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ABSTRACT

The work presented in this paper is devoted tobéistathe theoretical model for the evaluation loé t

behavior of redefined methods in a subclass wighltehavior of the original methods in the supessla

using the inheritance mechanism. We analyze yirkbw a redefined method can use the specificatfon

its corresponding method in the super-class. S#gpwe present the relationship between the testah

of a redefined method in a subclass and the otigneghod in a super-class. Our approach proposesva

concept which compares the behavior of methods, gives the conditions where this comparison can

induce a similar behavior.

Keywords-Inheritance, Formal Specification, Conformity Te§pnstraints Resolution, Valid Data,
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1. INTRODUCTION to the well defined constraints can be generated
randomly or using constraints resolution.
Formal methods have the potential to improve
both quality and productivity in software In [4], we present the definition of a formal
development, and to circumvent expensivenodel of constraint, illustrating the relationship
problems in traditional development practices, tdetween pre-condition and post-condition of
enhance early error detection, to enable formahdividual methods of a class, and then we have
modeling and analysis, and to facilitate verifigpil shown how the invariant of a class can be used as a
of implementation. Indeed, in object orientedhecessary condition for the truth of this constrain
modeling, a formal specification defines operation$Ve have formalized a generic constraint of a given
by collections of equivalence relations and is mfteindividual method of class that contains the pre-
used to constrain class and type, to define theondition, post-condition, and the invariant into a
constraints on the system states (invariant), tsingle logical formula. The given model translates
describe the pre- and post-conditions on operatiordgebraically the contract between the user (the
and methods, and to give constraints of navigatiotalling program) and the called method.
in a class diagram. OCL [1] and JML [2] seem to
be now the main used languages to formulate the The work presented in this paper allows to
constraints for an object-oriented model. extend the constraint defined in [4] for modeling
the specification of a redefined method in subclass
Software testing can be formalized andusing inheritance principle. This work extends our
quantified when a solid basis for test generatiem ¢ basic model [5] for similarity testing of inheritza
be defined [3]. In this context a number ofby constructing the domain partitions for specifyin
researches focus on extract test data from a formal cases of methods similarity and by proving
specification. The test data generation uses tHermally the correctness of the model. The main
constraints that are defined as restriction on @ne objective is to establish theoretical model allagvin
more values in object-oriented model. Most testinthe evaluation of the behavior of redefined methods
methods attempt to test the conformity of classh a subclass with the behavior of the original
implementation from its specification using themethods in the super-class.
values domain defined by the constraint rules on
the individual operations and methods. The We analyze firstly, how a redefined method can
generated data from the values domain with respease the specification of its corresponding methmod i
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the super-class. Secondly, we present the overriding methods that are improperly synthesized
relationship between the test model of a redefinefdlom the original contracts of programmer in all of
method in a subclass and the original method in the existing contract monitoring systems.
super-class. Our approach proposes a new concept
which compares the behavior of methods, and gives The work is based on the notion of behavioral
the conditions where this comparison can induce sub-typing; it demonstrates how to integrate
similar behavior. contracts properly, according to the notion of
behavioral sub-typing into a contract monitoring
This paper is organized as follows: in section 2ool for java.
we present a related works and similar approaches
for generating test data from a formal In [9], the authors treat the problem of types and
specification, in section 3 we describe theoreticaubtypes with behavioral specifications in object-
aspects of our test process, and we define a formafiented world. They present a way of specification
model of similarity constraints, in section 4 wetypes that makes it convenient to define the subtyp
define the matrix partitions deduced from theelation. They also define a new notion of the
formal model and show how these partitions can bsubtype relation based on the semantic properties o
used to test the similarity of the redefined methodthe subtype and super-type. In [10], they examine
in section 5 we present how the testing formalarious notions of behavioral sub-typing proposed
model can be used to generate data of the the literature for objects in component-based
similarity test, and finally we describe our apprioa systems, where reasoning about the events that a
with an example of similarity testing for an objectcomponent can raise is important.
oriented model.
All the proposed works concerning the
2. RELATED WORKS generation of test data from formal specification o
to test the conformity of a given method
Most works have studied the problem ofimplementation, are focused only on constraint
relating types and subtypes with behaviorapropagation from super to subclass related to
specification in an object-oriented paradigm. Thesgybtype principle. The work presented in this paper
proposed works show how the contracts argroposes a new approach for testing the redefined
inherited when a method is redefined in a sub-classethods in subclasses using the basic specification
and how the testing process can use the formgl super-classes, and allows specifying system
specification. behavior by constructing a model in terms of

_ mathematical constructs.
In [5] we develop a basic model for the concept

of methods similarity, the test is based only on a3. FORMAL MODEL OF CONSTRAINT
random generation of input data.

This section presents a formal model of the

In [6], the authors propose to generate randomiyeneralized constraint defined in [4] which
test data from a JML specification of objects clasgrovides a way of modeling the specification of a
They classify the methods and constructorgedefined method by inheritance from a super-class.
according to their signature (basic, extendefhdeed, the object of this section is to estabish
constructors, mutator, and observer) and for earies of theoretical concepts in order to create a
type of individual method of class, a generation oéolid basis for comparing the behavior of redefined
test data is proposed. In [7], the paper describggethods in a subclass and the behavior of the
specially the features for specifying methodsgriginal methods in the super-class.
related to inheritance specification , it shows how

the specification of inheritance in JML forcess 1 Eormal Model Of Constraint For A Basic
behavioral sub-typing. Class

We present in [4] the definition of a formal
odel of constraint, illustrating the relationship
etween the pre-condition, the post-condition of a
ethod and the invariant of the class. We use the

ame notation used in [4]: B the precondition of
fhe method m, Q is the post-condition of the same
method and Inus the invariant of the class C..

The work presented in [8] shows how to enforce
contracts if components are manufactured fro
class and interface hierarchies in the context
Java. It also overcomes the problems related
adding behavioral contracts to Object-Oriente
Languages, in particular, the contracts o
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Let C be a class, and m be a method of n The method m and its redefinition in the
argumentsx=(x , % ,..., %) . We define for each subclass € will be denoted respectively by'fh ,
argument; its domain of values;E m(©?

We denote E=EEyx...E, the domain of input (P“Y, QY |invc;) denote respectively the pre-

vector of the method m. We have defined in [4] theondition, the post-condition of the basic method
generalized constraint H of a method m of class @Y, and the invariant of C

as a logical property of the pair (x,opith x the (P©? ,Q“?Invc,) denote respectively the pre-

vector of parameterand o the receiver object suchcondition, the post-condition of the redefined
that: method rff?, and the invariant of the class C

H(x,0) : P(x,0) = [Q(x,0) Alnv (0) ],(x,0) €E X 1.  The results of this paragraph are based on theswork
of Liskov (Principle of Substitution) [11,12] and

Where/. is the set of instances of the class Meyer [13] who have studied the problem relating
to types and subtypes with behavioral specification

Indeed, the invocation of a method m ish an object-oriented paradigm. These works show

generally done by reference to an object o aridhat the contracts are inherited when a method is

consequently, m is identified by the couple (x,oyedefined in a sub-class,C Indeed, a subclass

The logical implication in the proposed formulamethod rff? must:

means that: each call of method with (x,0)

satisfying the precondition P and the invariant = Accept all valid input to the super-class method

before the call, (x,0) must necessarily satisfy th m©Y.

post-condition Q and the invariant Inv after the = Meet all guarantees of the super-class method

call. In the context of this work, we assume thatt m(©Y.

object which invokes the method under test is valid

(satisfying the invariant of its class), therefottee Consequently, the precondition of redefined

objects used at the input of the method areperation ff”in subclass €must be equal to or

generated from a valid constructor. weaker than the precondition of corresponding
operation rfY in super-class CTherefore, we

This justifies the absence of predicate Inv of th®ave:PC2 < (PCD v a) (1)

object o before the call to m in the formula H

(Figure 1). Whereq is the predicate added by the redefined
method m in @.Thus the precondition of m in,G&
formed by two constraints:‘® inherited from the

, basic class Canda the specific precondition of
Input : P(x,0 Output :Q(Xx,0)A Inv(o
p ( 2 p: Q(x,0)A Inv(0) m€2

Figure1. Specification Of A Method The post-condition of a redefined operatioffn
must be equal to or stronger than the post-comditio
of corresponding operation™ in super-class €

The evaluation of the constraint H (for all (x,d9)

done in two steps: Thus, we haveQ(€) & (Q(CDA B) (2)
* In the Input of m, the evaluation of P(x,0). Wherep is the predicate added by the redefined
= In the Output of m, the evaluation of Q(x,0) andnethodm©? .
Inv (0).
Thus the post-condition of m in,Gs formed by
3.2. Formal Model Of Constraint For two constraints: €% inherited from the super-class
Inheritance C, andp the specific post-condition of 7.

The purpose of this paragraph is to establish Bhe class invariant Iry of the sub-class nust
series of theoretical rules and definitions in orle  be equal to or stronger than the class invarian;In
evolve the constraint H of a method m of a supewf the G.
class during the operation of simple inheritance.

We consider a method m of a class which Thus, we haveinve, < (Inver A A) (3)
inherits from a super-class;Guch that m is Wherejis the predicate added by the sub-clags C
redefinition of a method of C
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Thus the invariant of £ is formed by two
constraints: Iny; inherited from G and A the > x000)=1
specific invariant of g. —p>= M
P(C(x0,00)=1 e [NV c1(00) =1

Based on the definition of the generalized 2 e 02 X000 =0

i . > m~*
constraint, we have for (X,@ E X lc; : PNV ci(09)=1
H(CD(x,0) : PCDO(x,0) = [QCD(X, 0) Alnve (0)] :
The generalized constraint of the methd'h Figure 3. Example Of Non-Similarity

And for (x,0)e E X I, :

HC(x,0) : PC(x,0) = [QD (X, 0) Alnvez (0)] :
The generalized constraint of the meth@d2) .
Using (1),(2),(3) the constraint of TR will have
the following form :

HC) : (PCOVa) = [(QEDAB) A(InveiAL)]

Our approach will rectify these types of problems
by defining a new concept which compares the
behavior of the methods‘fand n{“?relatively to

the common specificationindeed, the original
method in the basic class must evolve in subclasses
with the condition that its behavior relativelyttee

3.3, Formal Model Of Constraint For Similar basic specification is similar to the original viers
Methods This comparison can define a certain degree of

We propose in this section the definition of a,ompaibility that will make it possible to estadbii
new concept to study the compatibility between thg |ogical relationship between the mathematical

redefined methods and original methods in thg,nqel of the basic method and model of the
super-class. redefined method in a subclass. Consequently, in

The objective is to find a relationship between thﬂgure 4 we must have for each pair (x,0) of input
constraint K2 of m®? and the constraint® 425 = wherea'a b' b are Boolean values.

of m©?,
The two constraints H(D : (Pt c1 ~ 0x.00=2
:(PCED =(QEC Alnvey)) > mct
and HE :(PCD v o) = (QCD A Invei ABA L) PCY(x.0) e [NV 1(0)=E
have common predicates (P({,Q(CD,Inv¢;) R = e Q(“Y(x,0)=20" ('= @)
(Figure2). i B Pe= |V 1(0)=b"('=b)
In: PCL (x,0) == me out : @°Y(x,0) Figure 4. Condition Of Similarity
el e— ey s
1) fp A Inve: (0) Definition 1: (Similarity of methods)

A method nf? of a class € inheriting from the
class G is similar to the method fiP relatively to
the basic specification ®”, QY | Inve, ) if :

Figure 2. Common specification wf“Y and m©?

To compare two formulas £ and H®?, we
aTglI)yze at flrcszt), the pehawor of the two methods _ (c)) is redefined by 2
m and mM relatively to the common - For each pair (x,0% E X I
sp(e|C|f|tclf]at|on EF |g|ure 2). 6 3. the fixed .QYx,0) (respectively Iny(0)) has the same
n the particular case of gure 3, e NIXed paify, v, \ajye in output of MY and in output of 2.
(X0 ,00) Of ExIc, satisfies the basic precondition at
the input of nfY and n? (PFY(xo ,00)=1 ),
however the basic post-conditioh°®(x,,0,) takes
a true truth-value at the output ofh and a false

The problem raised above by the logical
mathematical will have a solution if the studied

truth-value at the output of @ : this means that methods are similar relatively to their common

the same logical predicate for the same value ?S,}‘]);ﬁggzt'%%arlgderﬁ%%’inwgascsc;nssge;néwé_ \s/\llnenlar
(x,0) ((x,0)=(%,00)) can be True and False at th '

: €determine the logical equation betweeff?Hand

same time. HED

Using the following result:
[Qvb)=(cAnd)]=[(a=0)]

at a,b,c,d are logical predicates for find

relationship between & and H*Y .

This type of situation makes impossible to
establish a logical relationship between th
theoretical model of the original method“Mand Such th
the model of f¥? in the subclass (Figure 3).
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We apply this result on the four predicates: The partition (A, By, By, B3) of input domain
PE), a, (Q DA Inve), (BAA): Exlc for a method defines the elements which

Therefore, we have the following result (R): satisfy the precondition (i.e. the valid domain).

[H(C2) HCD] (R)

These domains of partition can be reduced if we

4. PARTITION ANALYSIS consider the classification of methods, (@, M ,
O) defined in [6]. The results of this paragrapl ar
The analysis of the input domain of a method iapplied essentially to constructors and methods of
a crucial step in the implementation of testshasic class.
Indeed, this analysis allows dividing the domaims t
locate the potential data which can affect the tegt2. Similarity Partition
problem and allows to make a specific reasoning We propose in this paragraph a matrix partition
for each partition in order to identify the anoreali of the input domain for a method ‘4 in a
origin. In [4], we show how the constraint H maysubclass, the aim of this matrix partition is to
be used in the generation of domain partitions fasompare the compatibility betweer{“®and m?
each type of methods according to the classificatiorelatively to the basic specification.
proposed in [6]. This analysis of partition mainly
concerns constructors and methods defined in For each input data (x,0) of the metho&7n, we
class without taking into account the inheritancéssociate a square matrix of size 2 x 2 with Boolea
relationships between classes. values (0 orl ) which represents the four possibl
values for the quadrupleta,b, &, b’) (Figure 4).
The methods in subclass, during the operation

of inheritance, are tested by a matrix partitionDefinition 2: (Similarity Application)
partition of similarity. This is a way to divide eéh
input common domain of the two methods and t
generate input data aimed at comparing th
compatibility of a redefined method with the
original version in a basic class relatively toithe
common specification.

g\/e define the application Similarity that assodate
gach pair (x,0) of E %} to its similarity matrix :

Similarity: E X Icz — M 2 ({0,1})

(vo)>Similarity(0)=(*11 Sizywith s,; (0.1}

. o S21 S22
4.1. General Analysis Of Partition

The partition analysis of a class method aims tg,, = The truth-value of €%(x,0) after the call of
construct domains of input values and to generajg(cd

test data, this analysis can simplify the testing,= The truth-value of Iny(0) after the call of
methodology. Indeed, the generalized constraint Rh(C

is used in the partitioning process for extracting s, = The truth-value of ¢%(x,0) after the call of
possible cases of test values . In [4], we pro@osem(©c

partition (A,B) of the input domain Exlof a g =The truth-value of Inw(o) after the call of
method in a basic class C. This partition is based (¢
the truth cases of the constraint H:

The first row (g1, Si2) of the matrix corresponds to
A={(x0) €E xIc /H(x,0)=1} the original method, and the second row (S;)
And  B={(x,0) €E X Ic/ H(x,0)=0} corresponds to the redefined method .
Then, A can be divided into two subsetsakd A::
A1={(x,0)EEXIc/(P(x,0),Q(x,0),Inv(0))=(1,1,1)}  We deduce that i and ni“®are similar only if:
And the partition A of the invalid domain: for each input data (x,0) the two rows of the matri
Az= {(x,0)€EXxIc/(P(x,0),Q(x,0),Inv(0))=(0,7?7)}  Similarity (x,0) are identical :

For the domain B , we deduce the following three (s11, 512) = (S21,522)
partitions :

We divide E x ¢, on two subset Sim , NotSim :
Bi={(x,0)€ExIc/(P(x,0),Q(x,0),Inv(0)) =(1,1,0)}.
B.={(x,0)€EXIc/(P(x,0),Q(x,0),Inv(0)) =(1,0,1)}- The elements of Sim satisfy the constraint of
B3z={(x,0)€EXIc /(P(x,0),Q(x,0),Inv(0)) =(1,0,0)}. similarity.
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The elements of NotSindo not satisfy this E x Icp
constraint. /\
We divide Sim on four domains (Figure 5): Sim NotSim
Simy,Sim;, Simz , Simg : M\ /\
NotSim,

Sim; ={(x,0) €E X Iz /Similarity(x,0) = (1 1)}
Sim, ={(x,0) €E X I, /Similarity(x,0) = (1 8) 1
Sims ={(x,0) €E X I¢; / Similarity(x,0) = (g D 1
Sim, ={(x,0) €E X I¢; / Similarity(x,0) =(g 8) 1

Then, we divide NotSim on NotSinand NotSim :
The elements (x,0) of NotSimdo not satisfy the
constraint of similarity and verify :

[(Q®Yx,0) = 1 and Inw(0) = 1) after the call of
m©2)] .

This induces three possible cases corresponding

the following three parts of NotSingFigure 5):

0y}
)
NotSim12={(x,o)EEXIcz/Similarity(x,o)=(1 0)}
1 1
NotSim13={(x,0)EExIcz/Similarity(x,0)=(0 1)}
1 1

NotSim11={(x,o)EExIcz/Similarity(x,o)=(0
1

We deduce that the elements of NotSgatisfy the
necessary condition:

V(x,0) EE X Ic2 : [(%,0) ENotSim; ]
=
[(QCD(x,0)= 0 or Invci(0) = 0) after the call of
m(]

The elements (x,0) of NotSido not satisfy the
constraint of similarity and constitute the resdes
This induces nine cases distributed on subsets
NotSim, (Figure 5):

Simy Sim, Simg Sim, ~ NotSim,

Notﬂ\

NOtSim13
NotSimi»

NotSim,g

NOtSimzz
NOtSile

Figure 5. Similarity Tree

NotSim21={(X,0)EEXICZ/SimilaritY(X’O)z((l) é)}
NotSimz.={(x,0)€ExIc2 /Similarity(x,0) =(é (1))}
NOtSimB:{(}(,O)EExIcz/Similarity(x,0)=((1) é)}

NotSim24 ={(x,0)EEXIc2/Similarity(x,0)'=

/N N
O R =

NgtSimzs ={(x,0) €EXIcz/Similarity (x,0)=
NotSimzs={(x,0)EExIcz/Similarity(x,0)=(

o o
(=R
—
—

NotSimar={(x,0) EExIcz/Similarity(x,.0)=(

o RO O
o O O
N—
o— o

NotSimzs={(x,0) EEXIc2/Similarity(x,0) =(

NotSim29 ={(x,0) EExIcz/Similarity(x,o)=((1)

We deduce that the elements of NotSsatisfy
the necessary condition:
V(x,0) € E X Iz : [ (x,0) ENotSim; |
=
[(QD (x,0) = 0 or Invcy(o) = 0) after the call of
m(C2)]

5. SIMILARITY TESTING

The formal model of test proposed in [4] defines
the notion of method validity in a basic class.sThi
model is a way to generate test data for conformity
The testing process proposed in this section
compares the compatibility between a redefined
method in a subclass and its original version & th
super-class. Our approach will be evaluated by
implementing the algorithm of similarity testingrfo
inheritance.

5.1. Formal Model Of Test For A Basic Class

In [4], we test the conformity of methods in a
basic class without taking into account the
inheritance relationship: the model of test gereerat
random data at the input of a method using

466



Journal of Theoretical and Applied Information Technology
15" December 2012. Vol. 46 No.1 B

© 2005 - 2012 JATIT & LLS. All rights reserved-

" A mmmm—
S/ i1l

ISSN:1992-8645 www.jatit.org E-ISS1$17-3195
elements of the valid domain which satisfy the dof
precondition of the method under test. dof
for(x iin nm® parameter)
The test algorithm is based on the partition; ;@\ X:(X{Xll‘xzzygf?xe:;te (B0}
,B> ,B3) , this test stops when the constraint H 0 = generate_object(C 2);
becomes False (H(x,0)=0) or when the maximum ~ Jwhile(t © P (x,0));
threshold of the test is reached with H satisfied. (x,0)=copy(x0),
invoke"o. M (x)";
o . S$1=@V(x,0);S 1= I nva(o);
Definition 3: (Valid method) (x,0)=copy(x',0");
) ) . invoke"o. M@ (x)";
A method m of class C is valid or conforms to its S$u=F M (x,0);S 2=l nva(0);
specification if for each (x,0 ExlIc , the constraint (x,0)=copy(x',0);
H is satisfied : if( (_511, S12) =(S21, S22 ) )
’ Sim.add(x,0);
V(x0) EEXIc:H(xo0) =1 elseif( (21, 522) €{(0,0), (0, 1), (1,0)})
NotSim ,.add(x,0);
With o the receiver object and the parameters else
vector. NotSim ;.add(x,0);

twhile(Sim.size()<N
. R L. L && NotSim 1.isEmpty()
Using the definition 3, a method m is invalid if: && NotSim ,.isEmpty());

A(x,0) €EE X I.: H(x0)=0
ie. 3(x0)€E xI.:(x0)€B; UB; UB3

5.2. Similarity Test Figure 6.Similarity Test Algorithm of a

The results of the last paragraph are applied to Redefined Method
the methods without considering the inheritance
relationship. In this section we test the simijaof The test stops when we find a pair (x,0) for

a redefined method with its original version. Thisynich the two rows of the matrix Similarity(x,0)

operation compares the behavior of the twQre not identical. In this case, the method§m
methods relatively to their common specification. 5,4 12 are not similar relatively to the inherited

S ) specification.
The similarity test generates random input data
which satisf)y the basic precondition of both |t e reach the threshold N of test without
methods (F"(x,0)=1) and compares at the outpUigentifying a difference between the two rows for
of each method théehavior relatively 10 the eyery matrix Similarity, we may admit with a
common specification (Figure 6). rejected error margin (the limit N must be

, , sufficiently large (N, «)) that the methods fiP
In the algorithm of figure 6 , we choose A3nd ni? are similar.

threshold of test N and we generate randomly the
pairs (x,0) € Exlc,  which satisfy the basic 53 Eyaluation
precondition B, and for each (x,0) we compare
the truth-value of the basic post-conditioff Qfor implementing the algorithm of similarity testing fo
this (x,0) at the output of ¥ and n? ,at the | neritance

same time we compare the truth-value of the basic '
invariant Inycy) at the output of fi” and n*?

We evaluate the correctness of our approach by

As is indicated above, the similarity test of a

, redefined method in sub class requires passing
We assume that the objects used are generalggl,,gh a test of a basic constructor in orderse u
from a valid constructor of the subclass, and thg,s yalid objects in testing process.

three sets Sim , NotSim NotSiny are initialized

to ¢ for each call of the algorithm. We consider for example of the similarity test

for inheritance the methods deposit and withdraw
of the class Accountl and Account2 described in
figure 7 and figure 8:
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class Account 1

protected double bal;/* bal is the
account balance*/

public Accountl(double x1){
this.bal=x1;}

public Accountl (Accountl x1){

In order to test the similarity of deposit methals
class Accountl and Account2, we generate
randomly x and the balance values in the interval
]-200,200[with the threshold limit N=100(Table 1).

Table 1. Result of a similarity test of the deposit

private double InterestRate;

b.lljblic Account2(double x1, double x2)
{super(x1);this.InterestRate=x2;...}

X2,...)

{ super(x1); this.InterestRate=x2;...}

public void deposit (int x1)

{super.deposit(x1);

if (x1 >=(this.bal/2))

this.bal=this.bal+(this.InterestRate)*

x1;

InterestRate=InterestRate*(1.25);}

public void withdraw (int x1)
{super.withdraw(x1);

if (x1 > bal)

this.bal=this.bal-

(this.InterestR ate )*x1;

public Account2 (Accountl x1,double

Figure 8. Account2 class

« Similarity test of deposit” and deposit?

The constraint /Y of the deposit method in the
class Accountl in an algebraic specification wit

X= Xq
P(x,0): ( x1>10)

QM(x,0): (balance(o)) =balance(ow)))

Inv1(0): balance(o) =0

The constraint @ of the deposit method in

this.bal=x1.bal:} methods
public void transfer(int x1,Accountl erat
x2\... eration (1),
pu)b{lic } i withdraw (int x1){ numper: | % © R
this.bal=this.bal - x1;} 1 21 Account2(74,0.2) 1 Sim
public void deposit (int x1){ 2 45 Account2(130,0.1) 1 Sim
this.bal=this.bal + x1;} 3 183 Account2(167,0.23) 1 Sim
}
Figure 7. Accountl class 98 79 Account2(112,0.14) 1 Sim
99 101 Account2(87,0.11) 1 Sim
class Account 2 extends Accountl 100 157 Account2(142,0.28) 1 Sim

The test result shows that for 100 iterations the
size of the set Sim is exactly the threshold liofit
the test, this leads to the conclusion that the
deposit” and deposit are similar relatively to the
basic specification (Table 1).

« Similarity test of withdraw ™ and withdraw ®

The constraint B of the withdrad? in an
algebraic specification with x =1 x
PM(x,0): (0 < x1 < balance(o) )
QM (x,0): (balance(o()) <balance(ow)))
Inv(0): balance(o) =0

The constraint @ of the withdraw? :
P®@(x,0): (PM(x,0))
Q®@(x,0):(QMW(x,0) A(balance(o()) €
{(balance(ow))—x1),(balance(ow))—(1+InterestR
ate) X x1)})
r{nvz(o):
(' balance(o) = 0) A (0 <InterestRate(0) < 0.3)

The test of similarity for withdraw methods in
class Accountl and Account2 with the same
conditions as deposit gives the following results
(Table 2)

class Account2 in an algebraic specification with Table 2. Result Of A Similarity Test Of The Withdra

X= Xg

P®@(x,0): (PM(x,0) VO < x1 <10)
Q®@(x,0): QW(x,0) A [ balance(o()) €
{(balance(ow)) + x1) , (balance(ow))
+(1+InterestRate) X x1)} ]

Inv,(0): ( balance(o) = 0) A

( 0 <InterestRate (0)<0,3)

Methods
Iteration | _ o
number: [X =X O P™(x,0)| (x,0) 7
1 105 Account2(146,0.02) 1 Sim
2 37 Account2(87,0.13) 1 Sim
3 73 Account2(93,0.21) 1 Sim
4 141 Account2(188,0.17) 1 Sim
5 52 Account2(61,0.2%) 1 NotSim

Where @, and q, are respectively the object o
after and before the call of the method.

s
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As is shown in table 2,the methods withdf@w Withdraw”, but the same pair does not satisfy the
and withdraw? are not similar, the pair (x,0)=(52 , basic invariant after the call of Withdr&.
Account2(61 ,0.25)) in the iteration 5 does nowWe can conclude that the methods withdfawand
satisfy the constraint of similarity : Withdraw® are not similar relatively to the basic
Similarity (52, Account2 (61,0.25)) = (1 1) specification ( £, QY, Invy) .

1 0

« Analysis with proof 6. CONCLUSION

The approach of this paper proposes a new

we use _?n _fnafly\/ﬁ_?h\évnr\\ﬂ;?)r 002 t\(/)v_?hedmov?ﬁgrate th oncept of test which represents a way to compare
non- simitarity of Yithdraw ~an itharaw-". . the behaviors of methods in sub-classes and their

For a value of (x,0) that satisfy the basic_ . . . . : :
precondition (Iﬁi)(x,o)=1) of the method original versions in the super-classes for an dbjec

. 2) ' oriented specification. The test process gives the
W|th(;:ir<aV\f <v¥)e1have. _ conditions where the comparison can induce a
[0 = x: <balance(0)], x=x similar behavior. The result of this test constitua

solid basis to reuse the inherited specifications i

We study for example the truth-value of thethe sub-classes

basic invariant after the call of methods Withdfaw
and Withdraw, for this we look for a necessary
condition satisfied by the basic invariant aftee th
call of Withdraw? .

We analyze firstly, how a redefined method can
use the specification of its corresponding methmod i
the super-class. Secondly, we present the
relationship between the test model of a redefined
method in a subclass and the original method in a
super-class. The principal idea of the proposed
work is based on the matrix partitions for simiari
Casel:[0 < x; <(1/2).balance (op))] testing of inheritance by constructing the domain

) _ @ ) W partitions for specifying all cases of methods
The behaviors of Withdraw and Withdraw’ are  gimijlarity and by proving formally the correctness

identical relatively to the basic specification,qf the model.
Indeed, analysis with proof of this methods shows

Using the relation[0 < x; <balance(o)], we
have two cases to be treated:

that the condition of the block *if is not satisfied Our future works are oriented to develop and
,and consequently we have (Figure 8): generalize the formal model of conformity defined
balance(o()) = balance(ow)) — x1 for a basic class, and to apply the similarity s

to test the conformity in subclasses.
Case2[(1/2).balance (o)) < x1 <balance (og))]
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