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ABSTRACT 
 

In the paper a modified particle swarm optimization (MPSO) is proposed where concepts from firefly 
algorithm (FA) are borrowed to enhance the performance of particle swarm optimization (PSO). The 
modifications focus on the velocity vectors of the PSO, which fully use beneficial information of the 
position of particles and increase randomization item in the PSO. Finally, the performance of the proposed 
algorithm is compared with that of the PSO-TVIW. Simulation results demonstrate the effectiveness of the 
proposed algorithm. 
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1. INTRODUCTION 
 

The optimization problems frequently arise in 
almost every field of the natural sciences and the 
engineering technology. During the last few 
decades, Nature-inspired Meta-heuristic algorithms 
have been proposed for solving the optimization 
problems. There are many different meta-heuristic 
algorithms for the optimization problems, such as 
differential evolution (DE) [1], ant colony 
optimization (ACO) [2], firefly algorithm [3-4], and 
so on. 

Particle swarm optimization (PSO), proposed by 
Kennedy and Eberhart [5-6] in 1995 is a new, self-
adaptive global optimization algorithm based on the 
swarm behavior of birds and fish, In the PSO, a 
potential solution for a given problem is considered 
as a particle, a particle flies through a D-
dimensional, real-valued search space and adjusts 
its position vector according to its own experience 
and other particles’. The PSO approach is 
becoming very popular due to its simplicity of 
implementation and ability to quickly converge to a 
reasonably good solution; it has been successfully 
applied in a vast range of problems [5-8].To 
improve the performance of the PSO, Hong-qi Li et 
al. [9] proposed a novel hybrid particle swarm 

optimization algorithm  combined with harmony 
search for high dimensional optimization problems, 
O. Begambre et al. [10] proposed a hybrid particle 
swarm optimization – simplex algorithm for 
structural damage identification, Changsheng 
Zhang et al. [11] proposed a novel hybrid 
differential evolution and particle swarm 
optimization algorithm for unconstrained 
optimization. 

Firefly algorithm (FA) is a new meta-heuristic 
algorithm which is inspired from social behavior of 
fireflies in nature. This algorithm was developed 
recently by Xin-She Yang at Cambridge University. 
It uses three idealized rules: All fireflies are unisex 
and can be attracted by other fireflies; attractiveness 
of each firefly is proportional to their brightness and 
brightness of each firefly is determined by 
evaluating objective function. Further details about 
the FA are given in [3-4]. 

In order to improve the search capability of PSO, 
the purpose of this paper is to present a PSO based 
on the part thought of firefly algorithm (MPSO). To 
show the performance of this algorithm, MPSO is 
applied to four standard benchmark functions. 
Numerical results reveal that the proposed 
algorithm is a powerful search algorithm for 
optimization problems. 
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The remainder of the paper is organized as 
follows: Section 2 describes the PSO. The proposed 
approach (MPSO) is presented in Section 3. Results 
of the experiments are presented and discussed in 
Section4. Finally, Section 5 concludes the paper.  

2. THE PARTICLE SWARM ALGORITHM 
 

In PSO, every particle has a position vector 

1 2( , , , )Dx x x x= ⋅⋅⋅  and a velocity 

vector 1 2( , , , )Dv v v v= ⋅⋅⋅ . 

At each time step t, the velocity of particle i is 
updated according to Eq.1 and then its position is 
updated according to Eq.2. 

1 1

2 2
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i i i i
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c r gbest x t

ω+ = + −
+ −

              (1)                                                                                    

( 1) ( ) ( 1)i i ix t x t v t+ = + +                                   
(2)                                                                                                                           

Where w is the inertial weight, and c1 and c2 are 
positive acceleration coefficients used to scale the 
contribution of cognitive and social components, 
respectively. pbesti is the best position that particle i 
has been visited. gbest is the best position found by 
all particles in the swarm. r1 and r2 are uniform 
random number in [0,1], max max[ , ]idv V V∈ − , and 

Vmax specify maximum of velocity. 

PSO can be summarized as the pseudo code 
shown in Figure 1. 

begin 

initialize the particle population xi (i=1,2,…,n) 
and vi 

while (t <Max number of Generations) 

evaluate the fitness f (x) , x = (x1, ..., xD) 

update pbesti and gbest 

calculate new velocity according to Eq.1 

update the position according to Eq.2 

end while 

end 

Figure 1  Particle Swarm Optimization 

3. THE MODIFIED PARTICLE SWARM 
ALGORITHM 

 
In this section, the part thought of FA is used in 

the PSO to accelerate convergence speed and also 

to enhance its capability for handling optimization 
problems.  

The MPSO has exactly the same steps as the PSO 
with the exception that velocity vector is modified 
as follows: 

In the MPSO, the distance between xi and pbesti, 
respectively, is the Cartesian distance 
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The distance between xi and gbest, respectively, 
is the Cartesian distance 
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The velocity vectors v of the PSO is randomly 
mutated by using Eq.5. 
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(5)                              

Where the third term is randomization with  the 
control parameter α , which makes the exploration 
of the search space more efficient. pa is a mutation 
probability, r3 is uniform random number in [0,1], 
the proposed algorithm fully uses beneficial 
information of the solutions to modify the velocity 
vector v. Intuitively, this modification allows the 
MPSO to work efficiently in both continuous and 
discrete problems.  

4. EXPERIMENTS 
 
4.1 Benchmarks 

In this section, four well known benchmark 
functions for minimization are chosen to test the 
performance of MPSO in comparison with PSO-
TVIW [7]. The test functions are listed below: 

Sphere function  

2

1
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f x x
=
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                                                       (6)                                                      
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Rosenbrock function 
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Rastrigrin function  
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Griewank function  
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Search space ranges of the above benchmark 
functions for the experiments are listed in Table 1. 

Table 1 Search Space For Each Test Functions 

Function Search space 

Sphere 5.12 5.12ix− ≤ ≤  
Rosenbrock 30 30ix− ≤ ≤  
Rastigrin 5.12 5.12ix− ≤ ≤  
Griewank 600 600ix− ≤ ≤  

 

4.2 Algorithm’s Settings And Experimental 
Results  

To evaluate the performance of the proposed 
PSO, all common parameters of PSO-TVIW [7] and 
MPSO are set the same to have a fair comparison. 
All functions were implemented in 30 dimensions. 
The results reported in this section are mean and 
standard dev. over 50 simulations. The maximum 
number of generations (Ng) was set to 2,000 for 
two algorithms, it is good to limit the Vmax to the 
upper value of the range of search, D=40. For the 

MPSO, pa=0.9, (0.9 0.4) 0.4
Ng t

w
Ng

−= − + , 

1 2 2c c= = .  

Table 2 summarizes value data obtained by 
applying the two approaches to the benchmark 

functions. As seen, for Sphere function, Rosenbrock 
function and Griewank function, the result 
generated by MPSO is better than those generated 
by PSO, for Rastigrin function, MPSO slightly 
outperformed PSO. It can be concluded that the 
MPSO outperformed PSO-TVIW in all four 
benchmark functions when the pre-defined number 
of generations is completed. The modified PSO that 
combines the distance information and 
randomization term is proved to be correct and 
effective in converging to the global optimal. 

Table 2 Shows The Mean And STDEV. Of The 
Benchmark Function Optimization Results 

Functio
n 

Met
hod 

Mean Stdev. 

Sphere 

PSO
-
TVI
W 
MPS
O 

2.01554830096
0248e-5    
3.27178869303
4994e-6 

1.35034908313
9055e-4 
5.32115488952
5446e-7 

Rosenb
rock 

PSO
-
TVI
W 
MPS
O 

1.00029514893
9649e+2 
70.6183697610
29768 

1.18761895175
5061e+2 
1.10822347459
0161e+2 

Rastigr
in 

PSO
-
TVI
W 
MPS
O 

72.2543077481
91820 
72.1946469048
94668 

18.3263121401
93487 
16.0408520628
08550 

Griewa
nk 

PSO
-
TVI
W 
MPS
O 

0.10133779637
7739 
0.06879507945
9886 

0.17678038033
0072 
0.14498015321
4513 
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(d) 

Figure 2 Variation Of The Mean That Are Best Fit With Time. (A) Sphere Function. (B) Rosenbrock Function. (C) 
Rastigrin Function. (D) Griewank Function. 
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Figure 2 show the search progress of the average 
values found by the two algorithms over 50 runs 
four functions, which plot the fitness values (log) 
against the number of generations. From Figure 2, it 
is clear that the MPSO converges significantly 
faster than PSO-TVIW for Sphere function, 
Rosenbrock function and Griewank function, the 
MPSO converges slightly faster than PSO-TVIW 
for Rastigrin function. 

5.  CONCLUSIONS 
 

This paper proposes a new simple but effective 
and efficient modified PSO for continuous 
optimization problems. The results obtained show 
that by using the MPSO may yield better solutions 
than those obtained by using PSO-TVIW, and 
demonstrate the effectiveness and robustness of the 
proposed algorithm. In conclusion, my research 
work, therefore, suggests that the MPSO is 
potentially a powerful search and optimization 
technique for solving complex problems.  

In this work, we only consider the unconstrained 
function optimization. Our future work consists on 
adding the diversity rules into MPSO for 
constrained optimization problems. 
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