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ABSTRACT 
 

Support Vector Domain Description (SVDD) is inspired by the Support Vector Classifier. It obtains a 
sphere shaped decision boundary with minimal volume around a dataset. This data description can be used 
for novelty or outlier detection. Our approach is always to minimize the volume of the sphere describing the 
dataset, but following the value of a parameter, which controls its volume and plays a compromise between 
the outlier’s acceptance and the target’s rejection. Simulation results on seven benchmark datasets have 
successfully validated the effectiveness of the proposed method. 
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1 INTRODUCTION 
 

In domain description the task is not to distinguish 
between classes of objects like in clustering 
problems, or to produce a desired outcome for 
each input object like in regression problems, but 
to give a description of a set of objects. This 
description should be able to distinguish between 
the classes of objects represented by the training 
set, and all other possible objects in the object 
space [6 9]. Recently, a Support Vector Domain 
Description (SVDD) (also called One-class 
Classification), inspired by support vector machine 
was invented by Tax and Duin [9 10 11]. In a 
SVDD the compact description of target data is 
given as a hypersphere with minimal volume 
containing most of normal data, rejecting most of 
negative data. It has the possibility of transforming 
the data to new feature spaces without much extra 
computational cost using kernel functions, [4 7]. 
SVDD uses support vectors to describe the 
boundary of target class as Support Vector 
Machine SVM does [2 13]. Support vectors are 
found by solving convex quadratic programming 
(QP) problem [3 5], when all support vectors are 
calculated, the hyperspheres associated with each 
class is determined by the couple (center, radius).  
In the decision phase a sample is classified into 
class i only when the value of the ith decision 
function is positive. This automatic architecture 
does not permit to control the volume of the 

hyperspheres. Our aim is to integrate a reel and 
positive parameter called p, in standard SVDD. p 
is a compromise between the outlier’s acceptance 
and the target’s rejection, so a good choice of p 
can improve the classification. It resolve also a 
problem linked to the classification of the set of  
Support Vectors (SV’s), because following the 
KKT (Karush-Kuhn-Tucker) conditions, the 
decision function gives a null value (not signed) 
for  (SV’s), but in some cases it can contains both 
of (target and outlier) , consequently, the decision 
function can not distinguish between them .         
The rest of this paper is organized as follows: in 
section 2, we present the Support Vector Domain 
Description algorithm. Our approach is explained 
in section 3. Experimental results are provided in 
section 4 and finally we conclude the paper in the 
last section.  
    
2 SUPPORT VECTOR DOMAIN 

DESCRIPTION  
 

2.1 Definition and Formulation 
The normal data description model [1 11 15 17] 
gives a closed boundary around the data: a sphere 
characterized by center a and radius R > 0. It 
minimizes the volume of the sphere by minimizing 
R2, and demand that the sphere contains all 
training objects. 
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Let { } χ∈ix be a dataset of N points, with, d
i Rx ∈  

the data space, we look for the smallest enclosing 
sphere of radius R which is described by the 
following constraints:  
   

22
Rax j ≤−          j∀                                      (1)                                

Where  .  is the Euclidean norm. Soft constraints 
are incorporated by adding slack real and positive 
variable jε  : 

jj Rax ε+≤− 22
   j∀                                  (2)                                                                                                         

To solve this problem we introduce the Lagrangian 
:  

∑ ∑∑ +−−−+−=
j j

jjjj
j

jj CaxRRL εµεαε )(
222 (3)                                                                  

 Where αj ≥ 0 and μj ≥ 0 are Lagrange multipliers, 
C is a constant, and ∑ j jC ε is a penalty term. 

Setting the partial derivatives of L with respect to 
R, a, εi to zero gives the following constraints: 
 

∑ =⇒=∂
i

iR L 10 α                                         (4)                                                                                                            

∑=⇒=∂
i

iia xaL α0                                     (5)                                                                                                                                 

iii CL µαε −=⇒=∂ 0                                  (6)                                                                                                                                  
 
The solution of the primal problem can be 
obtained by solving its dual problem [11]: 
Max:  

∑

∑ ∑

=∀≤≤

−=

j
jj

j i,j
jijijj

αj  and  C  α
 :Subject to

xxαααxW

10

2

  (7)                                                                                                                  

When negative examples (objects which should be 
rejected) are available, they can be incorporated in 
the training to improve the description. In contrast 
with the training (target) examples which should 
be within the sphere, the negative examples should 
be outside it. In the following, the target objects 
are enumerated by indices i, j and the negative 
examples by l, m. Again we allow for errors in 
both the target and the outliers set and introduce 
slack real positive variables εi and ε l [11]: 

∑ ∑++=
i l

lili CCRRL εεεε 21),,( 2          (8)                                                                                            

With the constraints:  
i,l           ε      εεRax       εRax lillii ∀≥≥−≥−+≤− 002222         (9) 

Where C1, C2 are constants real positives, 
and ∑i iC ε1 , ∑l lC ε2  are penalty terms, These 
constraints are incorporated in (eq 8) and the 
Lagrange multipliers αi, αl ,γi, γ l are introduced as 
follows: 
 

][][

C2C1),,,,,,,(

2222

2

l
l

ll
i

iii

l
l i l

liil
i

ililili

RaxaxR

RaRL

εαεα

εγεγεεγγααεε

+−−−−−+−

−−++=

∑∑

∑ ∑ ∑∑
    

                                                                           (10) 
With 0,0,0,0 ≥≥≥≥ lili γγαα  are Lagrange 
multipliers. Setting the partial derivatives of L 
with respect to R, a, εi and ε l to zero gives the 
following constraints: 
 

∑ ∑ =−⇒=∂
i l

liR L 10 αα             (11)                                                                                                                      

∑ ∑−=⇒=∂
i l

lliia xxaL αα0            (12)                                                                                                               

i,l       γ     αγ α L   L lliiεε li
∀−=−=⇒=∂=∂ C2C10 and 0

   
(13)     

                                      
When (eqs 11,12,13) are substituted into (eq 10) 
we obtain : 
Max: 

∑ ∑
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                                                                           (14)               
The formulations of SVDD can be extended to 
obtain a more flexible description. Data is mapped 
nonlinearly into a higher dimensional space where 
a hyperspherical description can be found. The 
mapping is performed implicitly, replacing all of 
the inner products by a kernel function K (xi, xj) 
[1 8 11 16]. Table 1 describes some commonly 
used kernel functions: 

Table 1 Some Commonly Used Kernel Functions 

Kernel’s types K(x, xj) 

Polynomial ( )p
i

T xx .1+  

Radial-basis function 
)

2
exp( 2

2

σ
ixx −

−  

Two-layer perception ).( 10 sxxsTanh i
T +  
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2.2 Decision Function 
To classify a test point z, we just investigate 
whether it is inside the hypersphere (ak,Rk) 
constructed during the training and associated to 
the class k [8 9 10 11] .Namely the decision 
function is calculated as (eq 15), if its value is 
positive for the kth class and negative for the others 
we conclude that z belong to the class k. 
 

)sgn()( 22
kk azRzf −−=                               (15)  

                                                                                                               
This function can be calculated as follows: 
In the normal data description case we obtain: 
 

∑ ∑+−=−
i ji

jikjkiikik xxzxzzaz
,

2 2. ααα                     (16)                                                                                             
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i ji
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2 2. ααα                 (17)                                                                                                    

With αkj is the jth Lagrangian multiplier 
corresponding to the kth cluster, and  SVx∈  the 
set of Support Vectors having   

Ci α0 . 
In the SVDD with negative examples case we 
obtain: 
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For any  SVx∈  the set of support vectors having 
10 Ci α (with x is a target object) or 
20 Cl α  (with x is negative object). 

 
3 OUR APPROACH : SMALL SPHERE 

AND PARAMETRIC VOLUME 
 

3.1 Definition and Formulation 
To integrate the parameter p in SVDD we have to 
reformulate the optimization problem by 
introducing p in the constraints. To simplify the 
description, we use the same mathematical 
calculation like SVM [13 14] does. Suppose we 
are given a dataset of N points (x1,y1)… (xn,yn), 
with d

i Rx ∈ , the data space, and yi =1 for the 
positive examples, -1 for the negative ones. We 
look for the smallest sphere of radius R that 

encloses only the positive samples, which is 
described by the following constraints:   
 

jjj ypRax ε+−≤− .22
1y    with               j +=∀j                 (20) 

jjj ypRax ε−−≥− .22
1y   with               j −=∀j              (21) 

When p is equal to 0 the results are the same as the 
conventional SVDD, because the two constraints 
above will be the same as (eq 9) 
 
To solve this problem we introduce the 
Lagrangian: 
 

∑ ∑∑ ∑ −−




 −−−−+=

j j
jjjjjj

j j
jjj ypaxRyCRL µεεααε ...

222       (22) 

Setting the partial derivatives of L with respect to 
R, a, εj to zero gives the following constraints: 
 

∑ =⇒=∂
i

iiR yL 1.0 α                                     (23)                

∑=⇒=∂
i

iiia yxaL α0                                  (24) 

i    C α L iiεi
∀−=⇒=∂ µ0                           (25) 

Hence, the dual optimization problem becomes 
Max: 

∑

∑∑

=≤≤

++−=

i
ii

,

1       C0     o 

)(

i

j
jjjj

ji
jijiji

yandtsubject

pxxyxxyyw

αα

ααα
              (26) 

3.2 Decision function 
To classify a sample z, we use the same decision 
function as SVDD (eq 15), but with a value of 
radius depending on the parameter p as follows: 
 

pyaxR lklk .22 +−= j∀                                 (27) 

∑ ∑ ++−=
j ji

ljijijijjljllk pyxxyyyxxxxR
,

2 .2. ααα                 (28)                              

SVxl ∈  , the set of Support Vectors having   
Cl α0 , Rk and ak  are respectively the radius 

and the center of the kth class.  
To illustrate the role and the values of the 
parameter p, we run Small Sphere and Parametric 
Volume for SVDD on two different datasets (see 
Fig.1) , using polynomial and Gaussian kernels, 
with varying degrees and widths respectively, C is 
equal to 1000. In each test we fix the values of 
sigma (width) or d, and we increase gradually the 
value of p, beginning by 0; we remind that zero 
corresponds to the standard SVDD. The layers 
with the gray scale from white to black, represents 
the increase of p. The values of p corresponding to 
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each layer are indicated in Table 2. We observe 
that: All layers follow the form of the distribution 
of the points of each class. As far as sigma or d 
increases the surface of layers grows, For the RBF 
kernel a small modification of p (see Table 2), 
produces the appearance of new layers, contrary to 
the polynomial kernel. We remark also that when 
p takes large values the layers of each class can 
overlap. 

 

 
Fig. 1 A Small Sphere And Parametric Volume For 
SVDD Trained On An Artificial Dataset. Support 

Vectors Are Indicated By The Reds Circles (Just When P 
Is 0). The Layers With The Gray Scale From White To 

Black Correspond To The Increase Of P. 
 
 

Table 2 Numerical Values Of The Parameter P, 
Corresponding To The Polynomial And Gaussian 

Kernels Used In The Experiment Above 
 

 
4 EXPERIMENTAL RESULTS 

 
4.1 Datasets and Experimental Setting 
Seven datasets were used to test the Small Sphere 
and Parametric Volume for SVDD. The datasets 
describe various characteristics from studying 
monk-1, monk-2, monk-3, iris flowers, wine, 
glass, and ecoli; all of these datasets are taken 
from [12], Further details of these datasets are 
provided in Table 3. 

 

Table 3 Description Of The Datasets Used In The Experiment, Training Samples And Testing Samples List The Rate Of 
Data Used Or Directly The Files Containing Data 

    
 

 

Kernel Gaussian Polynomial 

 σ=1 σ=1.5 σ=2 d=1 d=2 d=3 

 

The  

values 

 of  p 

0 0 0 0 0 0 

0.02 0.02 0.02 0.1 150 1000 

0.04 0.04 0.04 0.2 300 5000 

0.06 0.06 0.06 0.3 450 10000 

0.08 0.08 0.08 0.4 600 50000 

1 1 1 0.5 750 100000 

dataset Number of data 
 

subset Number 
of class 

Feature 
Training set Testing set 

 
monks 

432 monks-1.train monks-1.test 2 6 
432 monks-2.train monks-2.test 2 6 
432 monks-3.train monks-3.test 2 6 

iris 150 80% of 
samples/each class 

The remaining 
samples/each class 

3 4 

wine 178 80% of 
samples/each class 

The remaining 
samples/each class 

3 13 

glass 214 80% of 
samples/each class 

The remaining 
samples/each class 

6 9 

e coli 336 80% of 
samples/each class 

The remaining 
samples/each class 

8 7 
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   Firstly, the three problems defined for monk’s 
dataset were used in the experiment; monks-1 is in 
standard disjunctive normal form and is supposed 
to be easily learnable by most of the algorithms 
and decision trees. Conversely, monk’s-2 is 
similar to parity problems. It combines different 
attributes in a way that makes it complicated to 
describe using the given attributes only; monks-3 
serves to evaluate the algorithms under the 
presence of noise. 
 
     Secondly, the iris dataset consists of three 
classes, each of which has 50 samples. While one 
cluster is easily separable, it is difficult to achieve 
separation between the other two clusters. Data 
points correspond to the plants and attributes 
correspond to sepal and petal measurements. 
 
     Thirdly, the wine dataset is the results of a 
chemical analysis of wines grown in the same 
region but derived from three different cultivars. 
The analysis determined the quantities of 
constituents found in each of the three types of 
wines.  
 
      Fourthly, the glass dataset is the study of 
classification of types of glass was motivated by 
criminological investigation data points 
correspond to the type of glass and attributes 
correspond to their oxide content (i.e. Na, Fe, K, 
etc). 
 
      Fifthly, the e coli dataset is related to protein 
localization sites, it contains 336 patterns divided 
into 8 classes:  

class 1 (cytoplasm), class 2 (inner membrane 
without signal sequence), class 3 (perisplasm), 
class 4 (inner membrane, uncleavable signal 
sequence), class 5 (outer membrane), class 6 (outer 
membrane lipoprotein), class 7 (inner membrane 
lipoprotein) and class 8 (inner membrane 
cleavable signal sequence).  
  
For monk’s problem we use the files monks-(1, 2, 
3).train, as training set and their corresponding 
files monks-(1, 2, 3).test, as testing set. For iris, 
wine, glass and ecoli datasets, we randomly split 
each one into 20 subsets, each subset contains 
training and testing sets, with the scheme 
described in Table 3.Training and test sets do not 
intersect. 
 
4.2 Numerical Results 
For iris, wine, glass, and e coli: To test a dataset, 
we select the values of p and RBF width, we fix 
C=1000, then for each subset of this dataset the 
algorithm Small Sphere and Parametric Volume 
for SVDD will be trained by the training dataset 
and then, tested by the training and the testing 
dataset. After terminating the 20 experiments, we 
calculate the average and the standard deviation. 
For monks (1 2 3) datasets: We select the values of 
p and RBF width, we fix C=1000, the algorithm 
Small Sphere and Parametric Volume for SVDD 
will be trained by monks-x.train and then, tested 
by monks-x.train, and monks-x.test, where x takes 
the values {1,2,3}. 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 

 
 (f) 

 
(g) 

Fig. 2  Recognition Rate And Standard Deviation (Indicated By Symmetric Error Bars) For Test Set, Using (A) Monk-
1, (B) Monk-2, (C) Monk-3, (D) Iris, (E) Wine, (F) Glass, And (G) Ecoli Dataset, Against RBF Width 
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 At first we inform that:  for the seven experiments 
above, when using the training dataset as test, the 
recognition rate achieves 100%, whatever the 
value of the parameter p.   

Fig 2 shows the recognition rate of the testing 
datasets against the RBF width (σ), using different 
values of p. In all experiments we remark that: 
when p takes not null values, the recognition rate 
increases whatever the value of σ. For a fixed σ 
the recognition rate grows as the value of p is 
raised, and as far as sigma increases, the 
recognition rate grows until a maximum value. 
This result shows that, the use of this parameter p 
achieves better performance than standard SVDD, 
and gives a good separability between the different 
classes.  

5 CONCLUSION 
 
A Small Sphere and Parametric Volume for SVDD 
was developed to control the volume of the 
hypersphere characterizing each class, by 
integrating a real and positive parameter p in 
SVDD , that plays a compromise between the 
outlier’s acceptance and the target’s rejection, by 
consequence a good choice of the value of p can 
achieve better performance on improving the 
recognition rate , it allows also to classify the set 
of support vector, when it contains simultaneously 
positive and negative samples. The proposed 
method has been implemented, analyzed, and 
tested on seven benchmark datasets. The results 
obtained are very encouraging and, it provides 
better recognition rate than the SVDD without 
using of the parameter p.   
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