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ABSTRACT 

The performance of the kernel-based learning algorithms, such as support vector domain description, 
depends heavily on the proper choice of the kernel parameter. It is desirable for the kernel machines to 
work on the optimal kernel parameter that adapts well to the input data and the pattern classification tasks. 
In this paper we present a novel algorithm to optimize the Gaussian kernel parameter by maximizing a 
classical class separability criterion, and the problem is solved through a steepest descent algorithm, 
Simulation results on six benchmark datasets have successfully validated the effectiveness of the proposed 
method.  

Keywords: Support Vector Domain Description, RBF Width, Class Separability. 

1. INTRODUCTION 

In domain description the task is not to distinguish 
between classes of objects like in clustering 
problems, or to produce a desired outcome for each 
input object like in regression problems, but to give 
a description of a set of objects. This description 
should be able to distinguish between the classes of 
objects represented by the training set, and all other 
possible objects in the object space [1, 2]. Recently, 
a Support Vector Domain Description (SVDD) 
(also called One-class Classification), inspired by 
support vector machine was invented by Tax and 
Duin [2, 3, 4]. In a SVDD the compact description 
of target data is given as a hyper sphere with 
minimal volume containing most of normal data, 
rejecting most of negative data. It has the 
possibility of transforming the data to new feature 
spaces without much extra computational cost 
using kernel functions [5, 6], see Table 1. However, 
there is no theoretical method for determining a 
suitable kernel function. Also, there is no a priori 
knowledge for setting the kernel parameter. 
Therefore, choosing an appropriate kernel, which is 
a model selection problem [7], is crucial to ensure 
good performance since the geometrical structure of 
the mapped samples is determined by the selected 
kernel and its parameters. 
The most common and reliable approach to features 
selection is to decide on parameter ranges, and to 
then do an exhaustive grid search [14,20] over the 

parameter space to find the best setting. However, 
this type of search is a local search and prone to a 
local optimality. Additionally, setting the search 
interval is a problem. Too large a search interval 
wastes computing power, while too small a search 
interval might render a satisfactory outcome 
impossible, in addition to the commonly adopted 
grid search technique, other techniques are used in 
SVM to improve the possibility of an appropriate 
choice of parameter values, those techniques can be 
categorized as filter models and wrapper models 
[8]. Filter models [8] utilize statistical techniques, 
such as principal component analysis (PCA), factor 
analysis (FA), independent component analysis 
(ICA), and discriminate analysis (DA) in the 
investigation of other indirect performance 
measures, mostly based on distance and 
information measures. Chen and Hsieh [9] 
presented latent semantic analysis (LSA), Gold et 
al. [10] developed a Bayesian viewpoint of SVM 
classifiers to tune hyper-parameter values in order 
to determine useful criteria for pruning irrelevant 
features. Chapelle et al. [11] developed an 
automatically tuning multiple parameters and 
applied principal components to obtain features for 
SVM. The wrapper models [12], adopt the accuracy 
rate of the classifier as the performance measure. 
Some researchers argue that if the highest 
predictive accuracy is obtained by minimizing the 
classifier error rate and equalizing the measurement 
cost for all features, wrapper models are more 
suitable. A classifier is constructed with the aim of 
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maximizing the predictive accuracy. The features 
utilized by the classifier are then selected as the 
optimal features. The wrapper models often apply 
meta-heuristic approaches to help in searching for 
the optimal feature subset. Although meta-heuristic 
approaches are slow, they produce the (near) 
optimal feature subset. 
 
In this paper we focus on a filter model technique 
defined as the optimization of the kernel function. 
In [11,13], a radius-margin quotient is used as a 
criterion to tune kernel parameters for the support 
vector machine (SVM) classifier, and it is 
applicable to two-class classification problems 
only. Xiong et al. [15] proposed to optimize a 
kernel function in the so called empirical feature 
space by maximizing a class separability measure 
defined as the ratio between the trace of the 
between-class scatter matrix and the trace of the 
within-class scatter matrix, which corresponds to 
the class separability criterion J4 in [18]. Promising 
results have been reported on a set of two-class 
classification problems. Jie Wang et al. [17] 
proposed a kernel optimization algorithm by 
maximizing the J1 class separability criterion in 
[18], defined as the trace of the ratio between the 
between-class scatter matrix and the within-class 
scatter matrix. Which is equivalent to the criterion 
used in the classical Fisher's discriminant analysis 
[18, 19, 21]. In this paper we propose to maximize 
a class separability measure defined as the 
difference between the between-class variance and 
the within-class variance. 
  
To evaluate our approach, we run our algorithm on 
SVDD. We focus on optimizing the Gaussian 
kernel since it is widely used in pattern recognition, 
neural network and other fields, and shows good 
features and strong learning capability. The 
optimization is solved using the well-known 
Steepest Descent algorithm. The results are 
compared with grid search approach. 
 
The rest of this paper is organized as follows. In 
Section 2 the theory behind the Support Vector 
Domain Description is presented. Section 3 gives a 
detailed description of our approach and the 
optimization using the Steepest Descent method.  In 
the last section we give several experiments results 
to show the validity of our proposed algorithm. 
 
 
 

2. SUPPORT VECTOR DOMAIN 
DESCRIPTION (SVDD) 

 
2.1 Normal Data Description 
The normal data description model [1, 3] gives a 
closed boundary around the data: a hypersphere 
characterized by center a and radius R > 0. It 
minimizes the volume of the sphere by minimizing 
R2, and demand that the sphere contains all training 
objects xi. 
Let { } χ∈ix be a data set of N points, with, d

i Rx ∈  
the data space, we look for the smallest enclosing 
sphere of radius R which is described by the 
following constraints:    
 

22
Rax j ≤−          j∀                                          (1) 

 Where  .  is the Euclidean norm. Soft constraints 
are incorporated by adding slack real and positive 
variable jε  : 

 
jj Rax ε+≤− 22
  j∀                                  (2)  

To solve this constraint we introduce the 
Lagrangian:  
 

∑ ∑∑ +−−−+−=
j j

jjjj
j

jj CaxRRL εµεαε )(
222        (3) 

Where α j ≥ 0 and μ j ≥ 0 are Lagrange multipliers, C 
is a constant, and ∑ j jC ε is a penalty term. Setting 

the partial derivatives of L with respect to R, a, ε i to 
zero gives the following constraints: 
 

∑ =⇒=∂
i
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The solution of the primal problem can be obtained 
by solving its dual form [1, 3]: 
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2.2. SVDD with Negative Examples 
When negative examples (objects which should be 
rejected) are available, they can be incorporated in 
the training to improve the description. In contrast 
with the training (target) examples which should be 
within the sphere, the negative examples should be 
outside it. In the following, the target objects are 
enumerated by indices i, j and the negative 
examples by l, m. Again we allow for errors in both 
the target and the outliers set and introduce slack 
real positive variables ε i and ε l [1, 3]: 
 

∑ ∑++=
i l

lili CCRaRL εεεε 21),,,( 2              (8) 

with the constraints:  
 

i,l                ε      εεRax        εRax lillii ∀≥≥−≥−+≤− 002222

 
Where C1, C2 are constants real positives, 
and ∑i iC ε1 , ∑l lC ε2  are penalty terms, These 
constraints are incorporated in eq (8) and the 
Lagrange multipliers α i, α l ,γ i, γ l are introduced as 
follow: 
 

][][
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                                                                        (9) 
With 0,0,0,0 ≥≥≥≥ lili γγαα  are Lagrange 
multipliers. Setting the partial derivatives of L with 
respect to R, a, ε i and ε l to zero gives the following 
constraints: 

∑ ∑ =−⇒=∂
i l

liR L 10 αα                (10) 

∑ ∑−=⇒=∂
i l

lliia xxaL αα0                      (11) 

i,l       γC     αγC α L and  L lliiεε li
∀−=−=⇒=∂=∂ 2100     (12)  

 
 
When Eqs (10),(11) are substituted into Eq (9) we 
obtain : 
Max: 

∑ ∑

∑ ∑ ∑ ∑∑

=−
∀≤≤≤≤

−+−−=

i l
li

i

i l ji ml
mlml
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xxxxxxxxxxW

1
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2

l
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αα
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      (13) 
 
 
 

2.3   Decision Function 
For multiclass problems, to classify a test point z, 
we just investigate whether it is inside the 
hypersphere (ak,Rk) constructed during the training 
and associated to the class k [1, 3].Namely the 
decision function is calculated as eq(14), if its value 
is positive for the kth class and negative for the 
others we conclude that z belong to the class k. 

)sgn()( 22
kk azRzf −−=                              (14) 

Where in the normal data description case: 

∑ ∑+−=−
i ji
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With αkj is the jth Lagrangian multiplier 
corresponding to the kth class. And  SVx∈  the set 
of Support Vectors having  Ci α0 . 

And in the SVDD with negative examples case we 
obtain:  
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For any  SVx∈  the set of support vectors having 
10 Ci α (with x is a target object) or 
20 Cl α  (with x is negative object). 

3. OPTIMIZATION OF GAUSSIAN 
KERNEL 

3.1. Flexible Descriptions 
The formulations of SVDD can be extended to 
obtain a more flexible description. Data is mapped 
nonlinearly into a higher dimensional space where a 
hyperspherical description can be found. The 
mapping is performed implicitly, replacing all of 
the inner products by a kernel function K (xi, xj) [1, 
3]. Table 1 describes some commonly used kernel 
functions: 
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Table 1: Some Commonly Used Kernel Functions 

 
Gaussian Radial 
Basis Function 








 −
−= 2

2

2
)(exp),(

σ
yxyxk

 
Exponential 
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Function 
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Hyperbolic 
Tangent 
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Fourier Series ))(
2
1sin(

))(
2
1sin(

),(
yx

yx
yxk

−

−+
=

δ

 
Bn-splines )(),( 12 yxByxk n −= +  
Polynomial ( )p

i
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Two-layer 
perception 

).( 10 sxxsTanh i
T +  

 
3. 2 Our Approach 
The objective of SVDD is to find a sphere with 
minimum volume containing all or most of training 
objects, and rejecting all or most of negative 
examples. It‘s obvious that this description become 
easier if the target examples are close to each other, 
in the same time the training and the negative 
examples are distant, it is the principle of 
discriminate analysis which highlights differences 
between observations belonging to different 
classes. Our idea, is to find a future space (σ in the 
RBF kernel), in which these conditions are the most 
verified possible. 
Our aim is to maximize the between-class variance 
described by    :  

∑∑ −
N

i

M

l
li xx

NM
2)()(1

φφ                                   (19) 

In the same time to minimize the within-class 
variance described by: 

 ∑∑ −
−

N

i

N

j
ji xx

NN
2

)()(
)1(2

1 φφ

                  (20)

 

Where the target objects are enumerated by indices 
i, j and the negative ones by l. N and M define the 
total number of target and negative objects, 
respectively.  
Combining the two conditions we can maximize: 
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β
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α
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(21) 

The role of both parameters α and β is to control 
maximization and minimization of the two terms 19 
and 20 respectively. 
After expanding the equation 21 we obtain:

 [ ]
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Using the RBF kernel the formula (22) becomes: 
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To maximize f (σ), we use the steepest descent 
algorithm: 
 
 
Given an initial σ0, and a convergence tolerance ε, 
and the maximum number of iterations MAX 
 
for k=0 to MAX 
            σk+1← σk+αk g(σk) 
      Compute )( 1+kg σ  
      if theng k   )( 1 εσ <+  
       converged 
     end if 
end for 
 

4.  EXPERIMENTAL RESULTS 

4.1 Datasets and Experimental Setting 
Six datasets were used to test the Small Sphere and 
Parametric Volume for SVDD. The datasets 
describe various characteristics from studying 
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monk-1, monk-2, monk-3, iris flowers, wine, glass; 
all of these datasets are taken from [16], further 

details of these datasets are provided in Table 2. 

 
Table 2 Description Of The Datasets Used In The Experiment, Training Samples And Testing Samples List The Rate Of 

Data Used Or Directly The Files Containing Data

      
       Firstly, the three problems defined for monk’s 
dataset were used in the experiment; monks-1 is in 
standard disjunctive normal form and is supposed 
to be easily learnable by most of the algorithms and 
decision trees. Conversely, monk’s-2 is similar to 
parity problems. It combines different attributes in 
a way that makes it complicated to describe using 
the given attributes only; monks-3 serves to 
evaluate the algorithms under the presence of noise. 
     Secondly, the iris dataset consists of three 
classes, each of which has 50 samples. While one 
cluster is easily separable, it is difficult to achieve 
separation between the other two clusters. Data 
points correspond to the plants and attributes 
correspond to sepal and petal measurements. 
     Thirdly, the wine dataset is the results of a 
chemical analysis of wines grown in the same 
region but derived from three different cultivars. 
The analysis determined the quantities of 
constituents found in each of the three types of 
wines.  
  Fourthly, the glass dataset is the study of 
classification of types of glass was motivated by 
criminological investigation data points correspond 
to the type of glass and attributes correspond to 
their oxide content (i.e. Na, Fe, K, etc). 
For monk’s problem we use the files monks-(1, 2, 
3).train, as training set and their corresponding files  
monks-(1, 2, 3).test, as testing set. For iris, wine, 
and glass datasets, we randomly split each one into 
20 subsets, each subset contains training and testing  
sets, with the scheme described in Table 3.Training 
and test sets do not intersect. 
 

4.2 Numerical results 
 
In all experiments we fix C=1000, and we use the 
one versus all method.  
For each dataset from monks-1, monks-2, monks-3, 
iris, wine, and glass: after setting the values of σ 
and β, we run the algorithm described above to find 
the optimal value of (σ) for each class. Using those 
values, the algorithm SVDD will be trained by the 
training set and then, tested by the training and the 
corresponding testing set. In the case of the Monk s 
problems, we just calculate the recognition rate 
directly, for both training and testing set, unlike the 
remaining datasets where we repeat this experiment 
20 times for all subsets and we select the values of 
σ which gives the median value of the recognition 
rate. 
 
To prove the efficiency, of our method we run 
SVDD on monk-1, monk-2, and monk-3, datasets, 
using a set of discrete values of σ1 and σ2, then we 
plot the variation of the recognition rate against 
both σ1 and σ2 (see fig 1).Table 3 shows that when 
we use the optimal Gaussian width σ found by the 
proposed algorithm, SVDD gives a good 
recognition rate for both training and testing set,    

 

 

 

 

 

dataset Number of data 
 

subset Number 
of class 

Feature 
Training set Testing set 

 
monks 

432 monks-1.train monks-1.test 2 6 
432 monks-2.train monks-2.test 2 6 
432 monks-3.train monks-3.test 2 6 

iris 150 80% of 
samples/each class 

The remaining 
samples/each class 

3 4 

wine 178 80% of 
samples/each class 

The remaining 
samples/each class 

3 13 

glass 214 80% of 
samples/each class 

The remaining 
samples/each class 

6     9 
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Table 3 Recognition Rates (%) For Different Datasets, Using The Optimal Values Of Σ i Found By The Approach 

Described Above 

 
data sets 

 
α 

 
β 

 
σ1 

 
σ2 

 
σ3 

 
σ4 

 
σ5 

  
σ6 

  

Recognition  
rate % 

Train set  

Recognitio
n rate % 
Test set 

monks-1 0.48 1.00 2.07 5.45     100 83.10 
monks-2 0.53 1.00 0.53 1.01     100 66.07 
monks-3 0.46 1.00 2.54 2.11     100 80.33 

iris 0.49 1.00 1.47 1.32 1.81    100 90.00 
wine 0.70 1.00 214.98 153.23 123.90    100 82.35 
 glass 0.80 1.00 0.42 0.55 0.48 1.56 0.01 1.48 100 55.00 

 

 

 
Fig. 1 Recognition Rate For Training And Testing Set, Using Monk-1, Monk-2, And Monk-3, Against A Set 

Of Discrete Values RBF Width For Both Class 1 And 2. 
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5. CONCLUSION 

We propose an approach for optimizing the kernel 
parameters, based on a class separability measure, 
defined as the difference between the variance 
between-class and the variance within-class. We 
focus on the Gaussian kernel since it is a widely 
used and we use the steepest descent algorithm for 
the optimization. To evaluate the performance of 
our algorithm, we run the kernel Support Vector 
Domain Description classifier using the optimal 
values of σ and we calculate the recognition rate. 
 
By computer simulations using six benchmark data 
sets, we demonstrated that our method can find 
optimal values of σ which gives an important 
recognition rates. 
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