
Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

648

AN AUTOMATIC TESTING FRAMEWORK APPLIED ON
LIW AND IMPLEMENTATION

JIE YIN, DAN YU, SHILONG MA
State Key Lab. of Software Development Environment, Beihang University, Beijing 100191, Beijing,

China

ABSTRACT

Software is an important component of Large Information Weapon (LIW). We propose a data-driven
distributed automatic testing framework, which is based on the analysis of LIW testing requirements, and it
supports the whole process of distributed software test. The main components of the framework consist of
distributed test designing environment, execution and control environment and test results show environ-
ment. We present a set of GUI scripting language specification for automatic testing, the script language
with object-oriented features. Unlike the previous GUI automatic testing scripting language, this
specification records the information of the node where the test cases will be running. As an application of
the framework, we develop an automatic testing system (DMATS). DMATS has been put into practices in
XXX-business electronic system, and it is proved the feasibility of the framework.

Keywords: Automatic Testing; Large Information Weapons; Test Language

1. INTRODUCTION

Large Information Weapon (LIW) is highly
information based weapon, and software plays an
important role in LIW. LIW is characterized by
complexity, multi-platform, distribution and
collaboration. Software testing is a method to verify
whether the LIW satisfies specification and
performance requirement. LIW is a safety critical
system, therefore, software testing is an effective
means to improve the quality LIW.

The LIW consists of several subsystems, and
each subsystem is developed by a unique
organization. In order to guarantee the correctness
of the software, it usually takes several stages of
testing for LIW, including software configuration
testing, subsystem level testing and system level
testing. The implementation of interior function and
interface is focused during the period of software
configuration and subsystem level testing. The
validation and correctness of multiple interface
interaction between subsystem and operation flow
is focused on during the period of system level
testing.

At present, the testing of LIW is completed by
testers manually. A large amount of functions
depend on manual testing is not realistic and
wasted. Only by manual test ways already cannot
satisfy the existing demanding, therefore, automatic
testing is an effective way to improve efficiency
and quality in software testing.

The domestic and overseas scholars for software
testing automation technologies usually focus on
solving unique part of test automation process, such
as test cases generation[1-3], test expected results
validation[4], test management[5,6], test oracle[7,8],
etc. Although they put forward some technology
and independently developed support tools, its
scope is limited. LIW testing consists of different
kinds of testing, including functional test, interface
test and user interface test, etc. Current test tools
cannot satisfy the testing requirements of LIW.
When several nodes are running their own test
scripts, there is problem of synergistic action
between nodes during test implementation [9,10].
Meanwhile, different kinds of tool can not be
compatible, and the results produced by different
tools cannot use directly. Thus, the development
trend of software test method is to develop a
complete set general software automatic testing
framework.

The paper is organized as follows: In section 2,
the foundation of automatic testing framework is
described. In section 3, we state the testing
requirement of LIW. In section 4 and 5, we put
forward a software automatic testing framework for
LIW testing, and an automatic testing system is
designed which based on the framework. Finally,
we apply the automatic testing system to our project
and it proves the feasibility of the automatic testing
framework.

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

649

2. BASIC AUTOMATIC TESTING
FRAMEWORKS

An automatic testing framework is a set of

assumptions, concepts, and practices that provide
support for automatic software test. In the
following, five basic frameworks will be described
and demonstrated.

• The Test Modularity Framework
The test modularity framework requires the

creation of small, independent scripts that represent
modules, sections, and functions of the application-
under-test. These small scripts are then used in a
hierarchical fashion to construct larger tests,
realizing a particular test case.

• The Test Library Architecture Framework
The test library architecture framework is very

similar to the test script modularity framework and
offers the same advantages, but it divides the
application-under-test into procedures and functions
instead of scripts. This framework requires the
creation of library files that represent modules,
sections, and functions of the application-under-
test. These library files are then called directly from
the test case script.

• The Keyword-Driven Testing Framework
Keyword-driven testing and table-driven testing

are interchangeable terms that refer to an
application-independent automation framework.
This framework requires the development of data
tables and keywords, independent of the test
automation tool used to execute them and the test
script code that "drives" the application-under-test
and the data. Keyword-driven tests look very
similar to manual test cases. In a keyword-driven
test, the functionality of the application-under-test
is documented in a table as well as in step-by-step
instructions for each test.

• The Data-Driven Testing Framework
Data-driven testing is a framework where test

input and output values are read from data files
(data pools, ODBC sources, cvs files, Excel files,
DAO objects, ADO objects, and such) and are
loaded into variables in captured or manually coded
scripts. In this framework, variables are used for
both input values and output verification values.
Navigation through the program, reading of the data
files, and logging of test status and information are
all coded in the test script.

• The Hybrid Test Automation Framework
The most commonly implemented framework is

a combination of all of the above techniques,
pulling from their strengths and trying to mitigate
their weaknesses. This hybrid test automation

framework is what most frameworks evolve into
over time and multiple projects.

3. REQUIREMENTS ANALYSIS

The automatic testing system of LIW is an
information- oriented and data-driven testing
system. The purpose of developing the test
automation system is to make a higher efficiency
and lower cost, and to make a comprehensive test
which will find the problems existing in LIW.
Therefore, we can ensure the functions of the
system meet the demand.

Test automation system task orientation
electronic systems of different testing phase
(including the subsystem level testing, system level
testing and regression testing), in view of the
different test type test automation services
provided, its main features include:

1. Functional testing
Functional test should be taken on each

subsystem of LIW to confirm weather the function
is normal or not. Each subsystem of LIW is running
in environment of each testing node which the
operation platform is Windows or Linux.

2. Interface testing
The interface testing is to test the interface which

is between two subsystems or in itself. While the
LIW is working, Communication and Information
Exchanged between two subsystems, and the
correctness of internal and external interface is the
assurance of normal working.

3. GUI testing
Verify the following content: the interface

accuracy (characters used in the user interface,
words and the correctness of the GUI, etc.),
effectiveness (each function button the realization
of the function of the effectiveness) and consistency
(the user interface is consistent with the content
which described in the software manuals). Ensure
the actual operation interface is in accordance with
user manual specification.

4. Validating the Test results
Verify the software automatically according to

the operational results.
5. Generating the test report

With the test report automatic generating
function that allows users to create and customize
meet certain need formatted report, and test results
shall be in a friendly way show at the end of the test

6. Managing the test resources
The tester can manage the test resource including

test data, test scripts, test cases, the documentation,
testing results and other test resources.

7. Distributing test

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

650

The test automation system has the following
features multi-platform, distributed and network
interaction. Automatic testing platform should have
the support of the distributed test. Specific
functions include:
• The test can be done in console which can

centralized control of execution of the script on
each node for remote operation;

• The test automation system can control the
execution of test cases, pause, stop, and
conditional execution;

• To test a distributed environment, each node
send and receive messages, the message
includes two types: data instructions and
control instructions.

4. SYSTEM DESIGN

We propose a data-driven distributed automatic
testing framework, which is based on the analysis
of LIW testing requirements, as shown in fig. 1. We
describe the structure of the automatic testing
framework. Next, we elaborate the modules of the
framework.

The automatic testing framework of LIW
consists of automatic testing system and testing
support environment. The automatic testing systems
consist of the console side and the client-side.

Automatic testing system control side contain the
following sections: distributed test design,
execution and control of test, and test results show.
The client-side is deployed in LIW which provide
the testing environment, and the client-side realizes
the following functions: generation of testing script,
control test execution, test data acquisition and
system communication.

The testing support environment consists of
application runtime environment and basic runtime
environment.

Application runtime environment is the testing
object of automatic testing, for example, integration
testing environment and system testing
environment. The Automatic testing system and
Application runtime environment are both deployed
in the basic runtime environment. Testing
supporting environ-ment provides the runtime and
provides the necessary services.
5. THE MAIN COMPONENTS OF THE

FRAMEWORK

5.1 Distributed Test Designing Environment
Test task design: Test task is a set of several test

cases which are designed by the tester. The user can
create, edit and modify the test tasks. When test
task creation is complete, you can view the detail of

the test task. Users need to select the test task
before performing the test task.

Figure 1: The Architecture Of Automatic Testing
Framework.

Test case design: A test case is test unit which

can be executed independently, and it contains a
number of test scripts. Users can create, modify,
and delete test cases on the test client of automatic
test system.

Test script design: Test script is a set of test
operation or instructions. Tester can manager the
test script, including creation of test scripts, modify
and delete. Users can edit the test script on the
testing client, including modifying the script,
inserting and modifying the test point, and the test
script can also be generated by way of recording.

Test data management: The content of data file
includes the parameters which used in the test script
and the test criteria of results. The user can create
data files, import and export the test data. In
addition to recording, the test data which is called
by a test script can also be generated by previous
test data. The testing system can use the criteria to
judge whether the test case is pass or not. It can be a
collection of data, and it can be predefined expected
output, such as the field value in the test of
interface.

5.2 Execution And Control Environment
Testing the test environment: In order to ensure

the normal test environment, Detection of the

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

651

environment is necessary, such as the detection of
network status and the detection of software
configuration item. Network connectivity is a
prerequisite for the normal test, such as the network
is not connected or tested the software
configuration item is not working, need to provide
alarm information.

Pre-treatment of task: The distribution of tasks
should be done before the execution of the test task.
The test task will be distributed to different servers
and hosts according to the scripts of test task.
Means of implementation is defined according to
the style of test task,

Test Execution Control: Users can perform the
test tasks corresponding operations, including open
test tasks, test tasks, and to stop the test suspension
of the task. During the test, operator can display the
running status of the test items. The input of test
case consist test scripts, test data and check points,
and the corresponding output is the testing process
checkpoint program output, status, and specify the
output. Means of implementation is to parse the
script.

Test results verification: In the process of test
case execution, test result of the need to be
compared with the expected result. Test results
verification is very important for automatic testing
process. Test results verification includes functional
test results verification, interface test results
verification, UI verification and so on.

5.3 Test Results Show Environment
Test report generation: Automatic testing system

should provide automatic generation of test reports,
and it allow users to create and customize to meet
their specific demands which the user can define
specific report format. At the end of testing, the
automatic testing system generates a test report
according to the test result.

Document template setting: Testers can import
the template of the test document, and choose a
specific test template before test begins. At the end
of testing, the result will put into the template
automatically and generate test report.

6. SYSTEM DEPLOYMENT AND

REALIZATION

We design an automatic testing system named
DMATS on the basis of automatic testing
framework, and we apply the system to the
automatic test of XXX-business electronic system
which is LIW. System hardware consists of the
following components: test client, database server
and test server, as showed in Fig. 2. Test can create

new test task, control the test and view test results
on the test client. All test data that include test
script, test case and test task are stored in the
database serve. The test server distributes the test
task when it starts, and receives the test result
during the period of testing.

Figure 2: The component of DMATS

DMATS is implemented based on the .NET
platform. The development language of it is C++,
and the database is Oracle 10g. Fig.3 is one of the
interfaces of DMATS. Now, DMATS has been put
into practices in XXX-business electronic system.

Figure 3: The Main Interfaces Of DMATS

In the follow part, we'll go over an example that

demonstrates how to execute a test case in DMATS.
For the user login interface test, the tester should
finish a series of operation and verify the
correctness and the time sequence of the login
message. The steps of the user login test case are
showed below:

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

652

Step1: input “user1” in the texbox “UserName”;
Step2: input “password1” in the texbox

“PassWord”;
Step3: click the drop down box ”Authority”;
Step4: choose the “operator” on the drop down

box;
Step5: click button “Login”.
Step6: capture the message between DCSA and

SCM, and verify all the messages in the login
process.

The messages exchange between different
processes when the user login test case executes, as
showed in Fig. 4. Both DCSA and SCM are
different processes running in different machines.
When the user login, DCSA sends the message (1):
DCSA_SCM_LOGIN_REPORT to SCM; SCM
verifies the message(1) and sends message(2):
SCM_DCSA_LOGIN_ACK to DCSA; We should
check all the fields of the messages between SCM
and DCSA.

Figure 4: The Message Exchange In User Login Test

Case

We define a test case script to describe the user’s

operations and make it automatic to execute in the
DMATS.

Next, we present a set of GUI scripting language
specification for automatic testing, the script
language with object-oriented features. Unlike the
previous GUI automatic testing scripting language,
this specification recorded the information of the
node where the test will be running. Here are the
EBNF definitions of test script language:

<scriptSentence>::=<testaction>|<cooperateClass>
<testaction>::=[<stationInfor>”.”]<windowInfor>”.”
<actionClass>::=<pushButtonClass>|<checkBoxClass

>
|<textClass>|<comboxClass>
|<tableClass>|<listClass>
<cooperateClass>::=<sendmessage>|<recvmessage >
<sendmessage>::=”sendmessage(”<stationId>”)”
<recvmessage >::=”recvmessage(”<stationId>”)”
<stationInfor>::=”station(”<stationId>”)”
<widnowInfor>::=”window(”<windowId>”)”
<pushButtonClass>::=”pushbutton(”<widgetId>”).”
<pushButtonActionInfor>
<checkBoxClass>::=”checkBox(”<widgetId >”).”
<checkBoxActionInfor>
<textClass>::=”text(”<widgetId>”).”<textActionInfor

>
<comboxClass>::=”combox(”<widgetId>”).”
<comboxActionInfor>

<tableClass>::=”table(”<widgetId>”).”<tableRowClas
s>

<listClass>::=”list(”<widgetId>”).”<listItemClass>
<tableRowClass>::=”tableRow(”<rowId>”).”
<tableRowActionInfor>
<listItemClass>::=”listItem(”<widgetId>”).”
<listItemActionInfor>
<pushButtonActionInfor>::=”click()”
<checkBoxActionInfor>::=”select()”|”unselect()”
<textActionInfor>::=”setvalue(”<value>”)”|
”assertvalue(”<value>”)”|
”waitvalue(”<value>”)”
<comboxActionInfor>::=”select(”<value>”)”
<tableRowActionInfor>::=”setvalue(”
<value>{”,”<value>}”)”|
”assertvalue(”<value>
{”,”<value>}”)”|”addvalue(”
<value>{”,”<value>}”)”
<listItemActionInfor>::=”setvalue(” <value>
{”,”<value>}”)”|”assertvalue(”
<value>{”,”<value>}”)”|
”addvalue(”<value>{”,”<value>}”)”
<windowId>::=<string>
<stationId>::=<string>
<widgetId>::=<string>
<value>::=<Alphabet >|<NaturalDigit>|<value>
<Alphabet>|<value><Digit>
<string>::=<Alphabet>|<string><Alphabet>
|<string><Digit>
<Digit>::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9
<NaturalDigit>::=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9
< Alphabet>::= A | B | …| Z | a | b | …| z
The following are usage description.
<scriptSentence> is on behalf of a script, contains

node information, the window information and test action
information and test synergistic implementation
information. The information of node is optional, if the
node information is not recorded, it will be the same with
the script statements’ above.

<cooperateClass> is on behalf of two types
information of test synergistic statements: sendmessage()
and recvmessage().

<actionClass> is on behalf of all types of test action.
Action types are divided by type of widget, including the
button test action type, check box test action type and
table testing action types and so on.

Each type of test action contains the widget type
identification, widget Id, and the specific action content.
For example, the information contained by the button’s
test action is

”pushbutton(”<widgetId>”).”<pushButtonActionInfor
>.

Some information can be added into the parentheses,
connecting the contents of the widget operation with “.”.

The script below is an example of main script of some
test case written under the specifications above.

The content of the script:
station(a1).window(Dialog1).text(sendtexta).

setvalue(hello)
station(a1).window(Dialog1).pushbutton(send).click()

Journal of Theoretical and Applied Information Technology
 31st December 2012. Vol. 46 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

653

station(b1).window(Dialog2).text(recvtextb).waitvalue
(hello)

station(b1).window(Dialog2).text(sendtextb). setvalue
(hello)

station(b1).window(Dialog2).pushbutton(send).click()
station(a1).window(Dialog1).text(recvtexta). waitvalue

(hello)
This script tests the functions of sending

messages of a system. Script contents are as
follows:
1) Set the value of text box sendtexta to be hello in

the window named Dialog1 at station named
a1;

2) Click the pushbutton send in the window named
Dialog1 at station named a1;

3) Wait the value of text box recvtextb to be hello
in the window named Dialog2 at station named
b1;

4) Set the value of text box sendtextb to be hello in
the window named Dialog2 at station named
b1;

5) Click the pushbutton send in the window named
Dialog2 at station named b1;

6) Wait the value of text box recvtexta to be hello
in the window named Dialog1 at station named
a1;

7. CONCLUSION

Traditional software testing mainly accomplished

by manual testing, and the domestic and overseas
scholars for software testing automation technology
focused on solving GUI test automation process.
We have purposed an automatic testing framework
which supports a whole process of software testing,
and designed an automatic testing system named
DMATS on the basis of the automatic testing
framework. DMATS has been put into practices in
XXX-business electronic system. We have
presented a set of GUI scripting language specifica-
tion with object-oriented features. It improves the
efficiency of test, and it can help the test to find the
fault of software more easily. In the future work, we
will improve the performance of DMATS.

ACKNOWLEDGEMENTS

This work was supported by the National
Natural Science Foundation of China (Grant No.
61003016).

REFERENCES:

[1] J. Offutt, Shaoying Liu, A. Abdurazik,

“Generating Test Data From State-based
Specifications”, The Journal of Software
Testing, Verification and Reliability, Vol.
13,No. 1, 2005, pp. 25-53.

[2] A. M. Memon, M. E. Pollack, M. L. Soffa,
“Hierarchical GUI Test Case Generation Using
Automated Planning”, IEEE Transactions on
Software Engineering, Vol. 27, No. 2, 2006,
pp.144-155.

[3] Jeff Offutt, Shaoying Liu, “Generating Test
Data from SOFL Specifications”, The Journal
of Systems and Software, Vol. 49, No. 1, 2004,
pp.49-62.

[4] Wu Hengshan and Wang Jinhong, “Automatic
testing model based on the validity of GUI
states”, J. Huazhong Univ. of Sci. & Tech., Vol.
32, No. 12, 2004, pp.34-36.

[5] T. Parveen, S. Tilley, G. Gonzalez, "A Case
Study in Test Management," Proceedings of
The 45th Annual Southeast Regional
Conference, Mar. 23-24, 2007, pp. 82-87.

[6] E. Koh, A. Kerne, S. Berry, Test Collection
Management and Labeling System,
Proceedings of The 9th ACM Symposium on
Document Engineering, Sep. 15-18, 2009, pp.
39-42.

[7] A.M. Memon, M.E. Pollack, M.L. Soffa,
“Automated test oracles for GUIs”, SIGSOFT
Software Engineering Notes, Vol. 25, 2000, pp.
30–39.

[8] S.R. Shahamiri et al., “An automated
framework for software test oracle”,
Information and Software Technology, Vol. 53,
2011, pp. 774-788.

[9] R. M. Hierons, “Using status messages in the
distributed test architecture”, Information and
Software Technology, Vol. 51, Issue 7, 2009,
pp. 1123-1130.

[10] R. M. Hierons, H. Ural, “Overcoming
controllability problems with fewest channels
between testers”, Computer Networks, Vol 53,
Issue 5, 2009, pp. 680-690.

