
Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
461 

 

SIMILARITY TESTING BY PROOF AND ANALYSIS 
OF PARTITION FOR OBJECT ORIENTED 

SPECIFICATIONS  
 

1KHALID BENLHACHMI,  2MOHAMMED BENATTOU 
RLCST Research Laboratory in Computer Science and Telecommunications, University Ibn 

Tofail,Kénitra, Morocco 
E-mail:  1benlhachmi11@yahoo.fr, 2mbenattou@yahoo.fr   
 

ABSTRACT  

The work presented in this paper is devoted to establish the theoretical model for the evaluation of the 
behavior of redefined methods in a subclass with the behavior of the original methods in the super-class 
using the inheritance mechanism.  We analyze firstly, how a redefined method can use the specification of 
its corresponding method in the super-class.  Secondly, we present the relationship between the test model 
of a redefined method in a subclass and the original method in a super-class. Our approach proposes a new 
concept which compares the behavior of methods, and gives the conditions where this comparison can 
induce a similar behavior. 
Keywords–Inheritance, Formal Specification, Conformity Test, Constraints Resolution, Valid Data, 

Invalid Data, Test Data Generation. 
 

1. INTRODUCTION 

Formal methods have the potential to improve 
both quality and productivity in software 
development, and to circumvent expensive 
problems in traditional development practices, to 
enhance early error detection, to enable formal 
modeling and analysis, and to facilitate verifiability 
of implementation. Indeed, in object oriented 
modeling, a formal specification defines operations 
by collections of equivalence relations and is often 
used to constrain class and type, to define the 
constraints on the system states (invariant), to 
describe the pre- and post-conditions on operations 
and methods, and to give constraints of navigation 
in a class diagram. OCL [1] and JML [2] seem to 
be now the main used languages to formulate the 
constraints for an object-oriented model.   

Software testing can be formalized and 
quantified when a solid basis for test generation can 
be defined [3].  In this context a number of 
researches focus on extract test data from a formal 
specification. The test data generation uses the 
constraints that are defined as restriction on one or 
more values in object-oriented model.  Most testing 
methods attempt to test the conformity of class 
implementation from its specification using the 
values domain defined by the constraint rules on 
the individual operations and methods. The 
generated data from the values domain with respect 

to the well defined constraints can be generated 
randomly or using constraints resolution. 

In [4], we present the definition of a formal 
model of constraint, illustrating the relationship 
between pre-condition and post-condition of 
individual methods of a class, and then we have 
shown how the invariant of a class can be used as a 
necessary condition for the truth of this constraint. 
We have formalized a generic constraint of a given 
individual method of class that contains the pre-
condition, post-condition, and the invariant into a 
single logical formula. The given model translates 
algebraically the contract between the user (the 
calling program) and the called method. 

The work presented in this paper allows to 
extend the constraint defined in [4] for modeling 
the specification of a redefined method in subclass 
using inheritance principle. This work extends our 
basic model [5] for similarity testing of inheritance 
by constructing the domain partitions for specifying 
all cases of methods similarity and by proving 
formally the correctness of the model. The main 
objective is to establish theoretical model allowing 
the evaluation of the behavior of redefined methods 
in a subclass with the behavior of the original 
methods in the super-class.   

We analyze firstly, how a redefined method can 
use the specification of its corresponding method in 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
462 

 

the super-class.  Secondly, we present the 
relationship between the test model of a redefined 
method in a subclass and the original method in a 
super-class. Our approach proposes a new concept 
which compares the behavior of methods, and gives 
the conditions where this comparison can induce a 
similar behavior. 

 This paper is organized as follows: in section 2 
we present a related works and similar approaches 
for   generating test data from a formal 
specification, in section 3 we describe theoretical 
aspects of our test process, and we define a formal 
model of similarity constraints, in section 4 we 
define the matrix partitions deduced from the 
formal model and show how these  partitions can be 
used to test the similarity of the redefined methods, 
in section 5 we present how the testing formal 
model can be used to generate  data of the 
similarity test, and finally we describe our approach 
with an example of similarity testing for an object 
oriented model. 

2. RELATED WORKS 

Most works have studied the problem of 
relating types and subtypes with behavioral 
specification in an object-oriented paradigm. These 
proposed works show how the contracts are 
inherited when a method is redefined in a sub-class 
and how the testing process can use the formal 
specification. 

 
In [5] we develop a basic model for the concept 

of methods similarity, the test is based only on a 
random generation of input data.  

 
In [6], the authors propose to generate randomly 

test data from a JML specification of objects class. 
They classify the methods and constructors 
according to their signature (basic, extended 
constructors, mutator, and observer) and for each 
type of individual method of class, a generation of 
test data is proposed. In [7], the paper describes 
specially the features for specifying methods, 
related to inheritance specification , it shows how 
the specification of inheritance in JML forces 
behavioral sub-typing. 

The work presented in [8] shows how to enforce 
contracts if components are manufactured from 
class and interface hierarchies in the context of 
Java. It also overcomes the problems related to 
adding behavioral contracts to Object-Oriented 
Languages, in particular, the contracts on 

overriding methods that are improperly synthesized 
from the original contracts of programmer in all of 
the existing contract monitoring systems.  

The work is based on the notion of behavioral 
sub-typing; it demonstrates how to integrate 
contracts properly, according to the notion of 
behavioral sub-typing into a contract monitoring 
tool for java. 

In [9], the authors treat the problem of types and 
subtypes with behavioral specifications in object-
oriented world. They present a way of specification 
types that makes it convenient to define the subtype 
relation. They also define a new notion of the 
subtype relation based on the semantic properties of 
the subtype and super-type. In [10], they examine 
various notions of behavioral sub-typing proposed 
in the literature for objects in component-based 
systems, where reasoning about the events that a 
component can raise is important.  

All the proposed works concerning the 
generation of test data from formal specification or 
to test the conformity of a given method 
implementation, are focused only on constraint 
propagation from super to subclass related to 
subtype principle. The work presented in this paper 
proposes a new approach for testing the redefined 
methods in subclasses using the basic specifications 
in super-classes, and allows specifying system 
behavior by constructing a model in terms of 
mathematical constructs. 

3. FORMAL MODEL OF CONSTRAINT 

This section presents a formal model of the 
generalized constraint defined in [4] which 
provides a way of modeling the specification of a 
redefined method by inheritance from a super-class. 
Indeed, the object of this section is to establish a 
series of theoretical concepts in order to create a 
solid basis for comparing the behavior of redefined 
methods in a subclass and the behavior of the 
original methods in the super-class.  

3.1. Formal Model Of Constraint For A Basic 
Class   

We present in [4] the definition of a formal 
model of constraint, illustrating the relationship 
between the pre-condition, the post-condition of a 
method and the invariant of the class. We use the 
same notation used in [4]: P is the precondition of 
the method m , Q  is the post-condition of the same 
method and Inv  is the invariant of the class C.. 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
463 

 

Let C be a class, and m be a method of n 
arguments x=(x1 , x2 ,…, xn) . We define for each 
argument xi its domain of values Ei. .  
We denote E=E1×E2×…En the domain of input 
vector of the method m. We have defined in [4] the 
generalized constraint H of a method m of class C 
as a logical property of the pair (x,o)  with x  the 
vector of parameters and o  the receiver object such 
that: 
 

H(x,o) : P(x,o) ⇒ [Q(x, o) ∧ Inv (o) ],(x,o) ∈ E × Ic 
 
Where Ic is the set of instances of the class C . 

Indeed, the invocation of a method m is 
generally done by reference to an object o and 
consequently, m is identified by the couple (x,o)  
The logical implication in the proposed formula 
means that: each call of method with (x,o)  
satisfying the precondition P and the invariant 
before the call, (x,o)  must necessarily satisfy the 
post-condition Q  and the invariant Inv  after the 
call. In the context of this work, we assume that the 
object which invokes the method under test is valid 
(satisfying the invariant of its class), therefore, the 
objects used at the input of the method are 
generated from a valid constructor.  

This justifies the absence of predicate Inv of the 
object o before the call to m in the formula H  
(Figure 1). 

 

The evaluation of the constraint H (for all (x,o)) is 
done in two steps: 
� In the Input of  m,  the evaluation of P(x,o). 
� In the Output of m, the evaluation of Q(x,o) and   
Inv (o). 

3.2. Formal Model Of Constraint For 
Inheritance   

The purpose of this paragraph is to establish a 
series of theoretical rules and definitions in order to 
evolve the constraint H of a method m of a super-
class during the operation of simple inheritance. 
We consider a method m of a class C2 which 
inherits from a super-class C1 such that m is 
redefinition of a method of C1. 

The method m and its redefinition in the 
subclass C2  will be denoted respectively by m(C1) , 
m(C2). 
(P(C1),Q(C1) ,InvC1) denote respectively the pre-
condition, the post-condition of the basic method 
m(C1), and the invariant of C1 . 
(P(C2) ,Q(C2),InvC2) denote respectively the pre-
condition, the post-condition of the redefined 
method m(C2), and the invariant of  the class C2 . 

The results of this paragraph are based on the works 
of Liskov (Principle of Substitution) [11,12] and 
Meyer [13] who have studied the problem relating 
to types and subtypes with behavioral specification 
in an object-oriented paradigm. These works show 
that the contracts are inherited when a method is 
redefined in a sub-class C2 . Indeed, a subclass 
method m(C2)  must:  

� Accept all valid input to the super-class method 
m(C1).  
� Meet all guarantees of the super-class method 
m(C1).  

 
Consequently, the precondition of redefined 
operation m(C2) in subclass C2 must be equal to or 
weaker than the precondition of corresponding 
operation m(C1)  in super-class C1.Therefore, we 
have: P(C2) ⇔(P(C1) 	∨ α�		1�  
 
Where	α  is the predicate added by the redefined 
method m in C2 .Thus the precondition of m in C2 is 
formed by two constraints: P(C1) inherited from the 
basic class C1 and α  the specific precondition of 
m(C2).   
 
The post-condition of a redefined operation m(C2) 

must be equal to or stronger than the post-condition 
of corresponding operation m(C1)  in super-class C1 . 
 
Thus, we have: Q(C2) ⇔ (Q(C1)∧ β� 	2� 
Where	β  is the predicate added by the redefined 
method m(C2)  . 
 
Thus the post-condition of m in C2 is formed by 
two constraints: Q(C1) inherited from the super-class 
C1 and β the specific post-condition of m(C2).  
The class invariant InvC2 of the sub-class C2 must 
be equal to or stronger than the class invariant InvC1 
of the C1.  
 
Thus, we have: InvC2

 	⇔ (InvC1		∧ 	λ�		3� 
Where λ is the predicate added by the sub-class C2 . 

m 
Input : P(x,o) Output :Q(x,o) ∧	Inv(o) 

Figure1. Specification Of A Method M 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
464 

 

Thus the invariant of C2 is formed by two 
constraints: InvC1 inherited from C1 and λ  the 
specific invariant of C2 .   
 
Based on the definition of the generalized 
constraint, we have for (x,o) ∈ E × IC1 : 
H(C1)(x,o) : P(C1)(x,o) ⇒ [Q(C1)(x, o) ∧ InvC1

 (o)] : 
The generalized constraint of the method m(C1) . 
And for (x,o) ∈ E × IC2  : 
H(C2)(x,o) : P(C2)(x,o) ⇒ [Q(C2)(x, o) ∧ InvC2

 (o)] : 
The generalized constraint of the method m(C2) .  
Using (1),(2),(3) the constraint of m(C2) will have 
the following form : 
H(C2)  :  ( P(C1) ∨	α )  ⇒   [ (Q(C1) ∧ β)  ∧( InvC1

 ∧ λ ) ]  

3.3. Formal Model Of Constraint For Similar 
Methods 

We propose in this section the definition of a 
new concept to study the compatibility between the 
redefined methods and original methods in the 
super-class. 
The objective is to find a relationship between the 
constraint H(C2)  of  m(C2)  and the  constraint H(C1)  
of m(C1).  

The two constraints : H(C1) :(P(C1) ⇒(Q(C1) ∧InvC1)) 
and  H(C2) :(P(C1) ∨ 		α ) ⇒ (Q(C1) 	∧   InvC1

 ∧ β ∧ 	λ) 

have common predicates :(P(C1),Q(C1),InvC1)  
(Figure2).

 

To compare two formulas H(C1) and H(C2) , we 
analyze at  first , the behavior of the two methods 
m(C1) and m(C2) relatively  to the common 
specification (Figure 2). 

In the particular case of figure 3, the fixed pair 
(x0 ,o0) of E×IC2  satisfies the basic precondition at 
the input of m(C1) and m(C2)  (P(C1)(x0 ,o0)=1 ), 
however the basic post-condition Q(C1) (x0 ,o0)  takes 
a true truth-value at the output of m(C1)  and a false 
truth-value at the output of m(C2) : this means that 
the same logical predicate for the same value of 
(x,o) ((x,o)=(x0 ,o0))  can be True and False at the 
same time.  

This type of situation makes impossible to 
establish a logical relationship between the 
theoretical model of the original method m(C1) and 
the model of m(C2) in the subclass (Figure 3). 

Our approach will rectify these types of problems 
by defining a new concept which compares the 
behavior of the methods m(C1) and m(C2) relatively to 
the common  specification. Indeed, the original 
method in the basic class must evolve in subclasses 
with the condition that its behavior relatively to the 
basic specification is similar to the original version.  

This comparison can define a certain degree of 
compatibility that will make it possible to establish 
a logical relationship between the mathematical 
model of the basic method and model of the 
redefined method in a subclass. Consequently, in 
figure 4 we must have for each pair (x,o)  of input: 
a’=a ,b’=b  where a’,a ,b’,b  are Boolean values. 

 
 

Definition 1: (Similarity of methods) 

A method m(C2) of a class C2 inheriting from the 
class C1 is similar to the method m(C1)   relatively to 
the basic specification (P (C1), Q (C1)   , InvC1  )  if : 

 
- m(C1)  is redefined by m(C2)   
- For each pair (x,o) ∈ E × IC2   

Q(C1)(x,o) (respectively InvC1(o)) has the same 
truth-value in output of m(C1) and in output of m(C2) . 

The problem raised above by the logical 
mathematical will have a solution if the studied 
methods are similar relatively to their common 
specification. Indeed, we consider two similar 
methods m(C1) and m(C2) in classes C1  and C2 : We 
determine the logical equation between H(C2)  and 
H(C1). 
Using the following result: 

[(a	∨	b)	⇒ (c	∧	d) ] ⇒ [(a	⇒ c)] 
Such that a,b,c,d  are logical predicates for find a 
relationship between H(C2)  and H(C1) .  

  P(C1)(x,o) 

m(C2) 

m(C1) 
InvC1(o)=b 

Q(C1)(x,o)=a’ (a’= a) 

InvC1(o)=b’(b’=b) 

Q(C1)(x,o)=a 

Figure 4. Condition Of Similarity Out : Q(C1)(x,o) 
 

     ∧ InvC1
 (o) 

In : P(C1) (x,o) m(C1) 

m
(C2)

 

Figure 2. Common specification of m(C1) and m(C2)   

P(C1)(x0,o0)=1 

m(C2) 

m(C1) 
InvC1(o0)=1 

Q(C1)(x0,o0)=0 

Q(C1)(x0,o0)=1 

InvC1(o0)=1 

Figure 3. Example Of Non-Similarity 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
465 

 

 We apply this result on the four predicates: 
P(C1),	α	, (Q (C1) ∧	InvC1) 

 ,  (β ∧ λ) : 
Therefore, we have the following result (R):  

[H(C2) ⇒H(C1)]   (R) 

4. PARTITION ANALYSIS 

The analysis of the input domain of a method is 
a crucial step in the implementation of tests. 
Indeed, this analysis allows dividing the domains to 
locate the potential data which can affect the test 
problem and allows to make a specific reasoning 
for each partition in order to identify the anomalies 
origin. In [4], we show how the constraint H may 
be used in the generation of domain partitions for 
each type of methods according to the classification 
proposed in [6]. This analysis of partition mainly 
concerns constructors and methods defined in a 
class without taking into account the inheritance 
relationships between classes. 

The methods in subclass, during the operation 
of inheritance, are tested by a matrix partition: 
partition of similarity. This is a way to divide the 
input common domain of the two methods and to 
generate input data aimed at comparing the 
compatibility of a redefined method with the 
original version in a basic class relatively to their 
common specification. 

4.1. General Analysis Of Partition 
The partition analysis of a class method aims to 

construct domains of input values and to generate 
test data, this analysis can simplify the testing 
methodology. Indeed, the generalized constraint H 
is used in the partitioning process for extracting the 
possible cases of test values . In [4], we propose a 
partition (A,B) of the input domain E×IC of a 
method in a basic class C. This partition is based on 
the truth cases of the constraint H:  

 
A= {(x,o) ∈ E × IC  / H(x,o)=1 } 

And        B= {(x,o) ∈E × IC / H(x,o)=0 } 
Then, A can be divided into two subsets A1 and A2 : 
A1={(x,o)∈E×IC /(P(x,o),Q(x,o),Inv(o))=(1,1,1)} 
And the partition A2   of the invalid domain: 
A2= {(x,o)∈E×IC/(P(x,o),Q(x,o),Inv(o))=(0, ?,?)} 

 
For the domain B  , we deduce the following three 
partitions : 
 
B1={(x,o)∈E×IC/(P(x,o),Q(x,o),Inv(o)) =(1,1,0)}. 
B2={(x,o)∈E×IC/(P(x,o),Q(x,o),Inv(o)) =(1,0,1)}. 
B3={(x,o)∈E×IC /(P(x,o),Q(x,o),Inv(o)) =(1,0,0)}. 
 

The partition (A1 , B1 , B2 , B3 )  of input domain  
E×IC  for a method  defines the elements which 
satisfy the precondition (i.e. the valid domain). 

These domains of partition can be reduced if we 
consider the classification of methods (Cb , Ce , M , 
O) defined in [6]. The results of this paragraph are 
applied essentially to constructors and methods of a 
basic class. 

4.2.  Similarity  Partition  
We propose in this paragraph a matrix partition 

of the input domain for a method m(C2)  in a 
subclass, the aim of this matrix partition is to 
compare the compatibility between m(C2) and m(C1)  

relatively to the basic specification. 
 
For each input data (x,o) of the method m(C2) , we 
associate a square matrix of size 2 × 2 with Boolean 
values (0 or1 ) which represents  the four  possible 
values for the quadruplet : (a ,b, a’, b’) (Figure 4).   
 
Definition 2: (Similarity Application) 

We define the application Similarity that associates 
each pair (x,o)  of  E × IC2   to its similarity  matrix : 
 
Similarity: E × IC2  ⟶ �2 ({0,1})  
 

(x,o)→Similarity(x,o)=���� ���
��� ����

with ��� ∈{0,1}. 

 
s11 = The truth-value of Q(C1)(x,o) after the call of  
m(C1)

  
s12 = The truth-value of InvC1(o) after the call  of   

m(C1)
  

s21= The truth-value of Q(C1)(x,o) after the call of   
m(C2) 
s22=The truth-value of InvC1(o) after the call of  
m(C2)

 

 
The first row (s11 , s12) of the matrix corresponds to 
the original method, and the second row (s21 , s22 ) 

corresponds to the redefined method . 

We deduce that m(C1) and m(C2) are similar only if: 
for each input data (x,o) the two rows of the matrix 
Similarity (x,o)  are identical :  

(s11 , s12) = (s21 , s22 ) 

We divide E × IC2   on two subset Sim , NotSim  : 
 
The elements of Sim satisfy the constraint of 
similarity. 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
466 

 

The elements of NotSim do not satisfy this 
constraint. 

We divide Sim on four domains (Figure 5):  

Sim1 ,Sim2 , Sim3  , Sim4   : 

 

Sim1 ={(x,o) ∈E × IC2 /Similarity(x,o) = �1 1
1 1�

} 

Sim2 ={(x,o) ∈E × IC2 /Similarity(x,o) = �1 0
1 0�

 } 

Sim3 ={(x,o) ∈E × IC2 / Similarity(x,o) = �0 1
0 1�

 } 

Sim4 ={(x,o) ∈E × IC2  / Similarity(x,o) =�0 0
0 0�

 }  

 
Then, we divide NotSim on NotSim1  and NotSim2 : 
The elements (x,o) of NotSim1  do not satisfy the 
constraint of similarity and verify : 
 
[(Q(C1)(x,o) = 1  and InvC1(o) = 1 ) after the call  of 
m(C2)] .  
 
This induces three possible cases corresponding to 
the following three parts of NotSim1  (Figure 5): 
 
NotSim11={(x,o)∈E×IC2/Similarity(x,o)=�0 0

1 1�
} 

NotSim12={(x,o)∈E×IC2/Similarity(x,o)=�1 0
1 1�

} 

NotSim13={(x,o)∈E×IC2/Similarity(x,o)=�0 1
1 1�

} 

 
We deduce that the elements of NotSim1 satisfy the 
necessary condition: 
 
∀(x,o) ∈ E × IC2 : [(x,o) ∈NotSim1 ] 

⇒ 

[(Q(C1)(x,o)� 0	or InvC1(o) =	0) after the call of  
m(C1)] 

 
The elements (x,o) of NotSim2 do not satisfy the  

constraint of similarity and constitute the rest cases.  
This induces nine cases distributed on subsets of 
NotSim2   (Figure 5):  

 

NotSim21={(x,o)∈E×IC2/Similarity(x,o)=�1 1
0 0�} 

NotSim22={(x,o)∈E×IC2 /Similarity(x,o)=�1 0
0 1�} 

NotSim23={(x,o)∈E×IC2/Similarity(x,o)=�0 1
1 0�} 

NotSim24 ={(x,o)∈E×IC2/Similarity(x,o)‘=�1 1
1 0�} 

NotSim25 ={(x,o) ∈E×IC2/Similarity(x,o)=�1 1
0 1�} 

NotSim26={(x,o)∈E×IC2/Similarity(x,o)=�0 1
0 0�} 

NotSim27={(x,o) ∈E×IC2/Similarity(x,o)=�0 0
0 1�} 

NotSim28={(x,o) ∈E×IC2/Similarity(x,o)=�1 0
0 0�} 

NotSim29 ={(x,o) ∈E×IC2/Similarity(x,o)=�0 0
1 0�} 

We deduce that the elements of NotSim2 satisfy 
the necessary condition: 

∀(x,o) ∈  E × IC2   : [ (x,o) ∈NotSim2 ] 
⇒ 

�(Q(C1) (x,o) � 0 or  InvC1(o) =	0) after the call of 

m(C2)] 

 
5. SIMILARITY TESTING 

The formal model of test proposed in [4] defines 
the notion of method validity in a basic class. This 
model is a way to generate test data for conformity. 
The testing process proposed in this section 
compares the compatibility between a redefined 
method in a subclass and its original version in the 
super-class. Our approach will be evaluated by 
implementing the algorithm of similarity testing for 
inheritance. 

5.1. Formal Model Of Test For A Basic Class  
In [4], we test the conformity of methods in a 

basic class without taking into account the 
inheritance relationship: the model of test generates 
random data at the input of a method using 

Sim NotSim 

E × IC2  

Sim1 Sim2 Sim3 Sim4 NotSim1 
NotSim2 

NotSim11 
NotSim12 

NotSim13 

NotSim21 
NotSim22 

NotSim29 
…
… 

Figure 5. Similarity Tree 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
467 

 

elements of the valid domain which satisfy the 
precondition of the method under test.  

The test algorithm is based on the partition :(A1 ,B1 

,B2 ,B3) , this test stops when the constraint H 
becomes False (H(x,o)=0) or when the maximum 
threshold of the test is reached  with H satisfied. 

Definition 3: (Valid method) 

A method m of class C is valid or conforms to its 
specification if for each (x,o)	∈	E×IC , the constraint 
H is satisfied :  

 

∀( x,o) ∈ E × IC : H(x,o) � 1 
 
With o the receiver object and x the parameters 
vector. 
 
Using the definition 3, a method m  is invalid if:           

∃(x,o) ∈ E × Ic  :  H(x,o) � 0 
i.e.   ∃(x,o) ∈E × Ic  : (x,o) ∈ B1 	∪ B2  ∪B3 

5.2. Similarity Test   
The results of the last paragraph are applied to 

the methods without considering the inheritance 
relationship. In this section we test the similarity of 
a redefined method with its original version. This 
operation compares the behavior of the two 
methods relatively to their common specification.  

The similarity test generates random input data 
which satisfy the basic precondition of both 
methods (P(C1)(x,o)=1) and  compares at the output 
of each method the behavior relatively to the 
common specification (Figure 6). 

In the algorithm of figure 6 , we choose a 
threshold of test N and we generate randomly the 
pairs (x,o) ∈ E×IC2  which satisfy the basic 
precondition P(C1), and for each (x,o) we compare 
the truth-value of the basic post-condition Q(C1) for 
this (x,o) at the output of m(C1)  and m(C2) ,at the 
same time we compare the truth-value of the basic 
invariant Inv(C1)  at the output of m(C1)  and m(C2) . 

We assume that the objects used are generated 
from a valid constructor of the subclass, and the 
three sets Sim , NotSim1 , NotSim2  are initialized 
to ∅ for each call of the algorithm. 

 

 

The test stops when we find a pair (x,o) for 
which the two rows of the matrix Similarity(x,o)  
are not identical. In this case, the methods m(C1)  
and m(C2)  are not similar relatively to the inherited 
specification.  

If we reach the threshold N of test without 
identifying a difference between the two rows for 
every matrix Similarity, we may admit with a 
rejected error margin (the limit N must be 
sufficiently large (N→ ∞)) that the methods m(C1)  
and m(C2) are similar.  

5.3. Evaluation 
We evaluate the correctness of our approach by 

implementing the algorithm of similarity testing for 
inheritance.  

As is indicated above, the similarity test of a 
redefined method in sub class requires passing 
through a test of a basic constructor in order to use 
the valid objects in testing process. 

We consider for example of the similarity test 
for inheritance the methods deposit and withdraw 
of the class Account1 and Account2  described in 
figure 7 and figure 8:  

do{     
do{ 

for ( x i  in m(C2) parameter) 
{x i  = generate ( E i );} 

x=(x 1,x 2,…,x n); 
o = generate_object(C 2); 

}while(! P(C1)(x,o)); 
(x',o')=copy(x,o); 
invoke"o.  m(C1)(x)"; 
S11=Q(C1)(x,o);S 12= InvC1(o); 
(x,o)=copy(x',o'); 
invoke"o.  m(C2)(x)"; 
S21=Q(C1)(x,o);S 22=InvC1(o); 
(x,o)=copy(x',o'); 
if( (s11,s12)=(s21,s22 ) ) 

Sim.add(x,o); 
 

elseif( (s21,s22)∈{(0,0),(0,1),(1,0 )})  
NotSim 2.add(x,o); 

else 
NotSim 1.add(x,o);  

}while(Sim.size()<N 
&& NotSim 1.isEmpty() 
&& NotSim 2.isEmpty()); 

Figure 6. Similarity Test Algorithm of a 
Redefined Method 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
468 

 

 

 

• Similarity test of deposit(1) and  deposit(2)  

The constraint H(1) of the deposit  method in the 
class Account1 in an algebraic specification with 
x= x1 :  
P(1)(x,o): (  x1 �10 )  

Q(1)(x,o): (balance(o(a) ) �balance(o(b) )) 

Inv1(o): balance(o) � 0 

The constraint H(2) of the deposit  method in 
class Account2  in an algebraic specification with  
x= x1 : 
 P(2)(x,o): ( P(1)(x,o) 	∨	0 �  x1 �10) 
 Q(2)(x,o): Q(1)(x,o) ∧	[ balance(o(a))	∈ 

	�(balance(o(b))	�	x1) , (balance(o(b))        

	�(1+InterestRate) �	x1)} ] 

 Inv2(o): ( balance(o) ≥ 0)	∧ 

		0 �InterestRate (o)�0,3) 
Where o(a) and o(b)  are respectively the object o  

after and before the call of the method. 

In order to test the similarity of deposit methods in 
class Account1 and Account2, we generate 
randomly x1 and the balance values in the interval  
]-200,200[with the threshold limit N=100(Table 1). 

Table 1. Result of a similarity test of the deposit 
methods 

Iteration 
number:  x  O P(1)(x,o) (x,o) ∈∈∈∈ 

1 21 Account2(74,0.2) 1 Sim 
2 45  Account2(130,0.1) 1 Sim 
3 183   Account2(167,0.23) 1 Sim 

… … … … … 

…. …. …. …. …. 

….. ….. ….. ….. ….. 

98 79   Account2(112,0.14) 1 Sim 
99 101 Account2(87,0.11) 1 Sim 

100 157   Account2(142,0.28) 1 Sim 

The test result shows that for 100 iterations the 
size of the set Sim is exactly the threshold limit of 
the test, this leads to the conclusion that the 
deposit(1) and  deposit(2)  are similar relatively to the 
basic specification (Table 1). 

• Similarity test of withdraw (1) and withdraw  (2)  

The constraint H(1) of the withdraw(1) in an 
algebraic specification with  x =  x1 :  
P(1)(x,o): ( 0 �  x1 � balance(o) ) 

Q(1)(x,o): (balance(o(a) ) �balance(o(b) )) 

Inv1(o): balance(o) � 0 

The constraint H(2) of the withdraw (2) : 
P(2)(x,o): ( P(1)(x,o) ) 
Q(2)(x,o):(Q(1)(x,o) ∧(balance(o(a))	∈ 

�(balance(o(b)) x1),(balance(o(b)) (1+InterestR

ate)	�	x1)}) 

Inv2(o): 
 ( balance(o) ≥ 0)	∧ 	0 �InterestRate(o) � 0.3� 

The test of similarity for withdraw methods in 
class Account1 and Account2 with the same 
conditions as deposit   gives the following results 
(Table 2) 

 
Table 2. Result Of A Similarity Test Of The Withdraw 

Methods 

Iteration  
number: x = x1 O P(1)(x,o) (x,o) ∈∈∈∈ 

1 105 Account2(146,0.02) 1 Sim 
2 37 Account2(87,0.13) 1 Sim 
3 73 Account2(93,0.21) 1 Sim 
4 141 Account2(188,0.17) 1 Sim 
5 52 Account2(61,0.25) 1   NotSim2 

class Account 2 extends Account1  
{ 
private double InterestRate;  
… 
public Account2(double x1, double x2)  
{super(x1);this.InterestRate=x2;…} 
public Account2 (Account1 x1,double 
x2,…) 
{ super(x1); this.InterestRate=x2;…} 
public void deposit (int x1) 
{super.deposit(x1); 
if (x1 >=(this.bal/2)) 
this.bal=this.bal+(this.InterestRate)*
x1; 
InterestRate=InterestRate*(1.25);} 
public void withdraw (int x1) 
    {super.withdraw(x1); 
if (x1 > bal) 
this.bal=this.bal-
(this.InterestR ate )*x1;  

Figure 8. Account2 class 

class Account 1 
{ 
protected double bal;/* bal is the 
account balance*/ 
public Account1(double x1){ 
this.bal=x1;} 
public Account1 (Account1 x1){ 
this.bal=x1.bal;} 
public void transfer(int x1,Account1 
x2){…} 
public void withdraw (int x1){ 

this.bal=this.bal - x1;} 
public void deposit (int x1){ 

this.bal=this.bal + x1;} 
} 

Figure 7. Account1 class 
 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
469 

 

As is shown in table 2,the methods withdraw (1) 
and withdraw (2)  are not similar, the pair (x,o)=(52 , 
Account2(61 ,0.25)) in the iteration 5 does not 
satisfy  the constraint of similarity :  
Similarity(52 , Account2 (61 ,0.25)) = �1 1

1 0�
 

• Analysis with proof  

We use an analysis with proof to demonstrate the 
non- similarity of Withdraw (2 ) and Withdraw (1 ). 
For a value of (x,o) that satisfy the basic 
precondition (P(1)(x,o)=1) of the method 
Withdraw(2) we have : 

[0	� x1 �balance(o)] , x=x1 

We study for example the truth-value of the 
basic invariant after the call of methods Withdraw(2) 
and Withdraw(1), for this we look for a necessary 
condition satisfied by the basic invariant after the 
call of Withdraw(2) . 

Using the relation [0 	�  x1 �balance(o)], we 
have two cases to be treated: 

Case1: [0 � x1 �(1/2).balance (o(b))] 
 
The behaviors of Withdraw(2)  and Withdraw(1)  are 
identical relatively to the basic specification, 
Indeed, analysis with proof of this methods shows 
that the condition of the block  “ if ”  is not satisfied 
,and consequently we have (Figure 8): 

balance(o(a)) = balance(o(b))	  x1 

Case2:[(1/2).balance (o(b))	�	x1	�balance (o(b))] 

We have in the context of the case 2 (Figure 8):  
balance(o(a)) = balance (o(b))	  x1 

		 InterestRate(o(b))	�x1 

The basic invariant is satisfied if and only if :  

( ∀o) :  balance(o(a)) 	� 0 

Consequently, the necessary condition for satisfy 
the basic invariant in the case 2 is:  

( ∀o) :   x1  � �����	
�����


��	���
�
�����
�����
	

 

 
The element (x,o) = (52 , Account2(61 ,0.25))  does 
not satisfy this condition (i.e. 52 # 61/(1+0.25) ) 
(Table 2). 

Consequently, the pair (x,o) = (52 , Account (61 
,0.25))  satisfy the basic invariant after the call of 

Withdraw(1), but the same pair does not satisfy the 
basic invariant after the call of Withdraw(2)  . 
We can conclude that the methods withdraw(2)  and 
Withdraw(1)  are not similar relatively  to the basic 
specification ( P(1), Q(1), Inv1) . 
 
6. CONCLUSION 

The approach of this paper proposes a new 
concept of test which represents a way to compare 
the behaviors of methods in sub-classes and their 
original versions in the super-classes for an object 
oriented specification. The test process gives the 
conditions where the comparison can induce a 
similar behavior. The result of this test constitutes a 
solid basis to reuse the inherited specifications in 
the sub-classes.  

We analyze firstly, how a redefined method can 
use the specification of its corresponding method in 
the super-class. Secondly, we present the 
relationship between the test model of a redefined 
method in a subclass and the original method in a 
super-class.  The principal idea of the proposed 
work is based on the matrix partitions for similarity 
testing of inheritance by constructing the domain 
partitions for specifying all cases of methods 
similarity and by proving formally the correctness 
of the model. 

Our future works are oriented to develop and 
generalize the formal model of conformity defined 
for a basic class, and to apply the similarity process 
to test the conformity in subclasses. 

REFERENCES 

[1] B. K. Aichernig and P. A. P. Salas. Test case 
generation by OCL mutation and constraint 
solving. In Proceedings of the International 
Conference on Quality Software, Melbourne, 
Australia, September 19-20, 2005, pages 64–
71, 2005. 

[2] F. Bouquet, F. Dadeau, B. Legeard, and M. 
Utting. Symbolic animation of JML 
specifications. In International Conference on 
Formal Methods, volume 3582 of  LNCS, 
pages 75– 90. Springer-Verlag, July 2005. 

[3] Mohammed Benattou, Jean-Michel Bruel, and 
Nabil Hameurlain. “Generating Test Data from 
OCL Specification”. In Proceedings of the 
ECOOP'2002 Work-shop on Integration and 
Transformation of UML models 
(WITUML'2002), 2002. 



Journal of Theoretical and Applied Information Technology 
 15th December 2012. Vol. 46 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
470 

 

[4] Khalid Benlhachmi, and M.Benattou, and Jean-
louis Lanet. “Génération de Données de Test 
Sécurisé à partir d’une Spécification Formelle 
par Analyse des Partitions et Classification”. In 
Proceedings of the 6 th  International 
Conference on Network Architectures and 
Information Systems Security  (SAR-SSI 2011) 
,May 18-21,2011,La rochelle ,France. 

[5] Khalid Benlhachmi, and M.Benattou.”A 
Formal Model of Similarity Testing for 
Inheritance in Object-Oriented Software”.In 
Proceedings of the 2012 edition of the IEEE 
International Conference (CIST’2012) 
,October 24-26,2012, Fez, Morocco. 

[6] Yoonsik Cheon and Carlos E. Rubio-Medrano. 
“Random Test Data Generation for Java 
Classes Annotated with JML Specifications”. 
In Proceedings of the 2007 International 
Conference on Software Engineering Research 
and Practice, Volume II, June 25-28, 2007, 
Las Vegas, Nevada, pages 385-392 

[7] Gary T.Leavens , “JML’s Rich,Inherited 
Specification for Behavioral Subtypes”, 
Department of Computer Science Iowa State 
University ,  August 11,2006. 

[8] Robet Bruce Findler , and Mario Latendresse , 
and Matthias Felleisen ,“Behavioral Contracts 
and Behavioral Subtyping”, Foundations of 
Software Engineering , Rice University , FSE 
2001. 

[9] Barbara H. Liskov and J. M. Wing , 
“Abehavioral notion of subtyping” , MIT 
Laboratory for Computer Science, Carnegie 
Mellon University, ACM Transactions on 
Programming Languages and Systems,Vol 16. 
No 6, November 1994, Pages 1811-1841. 

[10] Gary T.Leavens , Krishna Kishore Dhara , 
“Concepts of Behavioral Subtyping and a 
Sketch of their Extension to Component-Based 
Systems” , In G. T. Leavens and M. Sitaraman, 
editors, Foundations of Component-Based 
Systems ,2000. 

[11] Liskov, B. H. and J. Wing. “Behavioral 
subtyping using invariants and constraints ”. 
Technical Report CMU CS-99-156, School of 
Computer Science, Carnegie Mellon 
University, July 1999. 

[12] Liskov, B. H. and J. M. Wing.“A behavioral 
notion of subtyping ”. ACM Transactions on 
Programming Languages and Systems, 
November 1994. 

[13] Meyer, B. “Object-oriented Software 
Construction”. Prentice Hall, 1988. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


