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ABSTRACT 
 

Mobility prediction algorithm is the significant aspect to improve QoS (Quality of Service) for 
heterogeneous wireless networks because it can accurately predict user’ s trajectory, decrease handoff 
latency and preserve resources in arriving cell for user. Considering inaccurate description of existing 
mobility prediction algorithms for mobile user’s location in heterogeneous wireless networks, this paper 
proposes that overlay coverage zone (OCZ) can be used to precisely describe user’s location, flexibly depict 
the mobile user’s characteristics and vertical handoffs among different wireless networks. As existing 
algorithms highly depend on cell boundary estimation and suffer from low time prediction accuracy, the 
phase-type distribution is introduced to model user’s residence time in OCZ to improve classical Markov 
predictor, and then a novel joint time and location mobility prediction algorithm is proposed. Simulation 
results show that, compared with Markov mobility prediction algorithm, the prediction accuracy of the 
proposed algorithm is highly increased. 

Keywords: Mobility Prediction Algorithm, Heterogeneous Wireless Networks, QoS, Overlay Coverage 
Zone, Joint Time and Location 

 
1. INTRODUCTION  
 

Driven by technological developments and 
industrial interests, existing wireless networks are 
featured by different access technologies, 
networking modes, resource allocation, client 
groups and commercial backgrounds, leading to 
these networks being difficult to replace each other. 
Therefore, the future wireless communication 
networks will be open and distributed 
heterogeneous networks comprised of different 
wireless networks. In such an environment, 
communication services are highly developed and 
the number of mobile users is drastically increasing 
resulting in growing shortage of spectrum resources 
[1]. Meanwhile, mobile users are more eager for 
seamless and continuous services with strictly 
guaranteed QoS [2].  

Mobility management can coordinate interactions 
across heterogeneous wireless networks and 

guarantee the receipt of consistent services for 
mobile users even when their location continuously 
changes in heterogeneous wireless networks. 
Mobility prediction is a crucial aspect of mobility 
management because it can predict user’s motion 
trajectory and then preserve resources required by 
user in the arriving cells in advance to avoid 
degrading QoS due to insufficient resources. In 
addition, mobility prediction can partially complete 
the functions of horizontal or vertical handoffs to 
reduce handoff latency and signaling overhead 
when user’s location is updating. Therefore, well-
designed mobility prediction algorithms are highly 
significant for guaranteeing QoS and maximizing 
spectrum efficiency.  

So far, existing mobility prediction algorithms 
have been derived from the ones for homogenous 
networks. Factually, since there are overlay 
coverage zones (OCZs) formed by multiple 
wireless networks within heterogeneous networks, 
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the prediction of user’s location in OCZ the key to 
mobility prediction for heterogeneous networks. 
Based on existing mobility prediction algorithms, in 
the light of the low time prediction accuracy of 
Markov model based mobility prediction algorithm, 
OCZ is used to precisely depict the user’s location 
and the phase-type distribution is utilized to 
describe the residence time of user in OCZ, and 
then a novel joint time and location mobility 
prediction algorithm is proposed. Simulation results 
show that, compared with the classical Markov 
model based prediction algorithm, the proposed 
algorithm in this paper achieves higher prediction 
accuracy.  

2. RELATED WORK 
 

Depending on whether GPS (Global Positioning 
System) is used, mobility prediction algorithms in 
wireless networks can be classified into two types 
[3]. The first type uses GPS to get user’s coordinate 
as UMH (User Mobile History) information, and 
then utilizes different fitting algorithms to predict 
user’s coordinate or location in the next time. At 
length, by means of cell boundary estimation 
algorithm, the cell that user will visit can be 
determined. Apparently, the performances of the 
first type of prediction algorithms are highly 
dependent on the effects of boundary estimation 
algorithms (i.e. estimation of the shape and the size 
of cells). However, since there are few well-
performed boundary estimation algorithms, much 
attention has been paid to the second type of 
mobility prediction algorithms without GPS.  

The second type is without GPS, which uses 
history ID (identification) information sequence of 
cells passed by user as UMH and utilizes Markov 
predictor, data mining or model matching to predict 
user’s trajectory. In comparison, such algorithms 
are independent of cell boundary estimation. In fact, 
above two mobility prediction algorithms are quite 
different from the application conditions and 
backgrounds; especially, they are mutually 
complementary and very difficult to replace each 
other.  

In recent years, some mobility prediction 
algorithms of the second type have appeared [4-12]. 
In [4], Yu and Leung introduced data compression 
(For instance, Ziv-Lempel) into mobility prediction, 
but it is highly difficult to get Ziv-Lempel tree from 
mobile history information. In [5], Cleary and 
Teahan proposed a local matching algorithm based 
on fixed order, but the fixed order cannot well adapt 
to user’s time-varying mobility resulting in 
deteriorated prediction. In view of the flaw of fixed 

order, Jacquet and Szpankowski proposed an 
extended local matching prediction algorithm in 
which the matching order is flexible [6]. In [7], the 
authors proposed that user’s common information 
including its location and corresponding time 
should be incorporated in mobility prediction, 
however, as this information involves much 
personal privacy more often than not, such 
approach is difficult to be applied in open and 
public network environment. [8] compares Markov 
model based and other mobility prediction 
algorithms and points out the former has the 
advantages of simple implementation, high 
prediction accuracy and small data storage. By 
means of real trace data collected by Dartmouth 
College, [9] and [10] validate that multi-order 
Markov model is suitable for describing mobile 
use’s trajectory. In [11], Song et al. presented a k -
order Markov model based predictor and tested it 
using real trace data leading to poor time prediction 
accuracy for lower order k ; however, higher-order 
Markov predictor not only depends on a large 
amount of UMH information, but has poor 
performance for insufficient UMH information as 
well. To cope with this situation, Sun and Blough 
gave out an adaptive k -order Markov based 
predictor with feedback in [12]; when it works 
badly for a certain order k , a lower order k  will be 
automatically fed back to the predictor. However, it 
still suffers from low time accuracy.  

So far, most of existing mobility prediction 
algorithms for heterogeneous wireless networks has 
been derived from the ones for homogeneous 
wireless networks, but the difference between 
heterogeneous and homogeneous wireless networks 
has not been taken into their consideration. On the 
other hand, how to describe user’s location is the 
basis and premise of mobility prediction algorithms 
because a well-performed prediction algorithm 
would be deteriorated due to inaccurate location 
information. In addition, it is very apparent from 
above literature review that Markov model based 
mobility prediction algorithms are simple and 
easily-implemented relative to other algorithms. 
The only imperfection is that their improved 
versions always suffer from low time prediction 
accuracy.  

In this paper, overlay coverage zone (OCZ) is 
proposed to describe user’s location in 
heterogeneous wireless networks and phase-type 
distribution is applied to Markov predictor to model 
user’s residence time, and then a novel joint time 
and location mobility prediction algorithm for 
heterogeneous wireless networks is proposed. 
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Simulation results show that compared with other 
algorithm, the proposed algorithm has higher 
prediction accuracy.  

3. JOINT TIME AND LOCATION 
MOBILITY PREDICTION ALGORITHM 

 
3.1 Joint Time And Location Mobility Prediction 

Algorithm  
Traditionally, user’s trajectory is described using 

cell ID in homogeneous wireless networks because 
the services and the bandwidth required by the user 
is independent of the exact location of user in the 
cell. Therefore, the residence time and the IDs of 
cells can be used to describe the user’s mobility. 
However, the cell coverage of different wireless 
networks is quite different form each other, for 
instance, the cell radium is about 1.5 km for 
WCDMA networks while the cell radium is roughly 
60 m for WLAN (Wireless Local Area Network). 
As a result, the traditional methodology based on 
cell ID is not suitable for description of user’s 
location in heterogeneous wireless networks. In 
view of the disadvantage, OCZ is introduced to 
depict user’s location in this paper that the user’s 
trajectory can be modeled as a series of OCZ’ IDs. 
The classification of OCZ is according to the type 
of wireless networks that the OCZ covers. In this 
paper, three-layer OCZ system is used, including 
cellular networks, WMAN (Wireless Metropolitan 
Area Networks) and WLAN. In this condition, four 
types of OCZ can be demonstrated as shown in 
Fig.1.   

 
Figure 1. Overlay Coverage Zone 

 

Type 1: OCZ only covered by cellular networks;  

Type 2: OCZ covered by both cellular networks 
and WMAN; 

Type 3: OCZ covered by cellular networks, 
WMAN and WLAN;  

Type 4: OCZ covered by both cellular WLAN;  

It is worthy to note that there is a WLAN cell 
divided into J and K parts in Fig.1 where part J is 
together covered by cellular networks, WLAN and 
WMAN, while part K is covered by both cellular 
networks and WLAN. The user’s trajectory can be 
represented by a series of OCZ’s IDs, for instance, 
trajectory 1 (TR1) is represented as A-G-H-G-J-K-
D, while TR2 is denoted as E-M-E-G-F.  

The advantages of using OCZ to describe user’s 
mobility in heterogeneous wireless networks are 
specially manifested in three aspects.  

First, OCZ is able to adapt to different wireless 
networks that different people are locate in and 
flexibly describe the mobile scenes of the terminals. 
Specifically, WLAN is often deployed according to 
hot spot in city of which features are high user 
density, slow speed, for example, the zones I and H 
shown in Fig.1. WMAN mainly covers whole city 
where its user has faster speed and slower direction 
change, for instance, the zone G demonstrated in 
Fig.1. In contrast, the zone B usually corresponds to 
highway of which features are relatively the lowest 
population density, highest speed and slowest 
direction change. In general, even though a user 
consistently goes through the same network, for 
instance, the user moves along trajectory TR1 
passing by A-G-H-G-J-K-D in turn, it experiences 
different mobile scenes including cellular networks, 
WLAN and WMAN. Therefore, OCZ can 
differentially tackle different mobile scenes to 
improve prediction accuracy.  

Second, OCZ can well depict vertical handoffs 
and resource allocation among different wireless 
networks. From the perspective of radio resource 
management, all of resources in heterogeneous 
wireless networks can be partitioned according to 
OCZs while resources in each OCZ can be shared 
by all different networks that compose the OCZ. 
Therefore, as long as there are preserved resources 
in an OCZ for all cross-OCZ users, handoff 
dropping can be avoided.  

Third, since mobile terminals tend to be multi-
mode [13] with the fast development of software 
radio, their favorable sensing to electromagnetic 
environment is the solid foundation of deploying 
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OCZ. The electromagnetic environment above 
mentioned means the type and number of networks 
that user terminals access. When user terminal 
senses electromagnetic environment changed, the 
user terminal is entering a new OCZ, and then it 
sends the entrance time and the IDs of the cells that 
compose current OCZ to network management 
center for the information being recorded.  

3.2 Markov Model Based Mobility Prediction 
Algorithm  

 
Markov model based mobility prediction 

algorithm is simple and easily-implemented only 
without time information, resulting in low 
prediction accuracy. The basic idea of Markov 
model based algorithm is recounted as follows. 
Symbol sequence 1 2( , , )na a a  serves as history 
data and the next symbol can be predicted 
according to the recent k  symbols 

1( , )n k na a− + ， [11]. Given history data 

1 2 nH a a a=  , 1( , ) i i jH i j a a a+=   represents a 

subset of H , where any i  and j  satisfy 
1 i j n≤ ≤ ≤ . Y  is a random variable, and 

1( , ) i i jY i j YY Y+=   stands for a sequence 

comprised of variables 1, ,i i jY Y Y+  . Define 

( 1, )c H n k n= − +  as the context and A  as a 
subset of all of possible symbols. If Y  follows k -
order steady-state Markov distribution, for all 
a A∈  and { }1, ,i n k∈ − , its distribution 
satisfies 

1

1

1

Pr( (1, ) )

Pr( ( 1, ) )

Pr( ( 1, ) )

n

n

i k

Y a Y n H

Y a Y n k n c

Y a Y i i k c

+

+

+ +

= =

= = − + =

= = + + =

             (1) 

where i n≠  and 1i k≥ − .  

For any time t , current history information H  
and k  symbols of the context c  can be used to 
estimate the following transition probability 

1 1
( , )Pr( ) ( )
( , )n n

N ca HY a H P Y a H
N c H+ += ≈ = =   (2) 

where ( , )N s s′  means the number of occurrence 
of sub-sequence s′  in sequence s .  

    Markov model based mobility prediction 
algorithm predicts the next best possible symbol as 
follows 

1 1arg max ( ( ))n a A nY P Y a+ ∈ += =           (3) 

3.3 Residence Time In Ocz 
 

To determine the distribution of user’s residence 
time in OCZ is the most important aspect of 
mobility prediction algorithm. As exponential 
distribution is simple and easily-analyzed, existing 
literature is mainly focuses on exponentially 
distributed residence time. In fact, user’s movement 
is highly dynamic and irregular in many cases, 
leading to its residence time does not follow 
exponential distribution [14], and such a hypothesis 
brings about inaccurate prediction.  

Fortunately, phase-type distribution is a highly 
effective stochastic model and can be used to 
approach arbitrary and non-negative variables [15]. 
In this paper, phase-type distribution is used to 
model user’s residence time in OCZ, and EM 
(Expectation Maximization) is used to estimate the 
parameters of phase-type distribution. The 
introduction to phase-type distribution is omitted 
here and can be referred to some mathematics 
manuals.  

PHASE-TYPE DISTRIBUTION 
 

Consider a continuous-time Markov 
process with 1m +  states, where 1m ≥ , such that 
the states 1, ,m  are transient states and state 0 is 
an absorbing state. Further, let the process have an 
initial probability of starting in any of the 1m +  
phases given by the probability vector 0( , )α α , 
where 0α  is a scalar and π  is a 1 m×  vector.  

The phase-type distribution is the distribution of 
time from the above process's starting until 
absorption in the absorbing state. This process can 
be written in the form of a transition rate matrix,  

0

0
Q  

=  
 

0
t T

                         (4) 

where T  is a m m×  matrix and 0 = −t T1 . 
Here 1  represents a 1m ×  vector with every 
element being 1.  

The distribution of time X  until the process 
reaches the absorbing state is said to be phase-type 
distributed and is denoted PH( π , T ). The 
distribution function of X  is given by  

( ) 1 exp( )F x x= − π T 1                  (5) 

and the probability density function (PDF) is 
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given by  
0( ) exp( )f x x= π T t                    (6) 

for all 0x > , where exp( · ) is the matrix 
exponential. It is usually assumed the probability of 
process starting in the absorbing state is zero (i.e. 

0 0π = ). The moments of the distribution function 
are given by  

[ ] ( 1) !n n nE X n −= − πT 1                 (7) 

PARAMETER ESTIMATION FOR PHASE-TYPE 
DISTRIBUTION 
 

The history data for parameter estimation of 
phase-type distribution can be gotten from 
simulation results or real trace data, including the 
ID of OCZ that user enters and the residence time 
in the OCZ. Presently, some literature pays 
attention to parameter estimation of phase-type 
distribution [16,17], where EM estimation is the 
most effective approach. The main idea of EM 
approach will be illustrated below.  

EM algorithm is an iterative method for finding 
maximum likelihood or maximum a posteriori 
(MAP) estimates of parameters in statistical models, 
where the model depends on unobserved latent 
variables [18]. The EM iteration alternates between 
performing an expectation step (E-step), which 
creates a function for the expectation of the log-
likelihood evaluated using the current estimate for 
the parameters, and a maximization step (M-step), 
which computes parameters maximizing the 
expected log-likelihood found on the E-step. These 
parameter-estimates are then used to determine the 
distribution of the latent variables in the next E-step.  

Suppose ( )Y u X=  is observed with the PDF 
gγ , where u  is a many-to-one mapping, X  is 

large numbers of unobserved results and fγ  is the 

PDF of X . In the ( 1)-thn +  step of EM algorithm, 

n+1γ  which maximizes the following formula 
should be solved, i.e.  

E log ( )
n

f u X yγ γγ  → =               (8) 

where y  is the observed data, nγ  is the estimate 
after n  iterations.  

Let E-step and M-step denote the solving 
conditional expectation and maximization 
likelihood. In EM algorithm, the complete data set 

for solving the maximum likelihood estimate of 
( , )π T  from the observed results is given by  

[1] [1] [ ] [ ]
1 0 [1] 1 0 [ ] 1( , , ) ( , , )n n

n m m ny y s s s s− −= + + + +y =     (9) 

The probability density function of x  is 

{ }
1 1 1 0

1

( ; , ) exp iji

p p p p
NB

ii i ij
i i i j

j

f t Z t
= = = =

≠

= ∏ ∏ ∏∏x T ππ  (10) 

where iB  the number of Markov process starting 
from state i ; iZ  is the total time in state i ; ijN  the 
total number from state i  to state j . The 
expressions of iB , iZ  and ijN  are presented below  

{ }[ ]

1
1, , )v

o

p

i I i
v

B i p
=

=

=        ( =∑1           (11) 

{ }

[ ]

[ ]

1
[ ]

1 0

1, , )v
k

m vn
v

i kI i
v k

Z S i p
−

=
= =

=        ( =∑ ∏ 1    (12) 

{ }

[ ]

[ ] [ ]
1

1

,
1 0

( , , 1, , )v v
k k

m vn

ij I i I j
v k

N i j i j p
+

−

= =
= =

=   ≠  =∑ ∑ 1  (13) 

The probability density function ( ; , )f x π T  is a 
multi-parameter exponential family with sufficient 
statistics being expressed  

( ) ( ) ( )( )1, , 1, , 1, , , 0, , ,
, ,i i iji p i p i p j p i j

B Z N
= = = = ≠

=S
   

(14) 

The maximum likelihood estimate of x  is given 
by  



0

1

( , 1, , )
( )

iji
ij

i
p

i
i ii i ij

ji

NB
t

n Z
i j p

N
t t t t

Z

π

=


=     =    

 =
 =     = − +

∑




   

     (15) 

When iteration is performed, E-step is the start of 
every iteration. E-step computes the conditional 
expectation of the sufficient statistics S  according 
to the observed y  and the estimate ( )( , ) kπ T  of the 
current ( , )π T . Then, M-step maximizes likelihood 
estimate of (10) using above conditional 
expectation of S  as the observed data of (14), 
specifically, the new estimate ( 1)( , ) k +π T in (15) can 
be derived from the conditional expectation of S . 

4. ALGORITHM SIMULATION AND 
ANALYSES 

 
To validate the proposed mobility prediction 

algorithm, mobile history data in real heterogeneous 
wireless networks should be provided, but so far, 
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accessible mobile history traces data has been only 
restricted to homogeneous networks without traces 
data for heterogeneous networks, for example, the 
trace data for cellular networks collected by 
Stanford University and the trace data for WLAN 
from CRAWDAD (Community Resource for 
Archiving Wireless Data at Dartmouth). Therefore, 
the required mobile history data should be gotten 
from modeling and simulation. The simulation 
scene of heterogeneous wireless networks is the 
same as shown in Fig.1, including 7 WCDMA cells, 
1 WiMax cell and 20 WLAN cells. The cell 
radiuses of above three wireless networks are 
1500m, 750m and 60m, respectively. WLAN cells 
are randomly distributed within the coverage of 7 
WCDMA cells. A Wrap-around technique 
is adopted to form cell edge region.  

To model user’s mobility in different scene, the 
2-D Gauss-Markov model [19] is introduced of 
which the expressions are given below  

2
1 1(1 ) (1 )

nn v n v v xs s s sα α α− −= + − + −    (16) 

2
1 1(1 ) (1 )

nn v n v v xd d d dα α α− −= + − + −   (17) 

where ns  is the speed at time n ; nd  represents the 
direction at time n ; vα  stands for memory factor 

( 0 1vα≤ ≤ ) ; s  and d  are the means of speed 
and direction, respectively; -1nxs  and -1nxd  are 
Gaussian distributed random variables.  

This model can simulate various types of mobile 
scenes between random-walking and constant flow 
movement by adjusting memory factor vα . The 
larger vα  is, the lower the randomicity is. 1vα =  
means constant flow movement, while 0vα =  
stands for random-walking. Therefore, different 
mobile characteristics can be depicted by means of 
different vα . In addition, in order to describe 
different mobile characteristics of different users in 
the same zone, vα  is randomly selected in a 
specified interval for every simulation scene. These 
intervals are [0.7 1] for OCZ of type 1, [0.4 0.7] for 
OCZ of type 2 and [0 0.4] for OCZ of type 3, 
respectively.  

Though the proposed joint time and location 
mobility prediction algorithm is independent of the 
information of cell boundary, the information is 
necessary for getting mobile history data. In real 
wireless environment, the size and the shape of cell 
is dynamic and affected by many factors, such as 

traffic load distribution. In contrast, this paper 
assumes the cell is hexagonal mainly because the 
focus of this paper is on the ID and residence time 
of OCZ where user is located. As a result, the 
assumption about the shape and the size of cell does 
not influence validation of the proposed algorithm.  

Fig. 2 shows the transition probability that a user 
transits from OCZ i  to OCZ A , OCZ C  and OCZ F . 
From Fig.2, it is can be seen that the transition 
probability predicted by proposed algorithm is 
related to time unlike Markov model based 
prediction algorithm with constant probability. 
Specifically, the former is increasing and 
approaching the probability that the latter achieves 
over time. When t → ∞ , they are equal to each 
other. This is mainly because Markov model based 
mobility prediction algorithm does not include time 
information that it considers all transitions as the 
same for all time, leading to low prediction 
accuracy.  
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Figure 2. Transition Probabilities vs. Time 

An accuracy factor (AF) is introduced to 
precisely evaluate the prediction performances of 
two algorithms. AF is defined as 

1

M

m
m

p M

δ
φ ==

∑
                        (18) 

where mδ  is successful prediction indicator; M  
is the number of predictions.  

     If the predicted OCZ and the predicted time 
that transition happens are right, mδ  is set to 1; 
otherwise, mδ  is set to 0. When it comes to ‘right’ 
time, if the difference between the predicted time 
and the real time is less than a certain T∆ , the 
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predicted time can be called right. In this paper, the 
prediction complexity and interval are taken into 
consideration to set T∆ = 1min.  

Fig. 3 and Fig.4 demonstrate the average 
accuracy distribution of the proposed algorithm and 
the Markov model based algorithm. It is obvious 
from the results that the number of users in the 
interval of high average prediction accuracy is more 
than the Markov model based algorithm. 
Furthermore, the average prediction accuracy for all 
users of the proposed algorithm is 46.7% from 
Fig.3, while the same metric of the Markov model 
based algorithm is only 28.2% from Fig.4. 
Compared with the latter, the proposed mobility 
prediction algorithm increases accuracy by 65.6%.   
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Figure 3. Distribution of the Average Prediction 

Accuracy of Joint Time Location Mobility Prediction 
Algorithm 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

Average prediction accuracy

N
um

be
r o

f u
se

rs

 
Figure 4. Distribution of the Average Prediction 

Accuracy of  Markov Model Based Mobility Prediction 
Algorithm 

 

 

5. CONCLUSIONS 
 

Mobility prediction is a crucial aspect of mobility 
management and QoS. This paper analyzes the 
difference between heterogeneous and 
homogeneous wireless networks and proposes 
overlay coverage zone (OCZ) to depict user’s 
location in heterogeneous wireless networks. In 
view of the Markov model based mobility 
prediction algorithm suffering from low time 
prediction accuracy, phase-type distribution is 
introduced to model residence time in OCZ. Based 
both on residence time and OCZ (location), a novel 
joint time and location mobility prediction 
algorithm is proposed. Simulation results show that, 
compared with the classical Markov model based 
mobility prediction algorithm, the proposed 
algorithm has higher prediction accuracy.  
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