
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

486

TEST EXECUTION CONTROL WITH TIMING
CONSTRAINTS FOR TESTING DISTRIBUTED SYSTEMS

SALMA AZZOUZI, MOHAMMED BENATTOU, HASSAN CHARAF
Laboratory of Research in Computer Science and Telecommunication

Faculty of Science Ibn Tofail University
Kenitra, Morocco

ABSTRACT

The development of distributed testing frameworks is more complex, where the implementation process
must consider the mechanisms and functions required to support interaction as long as the communication
and the coordination between distributed testing components. The typical reactions of such systems are the
generation of errors ‘set: time outs, locks, observability, controllability and synchronization problems. The
first contribution in this study present a way to control the test execution of distributed testing components
by introducing the synchronization messages and we show how the problems of control and
synchronization can be solved by the same process. In other side, we show that in practice the distributed
testing process must not only check if the exchanged events have been observed, but also the dates when
these events have been occurred and then the distributed testing frameworks must consider some timing
constraints.

Keywords: Distributed testing; Controllability, Observability; Synchronization; Timing Constraints.

1. INTRODUCTION

 The principle of testing is to apply input events
to the implementation under test and compare the
observed output events with expected results.
Conformance testing may be seen as mean to
execute an IUT1 by carrying out test cases, in order
to observe whether the behavior of the
implementation is conforming to its specification.
In the context of distributed systems the IUT may
be viewed as a system providing standardized
interfaces for interacting with other systems. Based
on testing of OSI communicating systems,
conformance of an open distributed system can be
assessed by attaching a related tester at each
provided interface [1]. However, many problems
influencing faults detection arise during the
conformance testing process if there is no
coordination between distributed testers. In fact, the
use of multiple testers introduces the possibility of
coordination problems amongst remote testers ([1,
2, 3, 4, 5]). These potential problems are known as
controllability and observability fault detections
which are fundamental features of conformance
distributed testing. In this context, most related
research works propose to coordinate the distributed

1 Implementation Under Test

testers by using a communication service parallel to
the IUT through a multicast channel.

Another problem is due to the implementation of
these communication channels. In fact, many time-
outs problems arise during the test execution which
influences significantly the fault detection. These
problems called Synchronization issues has been
resolved in [2] by combining mobile agent
technology and Multi-Agent System. However, our
preliminary experience in the implementation of the
mobile agent solution shows that the movements of
the mobile agents are complex to manage. So, our
first contribution in this article is to propose another
way to avoid these problems by introducing the
synchronization message in the local test sequences
LTS (the LTS determine when a tester can apply its
own inputs and whether an output observed is
received in response to the correct input). In first
sight, it appears that the solution will increase the
messages communicated between different
components of the test architecture. Conversely,
we proof in this paper how these Synchronization
messages can resolve both of synchronization and
coordination problems and then eliminate
coordination messages.

In other side, the introduction of coordination
messages leads each tester to determine when to
apply a particular input to the IUT and whether a
correct output from the IUT is generated in

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

487

response to a specific input, respectively. The
distributed testing process must not only check if
the output events have been observed, but also the
dates when these events have been occurred
especially if the system has to respect some timing
constraints. In this context, two different time
constraints must be considered: transfer time i.e. the
time required for a coordination message to travel
from a tester to another, and reaction time, i.e. the
time elapsed between the reception of an input by
the IUT and the sending of the corresponding
output by the IUT. Many academic researches [2, 1,
3] made a simplifying assumption that the time
required for a transfer time, is greater than the
reaction time of the IUT. [6, 7] showed that
controllability and observability problems are
indeed resolved if and only if the test system
observes those timing constraints. In this context,
we determine in [29] timing conditions that
guarantee communication between components of
distributed testing architecture and we propose our
Multi-Agent architecture for testing these systems.

The second contribution in this paper presents
some technical issues for testing distributed
frameworks with timing constraints. The proposed
approach consists firstly on introducing a new
architecture taking into account the delay of
messages exchanged between testers and the IUT,
and between testers. The main based idea of the
proposed work is to develop an algorithm for
generating Timing Local Test Sequences for each
tester guarantying to avoid problems of
coordination, observation and synchronization.

The paper is structured as follows: Section 2
describes the architecture and some modeling
concepts of distributed testing application and
presents the synchronization problems arisen in
distributed testing execution. section 3 raises and
solves synchronization and controllability problems
in distributed testing implementation. Section 4 is
dedicated to introduce the architecture and
modeling concepts of testing distributed
applications with timing constraints. Section 5
presents the algorithm allowing the generation of
timing local test sequences, and finally section 6
gives some conclusions and identifies future works.

2. DISTRIBUTED TESTING

The principle testing is to apply input events to
the IUT and compare the observed outputs with
expected results. A set of input events and planned
outputs is commonly called a test case and it is
generated from the specification of the IUT.
Conformance testing may be seen as mean to

execute an IUT by carrying out test cases, in order
to observe whether the behavior of the
implementation is conforming to its specification.

A. ARCHITECTURE

The basic idea of distributed testing architecture
is to coordinate parallel testers called PTCs
(Parallel Test Components) using a communication
service in conjunction with the IUT. Each tester
interacts with the IUT through a port PCO2, and
communicates with other testers through a multicast
channel (Fig1).

Fig. 1. Test Architecture

An IUT is the implementation of the distributed
application to test. It can be considered as a "black-
box", its behavior is known only by interactions
through its interfaces with the environment or other
systems. Each tester sends some stimulus to the
IUT via their attached interfaces called PCOs
(Points of Control and Observations) and from
which it observes the output IUT reactions. The
external behavior of the IUT is observable via
another interface type called IAP (Implementation
Access Points). The difference between the PCO
and the IAP is that PCOs are the logical points
where communications are made, but the IAPs are
the physical access points of the IUT. In order to
control the test execution, PTCs exchange messages
that encapsulate the information avoiding
controllability and observability problems.

B. TEST PROCEDURE

To approach the testing process in a formal way,
the specification and the IUT must be modeled
using the same concepts. The specification of the
behavior of a distributed system is described by an
automaton with n-port [8] (FSM Finite State

2 Point of Control and Observation

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

488

Machine) defining inputs and the results expected
for each PCO.

We denote Σk the input alphabet of the port “k”
(PCO number k) and Γk the output alphabet of the
port k. Fig.2 gives an example of 3p-FSM with Q =
{q0, q1, q2}, q0 initial state, Σ1 = {a1 ,a2}, Σ2 = {b1},
Σ3 = {c1}, and Γ1 = {x1, x2 }, Γ2 = { y1,y2}, Γ3 =
{z1}.

Fig. 2. An Example Of 3p-FSM

A test sequence of np-FSM is a sequence in the
form:!X1? Y1!X 2

 ? Y2…! X t
 ?Yt where for i = 1,..,t,

X i

 belongs to Σ = Σ1U … U Σn with Σi ∩ Σj= ∅ for

i≠ j and Yi is a subset of 1
n

k=∪ Γk such that , for
each port k, |Yi ∩Γk| ≤ 1, i.e Yi contains at most one
symbol from the output alphabet of each port of A.
• !X i : Denotes sending the message Xi to IUT.
• ?Yi : Denotes the reception of messages

belonging to the Yi from the IUT
An example of global test sequence (GTS)

deduced from the 3p-FSM given in Fig.2 is:

!a1?{x1.y1}!b 1?{x2.y2}!c 1?{z1} (1)

Generally, test sequences are generated from the
specification of the IUT and characterized by fault
coverage. Several methods exist for generating test
sequence from FSM specification. They are mainly
used for detecting two basic types of faults output
faults and transfer faults [9].

The work [4] allows generating local test
sequences for each tester, and thus the behavior of
the test application in each PCO is well defined. In
fact, each tester executes its local test sequence
(LTS), built from the global test sequence of the
IUT. The generated LTS encapsulate the
information that allows controlling the test
execution. Indeed, many problems influencing
faults detection during the conformance testing
process arises if there is no coordination between
distributed testers. These potential problems are
known as controllability and observability fault
detections which are fundamental features of
conformance distributed testing.

 The controllability may be defined as the
capability of the test system to realize input events
at corresponding PCO in a given order, and
observability may be defined as the capability of the
test system to determine the output events and the
order in which they take place at corresponding
PCO [4].

 To solve such problems, authors in [4] propose
an algorithm to generate Local Test Sequences
(LTS) from Global Test Sequence (GTS). The
following LTS are the results given by applying the
proposed algorithm to test sequence (1):

 W1= !a1
 ?x1?x2?O3

 W2= ?y1
 !b1?y2!C

3 (2)
 W3= ?C2!O

1!c1?z1

Where:
• !x denote sending of message x to IUT
• ?y denote receiving of message y from the IUT
• !Ck denote sending coordination message to

tester k and ?Ck receiving coordination
message from tester k.

• !Ok denote sending observation message to
tester k and ?Ok receiving observation
message from tester k.

In distributed testing method, each tester

executes its LTS as follows: for each message “xi”
sent to the IUT or a coordination message, the tester
supports the process of sending this message. If “xi”
is an expected message from the IUT or a
coordination message, the tester waits for this
message. If no message is received, or if the
received message is not expected, the tester returns
a verdict Fail (fail). If the tester reaches the end of
its local test sequence, then it gives a verdict
Accept (accepted). Thus, if all testers return a
verdict Accept, then the test system ends the test
with a global verdict Accept.

C. SYNCHRONIZATION PROBLEMS

In the distributed test, each tester (PTC) executes
its local test sequence produced from the global test
sequence of the IUT. Lets the execution of the each
local test sequence (2) W1, W2 and W3 as follows:

The execution of local test sequences (2) must
give the result shown in Fig.3(a) but the execution
of our prototype provides an incorrect result given
in Fig.3 (b).

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

489

Fig. 3. Example Of The Synchronization Problem

Indeed, in the last diagram Fig.3 (b) the second
tester sends the message “b2“ to the IUT before the
first tester receives the message “x1” from the IUT.

So, the execution of local testing is not conform
with the specification gives in (1), where the
message “b2“ must be sent only if all messages due
to the sending of “a1“by the tester-1 are received by
the IUT.

The solution [10] proposes to integrate the
mobile agent technology for checking the well
receipt of expected messages on different (PCO).
However, the management of the mobile agent
movements makes the testing process more
complex to implement. We think that the
deployment of mobile agent technology in
distributed testing must make some mechanisms
where the mobility is more restricted.

To this end, we propose to integrate some
synchronization messages to build our local test
sequences from the global sequences.

3. RELATED WORKS

Recently, the rapid growth of distributed systems
has led to made specific reflections about its
coordination. Many frameworks suggest several key
issues that will contribute to the success of open
distributed systems [11, 12,13,14] and many works
has been made to avoid the coordination problems
previously explained of testing such frameworks.

In this context, the author in [6] shows that
controllability and observability are indeed resolved
if and only if the test system respects some timing
constraints and he proposes a centralized
architecture for distributed testing. In this context,
we determine in [29] timing conditions that
guarantee communication between components of

distributed testing architecture. Another work [15]
shows that the use of coordination messages can
introduce delays and this can cause problems
especially if there are timing constraints.

The work [16] proposes a new method to
generate a test sequence using multiple unique
input/output (UIO) sequences. The method is
essentially guided by the way of minimizing the use
of external coordination messages and input/output
operations.

In [17], the authors suggest to build a test or
checking sequence from the specification of the
system under test such that it is free from these
problems without requiring the use of external
coordination messages. In this context, they propose
some algorithms for generating subsequences that
eliminate the need for external coordination
messages.

The basic idea in [18], [19], [20] is to build a test
sequence that causes no coordination problems
during its application in a distributed test
architecture. For some specifications, such test
sequence exists where the coordination is achieved
via their interactions with the IUT. However, it is
not always true as detailed in [21].

The emphasis of recent works is to minimize the
use of external message exchanges among testers
[20] or to identify conditions on a given FSM under
which the problems in distributed testing can be
overcome without using external coordination
messages [22, 23].

The work presented in [24] proposes fault
detection architecture through web services based
on passive testing. They propose an observer
(mobile agent) that can be invoked by interested
parties when developed and published as a web
service. In their model, they don’t integrate the
concept of Multi-Agent Systems.

 Finally, we suggest in a previous article [10] to
solve the synchronization problem by introducing
architecture combining both concepts of Mobile
Agent and MAS (multi-agent system).

Our approach in this paper consists on
introducing a new architecture allowing to avoid the
synchronization problems by considering the delay
of messages exchanged between: (i) testers and the
IUT and (ii) between testers.

4. TEST CONTROL

The idea of introducing synchronization
messages in the local test sequence appears, at the

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

490

first sight, that the solution will increase the
messages communicated between different
components of the test architecture, but they will
eliminate coordination messages. We proof, in this
section, how the addition of synchronization
messages solves both problems of synchronization
and coordination:

A. SYNCHRONIZATION MODEL

 We will introduce in this section, some
synchronization messages in the Local Test
Sequences as shown in Fig4. In fact, all the testers
receiving a message belonging to yi (set of
messages received due to sending xi to the IUT), are
going to send a synchronization message to the
tester that will send the message xi+1.

Fig. 4. Synchronization Message Introduced In LTS To
Resolve Synchronization Problem

Example: While sending “!a1” by the tester1, a
message “?x1”(resp. “?y1”.) will be received by the
tester1 (resp. tester2). Then, for sending “!b2” by
the tester2, it will be sure that the previous
messages are well received by the concerned
testers.

The problem is in the verification of the reception
of “?x1” in the tester1. To this end, once the
message “?x1” is received by tester1, it send a
synchronization message to tester2 to inform this
reception.

 The introduction of synchronization messages
means that all testers receiving a message belonging
to yi, will send a synchronization message to the
tester “h” sending xi+1.

Let k ⇐Port(!xi) be the port of the tester sending
xi and h ⇐ Port(!xi+1) the port of the one sending
xi+1 and let yi (resp yi+1) a set of outputs sent by the
IUT in response to the reception of the input xi
(resp xi+1).

The function Port gives the port corresponding to
a given message and we will define the function
Ports as: Ports(y) ={k/∃a ∈y : k=Port(a))} for a set
y of messages.

 Definition1: we define testers’ senders
Synchronization messages to tester “h” after
sending !xi by:
 Singleton {k}, if y i = ∅;
 SendersSi =

 Ports(yi) , otherwise

We define the set Si= {S1,...,Sk} with k=1... N-1,
as the set containing all the Synchronization
messages sent by SenderS

i.

 The synchronization messages, such as
previously defined, introduced in LTS (1) gives the
new LTS given in (3):

 W1= !a1

 ?x1!S
2?x2!S

3?C3?S3?O3

 W2= ?y1?S1
 !b1?y2!S3!C3 (3)

W3= ?C2!O1?S1?S2!c1?z1

We deduce from the above result that the number
of message communicated between testers is
increase. Another interesting remark can be
deduced from the same result, that each control
message is accompanied by a synchronization
message (the messages of control and
synchronization are marked in bold). Intuitively this
means that the coordination problem is embedded
with the synchronization one. To proof this, we
define formally, in the next section, the notion of
control.

B. DEMONSTRATION

 In this section we show that it is possible to
reduce the number of messages in LTS (3) by
removing all coordination messages. Notice that
control problem may arise when the tester sending
a message xi+1 is neither the one sending xi, nor one
of those receiving a message belonging to yi , we
add then a coordination message (!C) to the
sequence of a tester “l” receiving a message
belonging to yi and (?C) to a tester “h” that send the
message xi+1 . Then formally, we have:

Definition2: the port sender the coordination

message to tester “h” after sending !xi, is defined
by:

 We denote Senders= Ports(yi)\Ports(yi+1) and if
h ∉ Ports(yi)∪{k} then:
 k, if yi = ∅;
SenderCi = l є Senders, if Senders ≠ Ø and yi ≠ ∅;
 l є Ports(yi), if Senders = Ø and yi ≠ ∅;

 We denote Ci the Coordination message sent
by SenderCi.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

Proposition: let be C={C1, C2,….. Cl} , l=1..t the
set of all Coordination messages sent at the end of
the testing process and S = S1 U S2U...USp, , l=1..t
the set of all Synchronization messages sent after
reaching the end of the test, then we have :

 C ⊂ S (Eq 1)

Proof: The Analyze given from the definition1
show that if yi ≠∅ then SenderCi є Ports(yi) and
since Ports(yi) ⊂ SendersSi (definition 2) then
therefore in this case(yi ≠∅) we have Ci є Si
(because SenderCi є SendersSi) . Moreover since
SenderCi=k= SendersSi , if yi =∅ , we claim that
after each sending !xi

 belongs to Σ, with i=1,..,t.

and whatever yi :
SenderCi є SendersSi (a)

Therefore
 Ci є Si (b)

Indeed, for any Ci є C we have by (b) Ci є Si
and Si ⊂ S .Thus, C ⊂ S and we are done.

The proposition above implies that the notion of
coordination is combined with synchronization
notion. Thus, Synchronization messages embedded
in the local test sequences solve both problems of
coordination and synchronization.

In this context, we propose in [30] an algorithm
that generates Synchronized local test sequences
related to n testers from a Global test sequence GTS
of the IUT. Applying Algorithm [30] to the Global
Test Sequence (1), we get the following sequences:

W1= !a1
 ?x1!S

2?x2!S
3?O3

W2= ?y1?S1 !b1?y2!S
3 (4)

W3= !O1?S1?S2!c1?z1

By removing all controllability messages from

the local test sequences (3), we will obtain the same
LTS (4) generated by Algorithm [30].

C. TIME PROBLEM

The introduction of Synchronisation and
Observation messages in the local test sequences
leads each tester to determine when to apply a
particular input to the IUT and whether a correct
output from the IUT is generated in response to a
specific input, respectively. However, the
distributed testing process must not only checks if
the output events have been observed, but also the
dates when these events have been occurred
especially if the system has to respect some timing
constraints. For example, the execution of the first
fragment of the GTS given in (1):
!a1?{x1.y1}!b 1?{x2.y2} , the tester-1 begins by

sending a message “!a1” to the IUT. However, the
tester-2 can’t send the message “!b1“ and must wait
until receiving the message “?y1“ from the IUT and
the message “?x1“ must be received by the tester-1.

 To do this, we integrate Synchronization
message for the verification of the reception of
expected messages on different (PCO).

Now, the principal question that can be studied
and discussed is how much time the tester-2 and
tester-1 can wait for receiving “?y1” and “?x1”
respectively, so that the tester-2 can send “!b2” to
the IUT?

5. TIME MODEL

As we have shown above the distributed testing
process must not only checks if the output events
have been observed, but also the dates when these
events have been occurred. This section is dedicated
to extend results from testing distributed system to
deal with testing an implementation under test with
some timing constraints.

A. ARCHITECTURE

The new proposed architecture will operate in an
environment with some timing constraints. In this
context, it is not sufficient to check if the IUT
produces the correct outputs “?yi” but it should also
check if the timings of outputs are corrects.
Moreover, the timing of these outputs “?yi” depends
on the timing of the inputs ”!xi”. Indeed, any
message sending by a tester to the IUT must be
blocked as long as all output events, caused by the
last sending message, have been received by all
related testers. In other words, the date of the
sending inputs “!xi+1” to IUT depends on the dates
of the receiving the outputs “?yi” by related testers.

Fig. 5. Test Architecture Of Timing Model

In order to analyze all these timing constraints,
we consider that each tester has a clock that
compute the delay of messages exchanged between
a tester and the IUT (“!xi” and “?yi”) and between

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

testers(“!/? S/O”). We add then, a set of clocks to
model the temporal behavior of the test process and
by the way, each port of the distributed system has
a corresponding local tester with a local clock.

However, the clocks synchronization among
different testers is one of the difficulties to
overcome especially when the temporal constraints
must be considered in the testing process.

In the aim to check timings constraints in
distributed testing correctly, all testers’ clocks
should be synchronized. In other words, all testers
must have the same time reference.

For this purpose, we suggest to deal with the
clock synchronization similarly to IEEE 1588
Precision Time Protocol (PTP). It is a new
synchronization standard with very high accuracy
and particularly proposed for embedded industrial
communication systems. PTP provides a mean for
networked computer systems to agree on a master
clock reference time and a mean for slave clocks to
estimate their offset from master clock time [25].

B. FORMAL MODEL

In this section, we propose a formal model to
specify the temporal behavior of the distributed
testing system. We extend the definition of a timed
automaton with n-port to define timing constraint
for inputs and the expected result at each PCO in
distributed testing model. Timed Automata with n
ports is generalized from Timed Automata [26]. A
set of clocks and Canonical Enabling Conditions
are used to model the temporal behavior of the
system. We introduce below some definitions
related to Timed Automata with n ports.

Definition 1: Timed Automaton with n ports
named as np-TA is defined by A = (Q, q0, Act, X,
Tr) with :
• Q is a finite set of locations;
• q0 ϵ Q is the initial location;
• Act = Σ U Γ

(i)Σ ={ Σ
1, Σ

2,..,Σ

n} where Σi is a finite set of

inputs of port i , Σi ∩ Σj= ∅ for i≠j and i,j =
1,2,…,n and Σ = Σ1U … U Σn

(ii) Γ={Γ1, Γ2,.., Γn} where Γi is a finite set of
outputs of port i, Γi ∩ Γj =∅ for i≠j and i,j =
1,2,…,n and Γ = Γ 1U … U Γn

• X ={x 1,x2,….,xn} is a finite set of clocks
• Tr is a finite set of transitions.

 Definiton 2: The transition is a tuple (q1,γ, σ, r,
q2), where:

• q1,q2 ϵ Q are the source and destination
locations;

• γ ϵ G is the guard, a conjunction of constraints
of the form x~c, where G = {Ʌ x~c | x ϵ X and
c ϵ N and ~ ϵ [<,≤,=,>,≥] } ;

• r ϵ 2x is a set of clocks to reset to zero, called
Rest of Tr;

• σ is the reception of an input x (figured as ?xi)
or sending of an output y (figured as !yj).

Tr ⊂ Q × G × Act × 2X × Q.

We note that the clocks in X are viewed as a
continuous time clock. Continuous time is a real
variable that evolves indefinitely and its derivative
with respect to time is equal to 1[27]. Each clock’s
value can be reset at any instant. A transition Tr can
be executed if and only if the guard is verified
(True) and the clocks in “r” are reset after the
execution of Tr.

The use of the concept of an np-TA as defined
above will make the temporal behavior of the
system to be modeled. The np-TA allows also to
model constraints on delays between events of a
given system. To this end, we introduce a clock “c”
to specify that a delay between two transitions Tr1
and Tr2 will be in the range of T=[Tmin, Tmax].
We define then the reset of Tr1 as {c} and the guard
of Tr2 as c ~T with c ~1Tmin Λ c ~2Tmax and ~1Є
[=,>, ≥] and ~2 Є [<, ≤, =]. As shown in Fig.5, the
new automaton modeling by 3p-TA (b) extends the
3p-FSM (a) by adding new states and integrating
temporal constraints.

Fig. 6. Example Of A Specification Modeling By 3p-TA

Literally, this new specification requires that for
the transition !a1?{x1.y1} of (Fig.5.a) if we send

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

“a” 1 on port 1 then “x1” must be received on port 1
between T1min and T1max and “y2” on port 2
between T2min and T2max (Fig.5.b) otherwise the
behavior is not specified (in our context , this case
cannot be considered) . We remind that ci ~ Ti

means ci ~1Timin Λ ci ~2Timax with ~1 Є [=,>, ≥]
and ~2 Є [<, ≤, =].

C. TIMING CONSTRAINTS

This subsection presents some characteristics of
the proposed architecture as well as the time
consumed when messages are exchanged between
the components of our distributed test system. In
the new architecture (Fig 4), temporal constraints
should be satisfied. As mentioned before, the
correctness of testing distributed systems depends
not only on the logical result of a computation, but
also on the time when the result was delivered.

 For this purpose, we define two types of
temporal constraints to be checked in distributed
test approach: timing constraints on inter-port and
intra-port level respectively. The intra-port timing
constraints occur when communication is
established between a tester and the IUT, it could be
the reaction time required for a tester receiving a
message belonging to “yi” in response to the
reception of the input “xi” by the IUT. And thus, the
inter-port timing constraints may be the transfer
time required when testers communicate on
different ports.

D. INTRA-PORT TIMING CONSTRAINTS

In this subsection we consider only different
Intra-port timing constraints when communication
is established between tester and IUT. Fig.6 shown
how the first part of the GTS (1) fgts = !a1?{x1.y1}
can be executed and how the time required to
execute each message in fgts can be treated. c1 and
c2 clocks are used to compute the reaction time of
“x1” and “y1”.

Fig. 7. Transfer Time Required For Receiving Outputs

Where the different computing times used in the
above figure are defined as follow:

1- TTBIT: Transfer time between the IUT and the
Tester is the time separating: (i) the instant
when a Message M is sent by the IUT (resp. the
tester) and (ii) the instant when M is received
by the Tester (resp. IUT).

2- Tiut: the reaction time of the IUT is an upper
bound of the time separating : (i) any instant
when an event e is received by the IUT and (ii)
the instant when the IUT has terminated to
send all the outputs (if any) in response to the
reception of e. We emphasize the word “all”
because the definition includes possible
unexpected outputs (in the case of a non-
conformant IUT) [6,7].

3- Time Out is the waiting time that a tester can
wait for receiving a message. In case where this
time is elapsed the test system should return
Failed.

4- Master Clock provides the reference time for
all clocks in the testing system.

Therefore, as shown in Fig.6,Intra-port timing
constraints can be presented as follows:

• If the message is a sending message “!xi”, then
there is no time constraint to verify, the
message will be sent and we initialize all
clocks of testers that should receive messages
due to this sent ?(yi).

• If the message is a reception ?a (a є yi): The
guard (denoted ζ1) must checks that the
reception time c measured by the clockport(a) is

TTBIT (1)+ Tiut +TTBIT (2) <= c <= Time Out
(5)

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

(a) TTBIT (1) denote the transfer time
between the tester sending “!Xi” and the IUT.

(b) Tiut denote the reaction time of the IUT.
(c) TTBIT (2) denote the transfer time

between IUT and the tester receiving “?a” that
be considered as the same time TTBIT (1)

Formally c verify ζ1 (denoted c |= ζ1) when:
 c |= ζ1 => c~Tc => c ~1Tcmin Λ c ~2Tcmax

with ~1Є [=,>,≥] and ~2 Є [<,≤=] and :
Tcmin =2* TTBIT + Tiut (6)

 Tcmax=Time Out (7)

E. A.INTER-PORT TIMING CONSTRAINTS

In the IUT, Testers exchange Coordination and

Observability messages. In this context, we
consider two following cases:

• If tester-i sends a message “!Cj “or “ !O j “ to
tester-j : There is no constraint time to verify,
the message is sent and we initialize all clock
clocki of the testers that will receive this
message.

• If tester-j receives the message “?Ci” or “?Oi “
from tester-i:The guard (denoted ζ2) must
check if the time c quantified by the clocki is
as:

 TTBTT <= c =< Time Out (8)

TTBTT is the transfer time between tester-i and
Tester-j. TTBTT is defined by the time separating : (i)
the instant when a “O” or “S” (Observation
/Synchronization message) is sent by the tester and
(ii) the instant when “O” or “S” is received by
another Tester. Formally c verify ζ2 (denoted c |=
ζ2) when:

 c |= ζ2 => c~Tc => c ~1Tcmin Λ c ~2Tcmax
with ~1Є [=,>,≥] and ~2 Є [<,≤=] and :

 Tcmin = TTBTT (9)
 Tcmax=Time Out (10)

F. B.TIMED TEST SEQUENCE

GENERATION

In distributed test method, each tester executes its
local test sequence generated from the complete test
sequence. Generally test sequences are generated
from the IUT specification and characterized by
their faults coverage (input faults and output faults).
As we have show above, the testing process can
avoid the synchronization problems by considering
the delay of messages exchanged between testers
and the IUT and between testers. We have extended
the concept of automaton testing specification to

automaton with temporal constraint. In this section
we show how we can define the new form of
complete test sequences and how the local test
sequences could be generated within timing
constraints imposed by the new specification.

G. TIMED GLOBAL TEST SEQUENCE TGTS

A Timed global test sequence (TGTS) is a test
sequence of an np-TA which corresponds to the
sequence of transitions: Tr!x1.Tr?y1.Tr!x2.Tr?y2…..
Tr!xt .T?yt where :

• Tr!xi is a transition of sending an output “xi” in
port-k, we denote : <!x,Reseti> . Clocks which
will compute the transfer time for each
message received in response to this sent are
initialized in Reserti.

• Tr?yi represents the outputs sent in the different
ports (1,2,….j), with 1<=j<=n in response to
the reception of the input “xi” by the IUT and it
has the form:
{<?h1,guard1,Reset1>,<?h2,guard2,Reset2>….,<
?hj,guardj,Resetj>}.
(i) Each guardi defines the timing constraint
on the reception of “?hi“.
(ii) Reseti contains the clock of the port
receiving “hi” to be initialized after this
transition.

An example of TGTS of 3p-TA (Fig.5.b) is
defined by:

• Tr!a1 =(!a1,{c1,c2}) ;
• Tr?y1=?{(x1,c1|= ζ1 ,{c1}).(y1, c2|= ζ1,{c2})};
• Tr!b1 =(!b1,{c1,c2});
• Tr?y2=?{(x2, c1|= ζ1,{c1}).(y2, c2|= ζ1,{ c2})};
• Tr!c1 =(!c1,{c3}) ;
• Tr?y3=?{(z3, c1|= ζ1,{ c3})};

This TGTS is written as
Tr!a1.Tr?y1.Tr!b1.Tr?y2.Tr!c1.Tr?y3 :

(!a1,{c1,c2}) .?{(x1,c1|= ζ1 ,{c1}).(y1, c2|=
ζ1,{c2})} .(!b1,{c1,c2}).?{(x2, c1|= ζ1,{c1}).(y2,
c2|=ζ1,{c2})} .(!c1,{c3}) .?{(z3, c1|= ζ1,{c3})};
(11)

The faults covered by Timed Automata with n-
ports are classified in:

• faults independent of timing constraints :
output faults, transfer faults or combination of
both of them

• Timing faults [6]: faults are caused by the
violation of timing constraints by the IUT. The
test system has to respect timing constraints of
inputs and checks if timing constraints of
outputs are respected.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

495

H. TIMED LOCAL TEST SEQUENCES

(TLTS)

The introduction of the time concept in the LTS
of each tester-k, leads to build Timed Local Test
Sequences (TLTS) related to each tester with the
form tr1.tr2.tr3….trn where each tri has the form
αi

k,guardi
k,Reseti

k and each αi is either:

• !x i : Tester-k sends “xi” through port k to IUT
• ?yi : IUT sends “yi” through port k to tester-k

.
• !Ok : Observation message sent to tester-k .
• ?Ok: Observation message received from

tester-k.
• !Sk: Synchronization message S sent to tester-

k.
• ?Sk: Synchronization message received by

tester -k .
(i) For each message “xi” sending to the IUT or a

Coordination/Observability message, the tester
supports the process of sending this message
and resets all testers’s clock that will receive a
message due to this sending in Reseti.

(ii) If “ αi” is an expected message from the IUT or
a Synchronization/Observability message, the
tester waits for this message. After its
reception, the tester checks whether guardi is
true or not and resets the clock in Reseti. If
gaurdi is not true, then test return Failed.

The algorithm shown in Fig.7 is dedicated to
generate the TLTS from the TGTS. It takes as input
a timed global test sequence where we consider
each transition as a data structure containing the
message to be sent or to be received, the guard to be
checked and the list of clocks that will be reset at
the end of the transition.

The Loop in (line 23) adds the reception of
messages belonging to “yi” to the appropriate
sequences. The coordination messages are added to
the projections to avoid both Synchronization and
Observability Problems:

• To avoid observation problems, each tester
receiving a message h ϵ yi-1 should be able to
determinate that h has been sent by IUT after
IUT has received “xi-1” and before IUT
receives “xi”. In this case, we added “ ?Ok ” (k
is port sending O) and “!Ok “(k is port
receiving O) to the appropriate local test
sequences (lines 4 to 19)

• To avoid Synchronization problems, each
tester receiving h є yi, send a synchronization
message to a tester sending xi+1. In this case,
we added ?Sk (k is port sending S) and !Sk (k
is port sending S) to the appropriate local test
sequences (Lines 27-43).

For a communication with the IUT, we deduce
the time constraints (the guard) from the TGTS
(lines 20 to 26). However, for communication
between testers, these constraints will be added to
local timed sequences as follow:

• If tester-i sends a message “!Cj” or “!Oj “ to
tester-j : there is no constraint time to verify,
the message is sent and we initialize all clocki
of testers that will receive this message (lines
13,18,31,32,40,41,50,51) .

• If tester-j receives the message “?Ci” or “?Oi“
from tester-i: the time c observed from the
clocki must verify the intra-port guard ζ2
(lines 17,35,44,54).

By applying the proposed algorithm to the TGTS
giving in (11), we get the following TLTS
describing the behavior of tester-1, tester-2and
tester-3.

wt1=(!a1,{c1,c2}).(?x1,c1|=ζ1,{c1}).(!S2,{c2}).(?x2,c1|
=ζ1,{c1})..(!S2,{c3}).(?O3,c1|= ζ2,{c1})

wt2=(?y1,c2|=ζ1,{c2}).(!S1,{c1}).(!b1,{c1,c2}).(?y2,c2|
=ζ2,{c2}.(!C3,{c3})
wt3=(!O1,{c1}).(?S1,c3|ζ2,{c3}).(?S2,c3|ζ2,{c3}).(!c1,{

c3}) .(?z1, c3|= ζ1,{ c3}).

Algorithm .Generating Timing Local Test Sequences
Input w=Tr!x1.Tr?y1. Tr!x2.Tr?y2…. Tr!xk.Tr?yk
 a complete Timing Global Test Sequence (TGTS)
Output : Timed Local test sequences: (wt1,…,wtn)
 1 for k=1,…,n do wtk ⇐ ε end for
 2 for i=1,…,t do
 3 k⇐ Port(Tr!xi)
////// Generating Observation Messages
 4 if i >1 then
 5 Send-To ⇐ (Ports (Tr?yi) ∆ Ports(Tr?yi-1))\{k}
 6 if sender≠0 then
 7 Send-To ⇐ Send-To\{sender}
 8 end if
 9 if sender≠ ∅ then
 10 Trw!O

 send-To . Message ⇐ !O send-To

 11 Trw!O
 send-To

 . Reset⇐∅

 12 For all h ∈ Send-To do
 13 Trw!O

 send-To
 . Reset ⇐Trw!O

 send-To
 . Reset .clock h

 end for
 14 wtk ⇐ wtk . Trw!O

 send-To
 15 For all h ∈ Send-To do
 16 Trw ?O

k
.Message ⇐ ?Ok

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

496

 17 Trw?O
k

.guard ⇐ clock h |= ζ2

 18 Trw?O
k

.Reset ⇐clock h
 19 wth ⇐ wth . Trw?O

k.
 end for
 end if
 end if
 20 Trw!xi.Message ⇐ !x i

 21 Trw!xi .Reset ⇐ Tr!xi.Reset
 22 wtk ⇐ wtk . Trw!xi
 23 for all a € yi do
 Trw?a.Message ⇐ ?a
 24 Trw?a.guard⇐ Tr?a.guard
 25 Trw?a.Reset ⇐ Tr?a.Reset
 26 wtk ⇐ wtk . Trw?a.
 end for
//// Generating Coordination Messages

27 if i <t then

28 h ⇐ Port(xi+1)
29 If yi = ∅ then

 30 Trw!S
h. Message ⇐ !Sh

 31 Trw!S
h. Reset ⇐clockk

 32 wtk ⇐ wtk . TrwS
h.

 33 Trw?S
k . Message ⇐ ?S k

 34 Trw?S
k . Guard ⇐ clockk |= ζ2

 35 Trw?S
k. Reset ⇐ clockk

 36 wth ⇐ wth .Trw?S
k.

else
 for all a € yi do

 37 Trw!S
k. Message ⇐ !Sk

 38 Trw!S
k. Reset ⇐clockPort(a)

 39 wt Port(a) ⇐ wt Port(a). TrwS
k.

 40 Trw?S
Port(a) . Message ⇐ ?SPort(a)

 41 Trw?S
 Port(a) . Guard ⇐ clockPort(a) |= ζ2

 42 Trw?S
 Port(a). Reset ⇐ clockPort(a)

 43 wtk ⇐ wtk .Trw?S
Port(a).

 end for
end if

end for
end Algorithm

Now, after generating the timed local sequences,
we will tackle to compute the test verdict. In fact,
during the execution of each timed local test
sequence, the tester-k will guarantee (resp. check)
the timing constraints (the guard) of the inputs
(resp. outputs). More precisely, for each message
“xi” sending to the IUT or a
coordination/observation message, the tester
supports the process of sending this message. If
“αi” is an expected message from the IUT or a
coordination/observation message, the tester waits
for this message. If no message is received in a
correct time, or if the received message is not
expected, the tester returns a verdict Fail (fail). If

the tester reaches the end of its local test sequence,
then it gives a verdict Accept (accepted). Thus, if
all testers return a verdict Accept, then the test
system ends the test with a global verdict Accept.

6. CONCLUSION

In practice, the development of the distributed
testing system framework is a complex process
where the testing systems must not only checks if
the output events have been observed, but also the
dates when these events have been occurred. In this
context, the work presented in this paper is
dedicated to extend results from testing distributed
system to deal with testing an implementation under
test with some timing constraints. There are some
contributions in our paper that address those that
look at presenting some issues to avoid the
coordination, observation and synchronization
problems in distributed testing.

We firstly propose that testers exchange
synchronization messages, and we proof that this
solution resolve both of synchronization and
coordination. In other side, we introduce another
way to overcome the issues arisen in this context by
presenting an algorithm to generate the timed local
test sequences that define the behavior of each
tester. The main idea beside the proposed work is to
consider each transition as a data structure
containing the message to be sent or to be received,
the guard to be verified and the list of clocks that
will be reset at the end of the transition.

Our work is now oriented to develop more
consequent testing environments for testing
distributed significant application including web
services applications, and real-time systems.

REFERENCES

[1] O.Rafiq and L.Cacciari, “Coordination

algorithm for distributed testing,” The Journal
of Supercomputing, Volume 24, Number 2, pp
203-211, doi: 10.1023/A:1021759127956
(2003).

[2] R.M Hierons, "Testing a distributed
system:Generating minimal synchronized,test
sequences that detect output-shifting
faults".Information and Software
technology,43(9),pp :551-560,2001.

[3] Ural, H., Whittier, D., "Distributed testing
without encountering controllability and
observability problems, "Inf. Processing Lett.,
88(3):pp : 133-141. 2003.

Fig. 8. Generating Timing Local test sequences

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

497

[4] O. Rafiq, L. Cacciari, M. Benattou,
''Coordination Issues in Distributed Testing'',
Proceeding of the fifth International
Conference on Parallel and Distributed
Processing Techniques and Applications
(PDPTA'99) pp: 793-799, USA, 1999, CSREA
Press .

[5] Tai, K.C., Young. Y.C: “Synchronizable test
sequences of finite state machines”. Computer
Networks 13. 1111-1134 (1998).

[6] Ahmed Khoumsi, "A Temporal Approach for
Testing Distributed Systems, " IEEE
Transactions on Software Engineering, vol. 28,
no.11, pp. 1085-1103 Nov.2002,

[7] H.Chuan-dong, J.Fan,” Timing issues in
distributed testing,” Journal of Zhejiang
University SCIENCE A,8(4), pp :522-
528,2007.

[8] A. Gill, ,Introduction to the theory of finite-
state machines, Mc Graw-Hill, New Yor- USA,
1962.

[9] A. Petrenko, G. v. Bochmann and M. Yayo, On
fault coverage of tests for finite state
specification, Computer Network and ISDN
Systems 29, 1996.

[10] S. Azzouzi, M.Benattou , H.Charaf "SMA and
mobile agents actors for distributed testing,“
International Journal of Computer Science
Issues,Volume 7, Issue 5, pp: 231-238
,September 2010 .

[11] Digital Equipment Corporation “Distributed
Computing Environment Application
Development Reference”, Maynard, Maryland,
U.S.A.1992.

[12] Lockhart H.W. OSF DCE – Guide to
Developing Distributed Applications.
McGraw-Hill, New York, U.S.A.1994.

[13] A.Schill DCE - das OSF Distributed
Computing Environment, Einführung und
Grundlagen. Springer Verlag 1996.

[14] Object Management Group (1995)," The
Common Object Request Broker: Architecture
and Specification, "Revision 2.6. Framingham,
Massachusetts, U.S.A, December 2001.

[15] R. M. Hierons and H. Ural, “Checking
sequences for distributed test architectures”.
(Distributed Computing) Volume 21,April
2008, Number 3,pp 223-238,doi:
10.1007/s00446-008-0062-4.

[16] Wen-yu Liu, Hong-wei Zeng and Huai-kou
Miao, “Multiple UIO-based test sequence
generation for distributed systems “,Journal of
Shanghai University (English Edition) Volume

12, November 2007,Number 5, pp 438-443,
doi: 10.1007/s11741-008-0512-3.

[17] Jessica Chen, Robert M. Hierons and Hasan
Ural, “Testing in the Distributed Test
Architecture Formal Methods and Testing”.
Lecture Notes in Computer Science, 2008,
Volume 4949/2008, 157-183, doi:
10.1007/978-3-540-78917-8_5.

[18] Tai, K.C., Young. Y.C: “Synchronizable test
sequences of finite state machines”. Computer
Networks 13. 1111-1134 (1998).

[19] Luo, G., Dssouli, R., Bochmann, G.v.:
“Generating synchronizable test sequences
based on finite state machine with distributed
ports”. In the 6th IFIP workshop on protocol
Test Systems, pp.139-153. Elsevier, North-
Holand (1993).

[20] R.M Hierons.”Testing a distributed
system”Generating minimal synchronized test
sequences that detect output-shifting
faults”.Information and Software
technology,43(9):551-560,2001.

[21] Luo, G., Dssouli, R., Bochmann,
G.v.,Venkatram,P.,Ghedamsi,A.:”Test
Generation with respect to distributed
interfaces” 16,119-132 (1994).

[22] J.Chen,R.M. Hierons, and H.Ural. “Conditions
for resolving observability problems in
distributed testing”. In 24rd IFIP International
Conference on Formal Techniques for
Networked and Distributed Systems (FORTE
2004), volume 3731 of LNCS, pages 229-
242.Springer-Verlag, 2004.

[23] J.Chen,R.M. Hierons, and H.Ural. “Resolving
observability problems in distributed test
architecture”. In 25rd IFIP International
Conference on Formal Techniques for
Networked and Distributed Systems (FORTE
2005), volume 3731 of LNCS, pages 219-
232.Springer-Verlag, 2005.

[24] A.Benharref,R.Glitho,R.Dssouli. “Mobile
Agents for Testing Web Services in Next
Generation Networks”, Mobility Aware
Technologies and Applications, Vol.3744
,2005, pp.182-191.

[25] K. Correll, N. Barendt, and M. Branicky,
"Design Considerations for Software Only
Implementations of the IEEE 1588 Precision
Time Protocol," In Proc.Conf. on IEEE-1588
Standard for a Precision Clock
Synchronization Protocol for Networked
Measurement and Control Systems, October
2005.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

498

[26] R. Alur and D. L. Dill. A theory of timed
automata. Theoretical Computer Science, 1994.

[27] A. Khoumsi, "A new method for testing real
time systems," in Real-Time Computing
Systems and Applications, pp. 441 - 450 ,Dec.
2000.

[28] Christophe CUBAT DIT CROS“Agents
Mobiles Coopérants pour les
EnvironnementsDynamiques,”ENSEEIHT
Institut National Polytechnique de
Toulouse,2005

[29] S.Azzouzi, M.Benattou, My El Hassan Charaf,
“Real Time Agent Based Approach for
Distributed Testing”, in IEEE proceedings of
The 3rd International Conference on
Multimedia Computing and Systems
(ICMCS'12) May 10-12 2012, Tangier,
Morocco.

[30] S. Azzouzi, M.Benattou, H.Charaf "Agent
Synchronization issues in distributed testing, “,
on Seventh International Conference ON
Intelligent Systems : Theories AND
Applications (SITA’12) 16-17 MAY 2012,
Mohammedia,Morocco

