages in the
distributed test architecturefnformation and
Software Technology, Vol. 51, Issue 7, 2009,
pp. 1123-1130.

R. M. Hierons, H. Ural, “Overcoming
controllability problems with fewest channels
between testers’TComputer Networks, Vol 53,
Issue 5, 2009, pp. 680-690.

