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ABSTRACT 
 

This paper presents a new PSO-based optimization DBSCAN space clustering algorithm with obstacle 
constraints. The algorithm introduces obstacle model and simplifies two-dimensional coordinates of the 
cluster object coding to one-dimensional, then uses the PSO algorithm to obtain the shortest path and 
minimum obstacle distance. At the last stage, this paper fulfills spatial clustering based on obstacle 
distance. Theoretical analysis and experimental results show that the algorithm can get high-quality 
clustering result of space constraints with more reasonable and accurate quality. 
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1. INTRODUCTION  
 
Spatial clustering has been an important data 

mining field of research. At present, the current 
clustering methods are dividing methods, 
hierarchical methods, density-based methods, grid-
based methods, genetic algorithm, fuzzy method, 
rough set, and some clustering algorithms also 
integrate with a variety of methods. However, these 
clustering algorithms ignore the existence of many 
constraints in the real world, and constraints will 
affect reasonability of clustering results, such as 
rivers, roads, etc., as shown in Figure 1. Due to the 
obstacle, the two spatial points close to each other 
may not belong to the same cluster. In previous 
work, only a few algorithms in the clustering 
process considered the impact of the obstacles. 
However, there are many shortcomings in the 
aspect of efficiency and quality. Therefore, in order 
to improve the practicality of clustering, it is not 
only very important to study the space clustering in 
constraint environment but also practical in the real 
world environment. 

 

(A)The Distribution Of Points And Obstacles   (B) 
Clustering Regardless Of Obstacles   (C) Clustering 

According To Obstacles 

Figure 1: Space Clustering With Obstacle Constraints 

To solve the above problem, this paper proposes 
a new spatial clustering algorithm with obstacles 
constraints (PSODBSCAN). This method integrates 
PSO (Particle swarm optimization) global 
optimization ability with local search features of 
DBSCAN algorithm, and uses particle swarm to 
optimize the shortest obstacle distance iteratively, 
not only taking into account of shortcomings of 
DBSCAN clustering algorithm, but also taking full 
account of the real obstacles, thus makes the results 
of clustering more meaningful. 
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2. DBSCAN CLUSTERING WITH 
OBSTACLE CONSTRAINTS 

2.1 Classic DBSCAN Clustering Algorithm 
DBSCAN algorithm is a density-based clustering 

method with high-quality, and applicable to 
geometry clustering of any shape and size, which 
can automatically determine the number of clusters, 
and separate clusters with environmental noise 
effectively. At first we need to introduce the related 
concepts of DBSCAN algorithm: 
Definition 1: (Core Point) Point has at least 
MinPts  objects in Eps neighborhood. 
Definition 2: (Boundary Point) Point in the core 
object’s Eps neighborhood, but not meets the 
requirements of core object. 
Definition 3: (Directly Density-reachable) A point 
p is directly density-reachable from a point q  if 

( )andp NEps q∈                   (1) 

( )NEps q MinPts≥︱ ︱                 (2) 
Definition 4: (Density-reachable) A point p  is 
density-reachable from a point q if there is a chain 
of points 1 2 1n nPP P P Q P P… = =， ， ， ， such that 

1ip +  is directly density-reachable  from ip . 

DBSCAN algorithm efficiency depends on 
neighbor query and requires inspect each point in 
data set by checking the neighborhood of each 
point to find cluster. If a point is a core point, then 
DBSCAN creates a cluster centered by this point 
and find directly density-reachable points. The 
algorithm's time complexity is 2( )O n , where n is 
the number of points in data sets. If using spatial 
index, DBSCAN algorithm's time complexity 
is ( log )O n n . 

2.2 Improved DBSCAN Clustering Algorithm 
With Obstacle Constraints 

When traditional DBSCAN algorithm measures the 
distance of point P and point Q , it uses the 
Euclidean distance to calculate straight-line 
distance between two points, which will be 
unreasonable in the case of obstacles. The existing 
of obstacles usually makes point P and point Q  
not visible to each other, that is the connection line 
of point P  and point Q  could intersect with 
obstacles. This paper uses particle swarm algorithm 
to optimize the obstacles path, and defines the 
minimum obstacle distance between point P  and 
point Q  is the shortest path value of point P  and 
point Q  bypass all the obstacles. 

Meanwhile, due to the shortcoming of difficulty 
in discovering clusters with large density 
difference, this paper uses partition-based 
DBSCAN clustering method, that is to cluster 
based on the spatial density distribution of points. 
Thus, when facing the problem of uneven 
distribution of data density and cluster density, it 
will select a smaller value which results in a more 
dilute Eps cluster divided into multiple similar 
clusters, and at the same time selecting a larger 
Eps  value will not ignore the differences of larger 
density. 

3. PSO-BASED DBSCAN ALGORITHM 
WITH OBSTACLE CONSTRAINTS 

3.1   Particle Swarm Optimization Algorithm 

PSO (Particle swarm optimization) is an 
evolutionary computation technique, and firstly 
introduced by Kennedy and Eberhart in 1995. 
Similar to genetic algorithm, the study of birds prey 
behavior is an iteration-based optimization tool. In 
the PSO algorithm, each optimization problem 
solution is a bird in the search space, and is 
abstracted as particles in the N-dimensional space. 
Particle i in the position of N-dimensional space 
represents a vector, and the flight speed of each 
particle is also a vector. Currently, PSO algorithm 
has been widely used in function optimization, 
neural network training, fuzzy system control and 
other applications of genetic algorithms. 

PSO initializes to be a group of random particles 
(random solutions), and then finds the optimal 
solution iteratively. Assuming in d-dimensional 
search space the position and velocity of i particle 
is ,1 ,2 ,( )i

i i i dX x x x=   and ,1 ,2 ,( )i
i i i dV v v v=   

respectively, and during each iteration, particles 
update themselves by tracking the two "extreme 
value”. One extreme is the best particle solution of 
itself, which is the individual extreme pbest , and 
the other extreme is the optimal solution of the 
current group, which is the global 
minimum gbest . When PSO finds out these two 
optimal values, each particle updates its own pace 
and the new location according to the following 
formula: 

, , 1 1 , , 2 2 , ,( 1) ( ) [ ( )] [ ( )]i j i j i j i j g j i jv t wv t c r p x t c r p x t+ = + − + −     (3) 

, , ,( 1) ( ) ( 1), 1, 2, ,i j i j i jx t x t v t j d+ = + + =     (4) 
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In the formula 1c and 2c are positive learning 
factors, generally being equal to 2, at the same time 

1r  and 2r are uniformly distributed random numbers 
between 0 and 1. This paper uses random weight 
factor method, setting w  to a random number with 
random distribution, which can overcome the 
shortcomings caused by the linear decrease, that is: 

* (0,1)
min ( max min)* (0,1)

w N
rand

µ σ
µ µ µ µ
= +

 = + −
 (5) 

In the above formula, (0,1)N is standard random 
number with normal distribution, and (0,1)rand  is 
random number between 0 and 1. maxµ  is the 
maximum value of random weighted w ’s average 
value. σ  is the variance of w ’s random weight, 
setting  to be 

max 0.8µ = , min 0.5µ = and 0.2σ = . 

3.2 Obstacle path optimization based on PSO 
Obstacles will inevitably affect the spatial distance 

between objects, which directly affects the 
clustering results. When it comes to obstacles, the 
main solution methods are: view method, grid 
method, neural networks, artificial potential field, 
etc. However, these methods all have the defects of 
search path complexity and inefficiency. This paper 
combined the theory of mobile robot obstacle 
avoidance path planning in the dynamic process 
with particle swarm optimization algorithm to 
calculate the obstacle distance in the clustering 
process, which achieved good results and high 
performance. 

Assume S and G  are the two objects within 
many obstacles in the clustering process. The 
mission for particle swarm optimization is to search 
a shortest collision-free path between S  and G , 
and the value of this path is the shortest obstacle 
distance between S  and G , the objective function 
of which is shown as below: 

2 2
1 1

2
( ) ( )

pn

i i i i
i

F x x y y− −
=

= − + −∑              (6) 

To accelerate the calculation speed, we firstly 
connect point S  and G  to be a line SG , and divide 
it into n  equal portions. Make vertical line of 
SG in each divide point, then get 

1 2, , ,  andL L Ln… . 
Secondly starting from point S , we connect each 
discrete points in all vertical lines, then get a set of 
discrete obstacle points 

( )1 2Obstacle _ path  , ,  ,  ...,  ,  S P P Pn G= , where 

( )  1,  2,...,  jP j n= is non-obstacle point and the 

line of jP  and its adjacent points has no obstacle 

point. At last, we set SG   as X-axis, and set the line 
through S  but perpendicular to X-axis as Y-axis, 
then create a new coordinate system X'OY', which 
will conduct coordinate transformation to deal with 
all discrete points ( , )x y  in each vertical line. 

' cos sin
' sin cos

s

s

x xx
y y y

α α
α α

−    
=     − −     

     (7) 

 
Figure 2: Coordinate Transformation Model 

In the above formula, α is the angle value of 
counterclockwise rotation of original X-axis to line 
SG , and 1 1( , )x y  is starting point S ’s coordinate in 
original coordinate system. In the coordinate 
system X'OY ', we define S  as the 0P , G  as 1nP +

, 
then simplify _Obstacle path  encoding to be: 

 
[ ]1 2_ 0 ' ' ' 0nObstacle path y y y=    (8) 

For writing convenience, if no special instructions, 
we use y  instead of y′ . Obstacles distance 
Obstacle_dist is: 

2 2
1

0
_ ( ) ( )

1

n
SG

j j
j

L
Obstacle dist y y

n +
=

= + −
+∑ (9) 

In the above formula, SGL is the length of line SG. 
The search steps of minimum obstacle distance 

calculation based on PSO are shown as follows:  
We select the obstacle distance of starting point 

S to G as fitness value. The smaller the fitness 
value, the more optimal solution obtained. Fitness 
function is shown below: 

2 2
1

0
( ) ( ) ( )

1

n
i iSG

i j j
j

L
F y y y

n +
=

= + −
+∑         (10) 
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In the above formula, i
jy presents the 

( 1,2,..., )j j n= -dimensional position of particle 
( 1, 2,..., )i i N= ; both ends of the 

constraints 0 1 0i i
ny y += = . 

In this paper, we use circles to represent 
obstacles. In the process of particle swarm 
initialization and optimization, we not only have to 
consider the boundary constraints, but also dynamic 
obstacle avoidance, so we must verify whether the 
distance between particles location in each 
dimension and the center of the obstacle circle is 
greater than the radius of distance circle. The 
distance between particles location and the center 
of the obstacle _s obdist  is: 

2 2
_ ( ) ( )

1
iSG

s ob k k j
L

dist x j y y
n

= − ∗ + −
+

    (11) 

In the above formula, ( , )k kx y denotes the 
coordinate of k  center of obstacle circle, and 

i
jy denotes ( 1, 2,..., )j j n= -dimensional position of 

particles ( 1, 2,..., )i i N= . 
In addition, we need to consider whether the line 

of each particle’s adjacent two-dimensional 
coordinates intersects with obstacles. The distance 
between the center of obstacle circle and particle’s 
adjacent two-dimensional coordinates _ss obdist  is: 

_ 2 2

k k
ss ob

Ax By C
dist

A B

+ +
=

+
         (12) 

In the above formula, ( , )k kx y denotes 
k coordinates of the center of obstacle circle, 
and , ,A B C are determined by the lines of each 
particle’s adjacent two-dimensional coordinates as 
follows: 

1

0
1

( 1) 0
1

iSG
j

iSG
j

L
A j By C

n
L

A j By C
n +

 ∗ ∗ + + = +

 ∗ ∗ + + + =
 +

         (13) 

In the above formula, i
jy denotes the 

( 1,2,..., )j j n= -dimensional position of particle 
( 1, 2,..., )i i N= . 

Obstacle path optimization based on PSO steps 
are shown as below: 

Step 1 Initialize particle dimension n , particle 
number N . Randomly initialize the position and 
velocity of each particle. In initialization process 

of 0
,i jy , not only consider boundary constraints, but 

also consider dynamic obstacle avoidance, which 
uses formula (11) and (12) to judge obstacle 
avoidance. 

Step 2 Calculate the fitness of each particle by 
fitness function (10), store particle's current 
position and fitness value in pbest, store in the 
position of best individual position and fitness 
value of each pbest  in  gbest; 

Step 3 Update particle velocity by formula(3). 
Step 4 Update particle position by formula (4), 

and consider boundary constraints and dynamic 
obstacle avoidance. 

Step 5 Update weights by formula (5). 
Step 6 As for each particle, and compare its 

fitness value with its best position pbest, if better, 
then set it current best position. 

Step 7 Compare all current pbest and gbest 
value, and update gbest. 

Step 8 Return to step 3, 4 and 5 to iterate until 
the algorithm reaches the maximum number of 
iterations or meets the accuracy requirements then 
when search stops to obtain the shortest path 

_ bestObstacle path and minimum obstacle 
distance _ bestObstacle dist . 
3.3 PSODBSCAN Algorithm with Obstacle 
Constraints 

PSODBSCAN algorithm based on particle swarm 
optimization with obstacle constraints not only 
overcomes the shortcoming of classic DBSCAN 
algorithm, but also can realize dynamic obstacle 
avoidance which can calculate obstacle distance 
efficiently. The pseudo code of the PSODBSCAN 
algorithm is shown as below: 

Input: SetObject, Eps, MinPts 
Output: Clutering result 
Algorithm: 
PSODBSCAN(SetObject，Eps，MinPts) 
{ 
  ObstaclePrint； 
For(i=1；i<=SetObject.size；i++) 
{Object=SetObjeet．get(i)； 
IF(Object．ID= =UNCLASSFIED) 
{Seed=AcquireNeighbor(SetObject，Object，Eps)
； 
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IF(! IsCoreObject(Object，MinPts，Seed)) 
ChangeID(Object，NOISE)； 
ELSE 
Cluster(SetObject，Object，Eps，MinPts，Seed)
； 
} 
} 
PrintClusteringResult; 
} 

Function ObstaclePrint draws obstacles in the 
coordinate system, and function AcquireNeighbor 
(SetObject, Object, Eps) returns all the neighboring 
objects of Object within Eps, and function 
IsCoreObject (Object, MinPts, Seed) determines 
whether Object is a core object, and function 
Cluster (SetObjeet, Objeet , Eps, Minpts, Seed) 
returns a set of connected density points. Mealwhile 
function AcquireNeighbor (SetObject, Object, Eps) 
needs invoke particle swarm optimization algorithm 
to determine the minimum obstacle distance, and its 
pseudo-code is shown as follows: 

Input: SetObject, Eps, MinPts 
Output: all the neighboring objects of Object 
within Eps 
Algorithm: 
Seed=AcquireNeighbor(SetObject，Object，Eps) 
{ 
For(j=1;j<=DensitySet(Object).size;j++) 
   {CheckObject=DensitySet.get(i) 
    ChangeXOY(CheckObject,Object) 
    Obstacle_distbest= PSO(fitness,N,c1,c2,w,M,D) 
    IF(Obstacle_distbest<=Eps) 
      Seed.add(CheckObject) 
   } 
} 

Function DensitySet(Object) returns all the 
neighboring objects of Object within Eps, and 
ChangeXOY(CheckObject,Object) transforms 
coordinates of CheckObject and Object according 
to formula (5), that is the point S and G denote 
CheckObject and Object in the coordinate. When 
PSO optimization function 
PSO(fitness,N,c1,c2,w,M,D) initializes and updates 
particle position, it needs to verify whether the 
current position is inside the obstacle or not. Its 
pseudo-code is shown as follows:  

Input: Particle Location，Particle Dimension 
Index，Obstacle Circle X coordinate CircleX，

Obstacle Circle Y coordinate CircleY，Obstacle 
Circle Radius 
Output: 0 or 1 

Algorithm: 
Ob=CheckObstacle(Location,Index,CircleX,Circle
Y,Radius) 
{ 
For(k=1;k<=CircleX.size;k++) 
{Dist1= AcquireDist1(CircleX.get(k), 
CircleY.get(k), Radius.get(k),Location,Index); 
 Dist2= AcquireDist2(CircleX.get(k), 
CircleY.get(k), Radius.get(k),Location,Index); 
 IF(Dist1<Radius.get(k)| Dist2<Radius.get(k)) 
   {Ob=1; 
    break; 
   } 
 ELSE 
   Ob=0; 
} 
} 

Function  AcquireDist1(CircleX.get(k), 
CircleY.get(k), Radius.get(k), Location,Index) 
calculates the distance between the current position 
and the center of obstacle circle, that is dists_ob, 
and function AcquireDist2(CircleX.get(k), 
CircleY.get(k), Radius.get(k),Location,Index) 
calculates the distance between the center of 
obstacle circle and the value of adjacent two 
position line, that is distss_ob. If either Dist1 or 
Dist2 exceeds the radius value of obstacle circle, 
then we set Ob equal to be 1 and break a loop and 
re-allocate position. 

4. EXPERIMENTS 

Experiment1   Assumed that work space is 100 * 
100, and obstacles are circles of different size. After 
the coordinate transformation, S(0,50) becomes the 
starting point and G(100,50) becomes the target 
point. Let’s divide line SG into 20 equal portions, 
so we have 19 particle swarm dimensions and 40 
particles. Let’s make learning factor C1 and C2 
equal to 2 and the maximum number of iterations 
1000. Now we repeat experiment many times, and 
we can see Figure 3 shows two experiments results 
of the optimum collision-free paths, which have the 
shortest obstacle distances 103.9572 and 108.4472 
respectively; Figure 4 shows the curves of two 
tests’ global optimal fitness Pbest calculated by the 
fitness function, changing with the iteration times. 
We can see from Figure 4 that algorithm 
convergence speed is very fast at the first stage, and 
it achieves before reaching the maximum number 
of iterations. Table 1 shows each dimension of the 
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vertical coordinates of all the shortest paths 
obtained by random weight PSO algorithm, where 
the 0-dimensional and 20-dimensional both have 
vertical coordinate value of 50. 

Figure 3:The Shortest Obstacle Paths Obtained In Two 
Experiments 

 

Figure 4: The Relation Curves Of Global Optimum 
Fitness And Iteration Times In Two Experiments 

 
Table 1. Each Dimension Of The Vertical Coordinates Of 

Shortest Paths In Two Experiments 

NO. 1 2 3 4 
Experiment1 52.1932 53.0893 51.4093 50.3336 
Experiment2 51.5499 52.4902 53.2507 54.2206 
 
NO. 5 6 7 5 
Experiment1 49.7808 48.6230 49.0342 48.3477 
Experiment2 52.1577 50.8536 51.7714 50.4668 
 
NO. 9 10 11 12 
Experiment1 46.0816 43.6644 43.6157 46.2131 
Experiment2 49.3712 44.9194 42.1973 43.6519 
 
NO. 13 14 15 16 
Experiment1 48.6356 49.4453 50.2560 51.8427 
Experiment2 45.5313 45.2874 43.6198 48.2376 
 
NO. 17 18 19 20 
Experiment1 51.5004 51.4360 51.3508 50 
Experiment2 44.7523 46.7864 48.6647 50 
 

Table 2 shows two experimental results of view 
method, traditional PSO algorithm and PSO 
algorithm with random weights, from which we can 
see that the optimum values of these three 
algorithms are obtained in two different 
environments, with average obstacle distance 
obtained from two experiments to be average value. 
 

Table 2. Results Comparison Of Three Algorithms 

 View 
Method 

Traditional 
PSO Method 

PSO Method 
with Random 

Weight 

Calcula
ted 

Value 

Opti
mum 
Value 

Avera
ge 
Value 

Opti
mum 
Value 

Avera
ge 
Value 

Expe
rime
nt 1 

103.928
6 

104.2
538 

105.1
547 

103.9
572 

104.4
587 

Expe
rime
nt 2 

108.378
5 

109.1
532 

109.9
726 

108.4
472 

108.8
359 

The experimental results show that PSO algorithm 
with random weight has better performance than 
traditional PSO algorithm with higher path 
searching capability and closer value calculated by 
view method. In both experiments, the optimum 
values calculated PSO algorithm have minimum 
gap, and PSO algorithm with random weight and 
traditional PSO algorithm are superior to view 
method in time efficiency. In order to verify 
whether the experiments have general results, we 
create many obstacle path problems randomly, and 
use the same parameters with above three 
algorithms, similar results obtained. 
Experiment2   We analyze the clustering of 100 
sample objects with no obstacle constraint and 
many obstacle constraints respectively, and select 
sample objects including obstacle circles. Figure 
5(a) shows the results of PSODBSCAN clustering 
algorithm. We can see that object points in the 
same cluster are marked as same color, and object 
points in the different clusters are marked as 
different colors, with noise objects marked as dark 
blue color and ID number equal to -1. Figure 5 (a) 
shows spatial clustering algorithm result with no 
obstacle, and Figure 5 (b) shows PSODBSCAN 
algorithm space clustering results with same sample 
objects.  
 

Figure 5: The Clustering Results Of PSODBSCAN 
Algorithm With Obstacle Constraints 
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The experimental results show that the existence 
of obstacles affects the continuity of data space, so 
directly affect the results of space clustering 
distribution. Contrast Figure 5 (a) and Figure 5 (b), 
we can see that PSODBSCAN algorithm reflects 
the impact of spatial obstacles, which divides 
objects of No.2 category into No.2 and No.4 
clusters located at both sides of obstacle circle, and 
get a more ideal clustering result. 

In summary, when at the initial stage particles 
distribute in the whole solution space, 
PSODBSCAN has more random character than 
other algorithm. Meanwhile in each iteration 
process all the particles share their own 
“information” and improve their "self-Quality", so 
that each candidate solution has dual advantages of 
self-learning and others-learning with fast 
convergence. At the same time, in the 
implementation process, as a result of coordinate 
transformation, PSODBSCAN algorithm reduces 
computational amount to a large extent, thereby 
improving execution speed of the algorithm. 

5. SUMMARY 

Space clustering with obstacle constraints has a 
strong practical value, and becomes a research 
focus in field of spatial data mining in recent years. 
This paper presents a new DBSCAN clustering 
method based on the PSO optimization, aiming at 
enriching obstacle path computation method and 
providing an effective choice for DBSCAN 
clustering algorithm in obstacle space. The 
innovation of PSODBSCAN algorithm lies in the 
reference of mobile robot path planning method, 
and the simplification of two-dimensional 
coordinates into one-dimension, then the usage of 
particle swarm optimization to calculate the 
minimum obstacle distance between objects, at last 
the basis of minimum obstacle distance to spatial 
clustering. Experimental results show that, 
PSODBSCAN clustering algorithm has not only the 
advantages of density clustering, but also more 
reasonability, accuracy in the field of dealing with 
spatial constraints, which has important theoretical 
value and significance to achieve accurate 
clustering in constrained environment. 
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