
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

377

PSO-BASED DBSCAN WITH OBSTACLE CONSTRAINTS

1XIAONING FENG ，2ZHUO WANG , 1GUISHENG YIN，1YING WANG

1College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
2National Key Laboratory of Science and Technology on Autonomous Underwater Vehicle, Harbin

Engineering University, Harbin 150001, China

ABSTRACT

This paper presents a new PSO-based optimization DBSCAN space clustering algorithm with obstacle
constraints. The algorithm introduces obstacle model and simplifies two-dimensional coordinates of the
cluster object coding to one-dimensional, then uses the PSO algorithm to obtain the shortest path and
minimum obstacle distance. At the last stage, this paper fulfills spatial clustering based on obstacle
distance. Theoretical analysis and experimental results show that the algorithm can get high-quality
clustering result of space constraints with more reasonable and accurate quality.

Keywords: Space Clustering, Obstacle Constraints , Particle Swarm Optimization Algorithm, DBSCAN

1. INTRODUCTION

Spatial clustering has been an important data

mining field of research. At present, the current
clustering methods are dividing methods,
hierarchical methods, density-based methods, grid-
based methods, genetic algorithm, fuzzy method,
rough set, and some clustering algorithms also
integrate with a variety of methods. However, these
clustering algorithms ignore the existence of many
constraints in the real world, and constraints will
affect reasonability of clustering results, such as
rivers, roads, etc., as shown in Figure 1. Due to the
obstacle, the two spatial points close to each other
may not belong to the same cluster. In previous
work, only a few algorithms in the clustering
process considered the impact of the obstacles.
However, there are many shortcomings in the
aspect of efficiency and quality. Therefore, in order
to improve the practicality of clustering, it is not
only very important to study the space clustering in
constraint environment but also practical in the real
world environment.

(A)The Distribution Of Points And Obstacles (B)
Clustering Regardless Of Obstacles (C) Clustering

According To Obstacles

Figure 1: Space Clustering With Obstacle Constraints

To solve the above problem, this paper proposes
a new spatial clustering algorithm with obstacles
constraints (PSODBSCAN). This method integrates
PSO (Particle swarm optimization) global
optimization ability with local search features of
DBSCAN algorithm, and uses particle swarm to
optimize the shortest obstacle distance iteratively,
not only taking into account of shortcomings of
DBSCAN clustering algorithm, but also taking full
account of the real obstacles, thus makes the results
of clustering more meaningful.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

2. DBSCAN CLUSTERING WITH
OBSTACLE CONSTRAINTS

2.1 Classic DBSCAN Clustering Algorithm
DBSCAN algorithm is a density-based clustering

method with high-quality, and applicable to
geometry clustering of any shape and size, which
can automatically determine the number of clusters,
and separate clusters with environmental noise
effectively. At first we need to introduce the related
concepts of DBSCAN algorithm:
Definition 1: (Core Point) Point has at least
MinPts objects in Eps neighborhood.
Definition 2: (Boundary Point) Point in the core
object’s Eps neighborhood, but not meets the
requirements of core object.
Definition 3: (Directly Density-reachable) A point
p is directly density-reachable from a point q if

()andp NEps q∈ (1)

()NEps q MinPts≥︱ ︱ (2)
Definition 4: (Density-reachable) A point p is
density-reachable from a point q if there is a chain
of points 1 2 1n nPP P P Q P P… = =， ， ， ， such that

1ip + is directly density-reachable from ip .

DBSCAN algorithm efficiency depends on
neighbor query and requires inspect each point in
data set by checking the neighborhood of each
point to find cluster. If a point is a core point, then
DBSCAN creates a cluster centered by this point
and find directly density-reachable points. The
algorithm's time complexity is 2()O n , where n is
the number of points in data sets. If using spatial
index, DBSCAN algorithm's time complexity
is (log)O n n .

2.2 Improved DBSCAN Clustering Algorithm
With Obstacle Constraints

When traditional DBSCAN algorithm measures the
distance of point P and point Q , it uses the
Euclidean distance to calculate straight-line
distance between two points, which will be
unreasonable in the case of obstacles. The existing
of obstacles usually makes point P and point Q
not visible to each other, that is the connection line
of point P and point Q could intersect with
obstacles. This paper uses particle swarm algorithm
to optimize the obstacles path, and defines the
minimum obstacle distance between point P and
point Q is the shortest path value of point P and
point Q bypass all the obstacles.

Meanwhile, due to the shortcoming of difficulty
in discovering clusters with large density
difference, this paper uses partition-based
DBSCAN clustering method, that is to cluster
based on the spatial density distribution of points.
Thus, when facing the problem of uneven
distribution of data density and cluster density, it
will select a smaller value which results in a more
dilute Eps cluster divided into multiple similar
clusters, and at the same time selecting a larger
Eps value will not ignore the differences of larger
density.

3. PSO-BASED DBSCAN ALGORITHM
WITH OBSTACLE CONSTRAINTS

3.1 Particle Swarm Optimization Algorithm

PSO (Particle swarm optimization) is an
evolutionary computation technique, and firstly
introduced by Kennedy and Eberhart in 1995.
Similar to genetic algorithm, the study of birds prey
behavior is an iteration-based optimization tool. In
the PSO algorithm, each optimization problem
solution is a bird in the search space, and is
abstracted as particles in the N-dimensional space.
Particle i in the position of N-dimensional space
represents a vector, and the flight speed of each
particle is also a vector. Currently, PSO algorithm
has been widely used in function optimization,
neural network training, fuzzy system control and
other applications of genetic algorithms.

PSO initializes to be a group of random particles
(random solutions), and then finds the optimal
solution iteratively. Assuming in d-dimensional
search space the position and velocity of i particle
is ,1 ,2 ,()i

i i i dX x x x=  and ,1 ,2 ,()i
i i i dV v v v= 

respectively, and during each iteration, particles
update themselves by tracking the two "extreme
value”. One extreme is the best particle solution of
itself, which is the individual extreme pbest , and
the other extreme is the optimal solution of the
current group, which is the global
minimum gbest . When PSO finds out these two
optimal values, each particle updates its own pace
and the new location according to the following
formula:

, , 1 1 , , 2 2 , ,(1) () [()] [()]i j i j i j i j g j i jv t wv t c r p x t c r p x t+ = + − + − (3)

, , ,(1) () (1), 1, 2, ,i j i j i jx t x t v t j d+ = + + =  (4)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

In the formula 1c and 2c are positive learning
factors, generally being equal to 2, at the same time

1r and 2r are uniformly distributed random numbers
between 0 and 1. This paper uses random weight
factor method, setting w to a random number with
random distribution, which can overcome the
shortcomings caused by the linear decrease, that is:

* (0,1)
min (max min)* (0,1)

w N
rand

µ σ
µ µ µ µ
= +

 = + −
 (5)

In the above formula, (0,1)N is standard random
number with normal distribution, and (0,1)rand is
random number between 0 and 1. maxµ is the
maximum value of random weighted w ’s average
value. σ is the variance of w ’s random weight,
setting to be

max 0.8µ = , min 0.5µ = and 0.2σ = .

3.2 Obstacle path optimization based on PSO
Obstacles will inevitably affect the spatial distance

between objects, which directly affects the
clustering results. When it comes to obstacles, the
main solution methods are: view method, grid
method, neural networks, artificial potential field,
etc. However, these methods all have the defects of
search path complexity and inefficiency. This paper
combined the theory of mobile robot obstacle
avoidance path planning in the dynamic process
with particle swarm optimization algorithm to
calculate the obstacle distance in the clustering
process, which achieved good results and high
performance.

Assume S and G are the two objects within
many obstacles in the clustering process. The
mission for particle swarm optimization is to search
a shortest collision-free path between S and G ,
and the value of this path is the shortest obstacle
distance between S and G , the objective function
of which is shown as below:

2 2
1 1

2
() ()

pn

i i i i
i

F x x y y− −
=

= − + −∑ (6)

To accelerate the calculation speed, we firstly
connect point S and G to be a line SG , and divide
it into n equal portions. Make vertical line of
SG in each divide point, then get

1 2, , , andL L Ln… .
Secondly starting from point S , we connect each
discrete points in all vertical lines, then get a set of
discrete obstacle points

()1 2Obstacle _ path , , , ..., , S P P Pn G= , where

() 1, 2,..., jP j n= is non-obstacle point and the

line of jP and its adjacent points has no obstacle

point. At last, we set SG as X-axis, and set the line
through S but perpendicular to X-axis as Y-axis,
then create a new coordinate system X'OY', which
will conduct coordinate transformation to deal with
all discrete points (,)x y in each vertical line.

' cos sin
' sin cos

s

s

x xx
y y y

α α
α α

−    
=     − −     

 (7)

Figure 2: Coordinate Transformation Model

In the above formula, α is the angle value of
counterclockwise rotation of original X-axis to line
SG , and 1 1(,)x y is starting point S ’s coordinate in
original coordinate system. In the coordinate
system X'OY ', we define S as the 0P , G as 1nP +

,
then simplify _Obstacle path encoding to be:

[]1 2_ 0 ' ' ' 0nObstacle path y y y=  (8)

For writing convenience, if no special instructions,
we use y instead of y′ . Obstacles distance
Obstacle_dist is:

2 2
1

0
_ () ()

1

n
SG

j j
j

L
Obstacle dist y y

n +
=

= + −
+∑ (9)

In the above formula, SGL is the length of line SG.
The search steps of minimum obstacle distance

calculation based on PSO are shown as follows:
We select the obstacle distance of starting point

S to G as fitness value. The smaller the fitness
value, the more optimal solution obtained. Fitness
function is shown below:

2 2
1

0
() () ()

1

n
i iSG

i j j
j

L
F y y y

n +
=

= + −
+∑ (10)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

In the above formula, i
jy presents the

(1,2,...,)j j n= -dimensional position of particle
(1, 2,...,)i i N= ; both ends of the

constraints 0 1 0i i
ny y += = .

In this paper, we use circles to represent
obstacles. In the process of particle swarm
initialization and optimization, we not only have to
consider the boundary constraints, but also dynamic
obstacle avoidance, so we must verify whether the
distance between particles location in each
dimension and the center of the obstacle circle is
greater than the radius of distance circle. The
distance between particles location and the center
of the obstacle _s obdist is:

2 2
_ () ()

1
iSG

s ob k k j
L

dist x j y y
n

= − ∗ + −
+

 (11)

In the above formula, (,)k kx y denotes the
coordinate of k center of obstacle circle, and

i
jy denotes (1, 2,...,)j j n= -dimensional position of

particles (1, 2,...,)i i N= .
In addition, we need to consider whether the line

of each particle’s adjacent two-dimensional
coordinates intersects with obstacles. The distance
between the center of obstacle circle and particle’s
adjacent two-dimensional coordinates _ss obdist is:

_ 2 2

k k
ss ob

Ax By C
dist

A B

+ +
=

+
 (12)

In the above formula, (,)k kx y denotes
k coordinates of the center of obstacle circle,
and , ,A B C are determined by the lines of each
particle’s adjacent two-dimensional coordinates as
follows:

1

0
1

(1) 0
1

iSG
j

iSG
j

L
A j By C

n
L

A j By C
n +

 ∗ ∗ + + = +

 ∗ ∗ + + + =
 +

 (13)

In the above formula, i
jy denotes the

(1,2,...,)j j n= -dimensional position of particle
(1, 2,...,)i i N= .

Obstacle path optimization based on PSO steps
are shown as below:

Step 1 Initialize particle dimension n , particle
number N . Randomly initialize the position and
velocity of each particle. In initialization process

of 0
,i jy , not only consider boundary constraints, but

also consider dynamic obstacle avoidance, which
uses formula (11) and (12) to judge obstacle
avoidance.

Step 2 Calculate the fitness of each particle by
fitness function (10), store particle's current
position and fitness value in pbest, store in the
position of best individual position and fitness
value of each pbest in gbest;

Step 3 Update particle velocity by formula(3).
Step 4 Update particle position by formula (4),

and consider boundary constraints and dynamic
obstacle avoidance.

Step 5 Update weights by formula (5).
Step 6 As for each particle, and compare its

fitness value with its best position pbest, if better,
then set it current best position.

Step 7 Compare all current pbest and gbest
value, and update gbest.

Step 8 Return to step 3, 4 and 5 to iterate until
the algorithm reaches the maximum number of
iterations or meets the accuracy requirements then
when search stops to obtain the shortest path

_ bestObstacle path and minimum obstacle
distance _ bestObstacle dist .
3.3 PSODBSCAN Algorithm with Obstacle
Constraints

PSODBSCAN algorithm based on particle swarm
optimization with obstacle constraints not only
overcomes the shortcoming of classic DBSCAN
algorithm, but also can realize dynamic obstacle
avoidance which can calculate obstacle distance
efficiently. The pseudo code of the PSODBSCAN
algorithm is shown as below:

Input: SetObject, Eps, MinPts
Output: Clutering result
Algorithm:
PSODBSCAN(SetObject，Eps，MinPts)
{
 ObstaclePrint；
For(i=1；i<=SetObject.size；i++)
{Object=SetObjeet．get(i)；
IF(Object．ID= =UNCLASSFIED)
{Seed=AcquireNeighbor(SetObject，Object，Eps)
；

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

IF(! IsCoreObject(Object，MinPts，Seed))
ChangeID(Object，NOISE)；
ELSE
Cluster(SetObject，Object，Eps，MinPts，Seed)
；
}
}
PrintClusteringResult;
}

Function ObstaclePrint draws obstacles in the
coordinate system, and function AcquireNeighbor
(SetObject, Object, Eps) returns all the neighboring
objects of Object within Eps, and function
IsCoreObject (Object, MinPts, Seed) determines
whether Object is a core object, and function
Cluster (SetObjeet, Objeet , Eps, Minpts, Seed)
returns a set of connected density points. Mealwhile
function AcquireNeighbor (SetObject, Object, Eps)
needs invoke particle swarm optimization algorithm
to determine the minimum obstacle distance, and its
pseudo-code is shown as follows:

Input: SetObject, Eps, MinPts
Output: all the neighboring objects of Object
within Eps
Algorithm:
Seed=AcquireNeighbor(SetObject，Object，Eps)
{
For(j=1;j<=DensitySet(Object).size;j++)
 {CheckObject=DensitySet.get(i)
 ChangeXOY(CheckObject,Object)
 Obstacle_distbest= PSO(fitness,N,c1,c2,w,M,D)
 IF(Obstacle_distbest<=Eps)
 Seed.add(CheckObject)
 }
}

Function DensitySet(Object) returns all the
neighboring objects of Object within Eps, and
ChangeXOY(CheckObject,Object) transforms
coordinates of CheckObject and Object according
to formula (5), that is the point S and G denote
CheckObject and Object in the coordinate. When
PSO optimization function
PSO(fitness,N,c1,c2,w,M,D) initializes and updates
particle position, it needs to verify whether the
current position is inside the obstacle or not. Its
pseudo-code is shown as follows:

Input: Particle Location，Particle Dimension
Index，Obstacle Circle X coordinate CircleX，

Obstacle Circle Y coordinate CircleY，Obstacle
Circle Radius
Output: 0 or 1

Algorithm:
Ob=CheckObstacle(Location,Index,CircleX,Circle
Y,Radius)
{
For(k=1;k<=CircleX.size;k++)
{Dist1= AcquireDist1(CircleX.get(k),
CircleY.get(k), Radius.get(k),Location,Index);
 Dist2= AcquireDist2(CircleX.get(k),
CircleY.get(k), Radius.get(k),Location,Index);
 IF(Dist1<Radius.get(k)| Dist2<Radius.get(k))
 {Ob=1;
 break;
 }
 ELSE
 Ob=0;
}
}

Function AcquireDist1(CircleX.get(k),
CircleY.get(k), Radius.get(k), Location,Index)
calculates the distance between the current position
and the center of obstacle circle, that is dists_ob,
and function AcquireDist2(CircleX.get(k),
CircleY.get(k), Radius.get(k),Location,Index)
calculates the distance between the center of
obstacle circle and the value of adjacent two
position line, that is distss_ob. If either Dist1 or
Dist2 exceeds the radius value of obstacle circle,
then we set Ob equal to be 1 and break a loop and
re-allocate position.

4. EXPERIMENTS

Experiment1 Assumed that work space is 100 *
100, and obstacles are circles of different size. After
the coordinate transformation, S(0,50) becomes the
starting point and G(100,50) becomes the target
point. Let’s divide line SG into 20 equal portions,
so we have 19 particle swarm dimensions and 40
particles. Let’s make learning factor C1 and C2
equal to 2 and the maximum number of iterations
1000. Now we repeat experiment many times, and
we can see Figure 3 shows two experiments results
of the optimum collision-free paths, which have the
shortest obstacle distances 103.9572 and 108.4472
respectively; Figure 4 shows the curves of two
tests’ global optimal fitness Pbest calculated by the
fitness function, changing with the iteration times.
We can see from Figure 4 that algorithm
convergence speed is very fast at the first stage, and
it achieves before reaching the maximum number
of iterations. Table 1 shows each dimension of the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

vertical coordinates of all the shortest paths
obtained by random weight PSO algorithm, where
the 0-dimensional and 20-dimensional both have
vertical coordinate value of 50.

Figure 3:The Shortest Obstacle Paths Obtained In Two
Experiments

Figure 4: The Relation Curves Of Global Optimum
Fitness And Iteration Times In Two Experiments

Table 1. Each Dimension Of The Vertical Coordinates Of

Shortest Paths In Two Experiments

NO. 1 2 3 4
Experiment1 52.1932 53.0893 51.4093 50.3336
Experiment2 51.5499 52.4902 53.2507 54.2206

NO. 5 6 7 5
Experiment1 49.7808 48.6230 49.0342 48.3477
Experiment2 52.1577 50.8536 51.7714 50.4668

NO. 9 10 11 12
Experiment1 46.0816 43.6644 43.6157 46.2131
Experiment2 49.3712 44.9194 42.1973 43.6519

NO. 13 14 15 16
Experiment1 48.6356 49.4453 50.2560 51.8427
Experiment2 45.5313 45.2874 43.6198 48.2376

NO. 17 18 19 20
Experiment1 51.5004 51.4360 51.3508 50
Experiment2 44.7523 46.7864 48.6647 50

Table 2 shows two experimental results of view
method, traditional PSO algorithm and PSO
algorithm with random weights, from which we can
see that the optimum values of these three
algorithms are obtained in two different
environments, with average obstacle distance
obtained from two experiments to be average value.

Table 2. Results Comparison Of Three Algorithms

 View
Method

Traditional
PSO Method

PSO Method
with Random

Weight

Calcula
ted

Value

Opti
mum
Value

Avera
ge
Value

Opti
mum
Value

Avera
ge
Value

Expe
rime
nt 1

103.928
6

104.2
538

105.1
547

103.9
572

104.4
587

Expe
rime
nt 2

108.378
5

109.1
532

109.9
726

108.4
472

108.8
359

The experimental results show that PSO algorithm
with random weight has better performance than
traditional PSO algorithm with higher path
searching capability and closer value calculated by
view method. In both experiments, the optimum
values calculated PSO algorithm have minimum
gap, and PSO algorithm with random weight and
traditional PSO algorithm are superior to view
method in time efficiency. In order to verify
whether the experiments have general results, we
create many obstacle path problems randomly, and
use the same parameters with above three
algorithms, similar results obtained.
Experiment2 We analyze the clustering of 100
sample objects with no obstacle constraint and
many obstacle constraints respectively, and select
sample objects including obstacle circles. Figure
5(a) shows the results of PSODBSCAN clustering
algorithm. We can see that object points in the
same cluster are marked as same color, and object
points in the different clusters are marked as
different colors, with noise objects marked as dark
blue color and ID number equal to -1. Figure 5 (a)
shows spatial clustering algorithm result with no
obstacle, and Figure 5 (b) shows PSODBSCAN
algorithm space clustering results with same sample
objects.

Figure 5: The Clustering Results Of PSODBSCAN
Algorithm With Obstacle Constraints

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

The experimental results show that the existence
of obstacles affects the continuity of data space, so
directly affect the results of space clustering
distribution. Contrast Figure 5 (a) and Figure 5 (b),
we can see that PSODBSCAN algorithm reflects
the impact of spatial obstacles, which divides
objects of No.2 category into No.2 and No.4
clusters located at both sides of obstacle circle, and
get a more ideal clustering result.

In summary, when at the initial stage particles
distribute in the whole solution space,
PSODBSCAN has more random character than
other algorithm. Meanwhile in each iteration
process all the particles share their own
“information” and improve their "self-Quality", so
that each candidate solution has dual advantages of
self-learning and others-learning with fast
convergence. At the same time, in the
implementation process, as a result of coordinate
transformation, PSODBSCAN algorithm reduces
computational amount to a large extent, thereby
improving execution speed of the algorithm.

5. SUMMARY

Space clustering with obstacle constraints has a
strong practical value, and becomes a research
focus in field of spatial data mining in recent years.
This paper presents a new DBSCAN clustering
method based on the PSO optimization, aiming at
enriching obstacle path computation method and
providing an effective choice for DBSCAN
clustering algorithm in obstacle space. The
innovation of PSODBSCAN algorithm lies in the
reference of mobile robot path planning method,
and the simplification of two-dimensional
coordinates into one-dimension, then the usage of
particle swarm optimization to calculate the
minimum obstacle distance between objects, at last
the basis of minimum obstacle distance to spatial
clustering. Experimental results show that,
PSODBSCAN clustering algorithm has not only the
advantages of density clustering, but also more
reasonability, accuracy in the field of dealing with
spatial constraints, which has important theoretical
value and significance to achieve accurate
clustering in constrained environment.

ACKNOWLEDGEMENTS

This work was sponsored by the national
natural science foundation of China under Grant
No. 61100006, and the Youth Science Foundation
of Heilongjiang Province under Grant
No.2007Q0502-00, and the Science Foundation of
Heilongjiang Province under Grant No.F201129,
and the Youth Science Foundation of Harbin under

Grant No. RC2009QN010039, and the Basic
Research Foundation of Harbin Engineering
University under Grant No.002060260722, and
National Key Laboratory of Science and
Technology on Autonomous Underwater Vehicle
Foundation under Grant No.2010004, and the
Fundamental Research Funds for the Central
Universities under Grant No. HEUCF100605.

REFERENCES:

[1] S.R.Feng, W.J.Xiao, “DBSCAN clustering
algorithm based on density research and
applica-tion”, Computer Engineering and
Application, Vol. 43, No. 20, 2007, pp. 216-
222.

[2] Ming Song, T.Z.Liu, “Parallel DBSCAN
algorithm based on data Partition”, Computer
Application Research, Vol. 7, 2004, pp.17-20.

[3] Yang.Y, Z.W.Sun, “A method of space
clustering algorithm with obstacle constraints
based on density”, Computer Application,
Vol. 27, No. 7, 2007, pp. 1688-1691.

[4] Y.Q.Liu, “A clustering algorithm with obstacle
constraints based on grid”, Shandong
University Journal, Vol. 36, No. 3, 2006,
pp.86-90.

[5] Feng Zhang, B.Z.Qiu, “A effective clustering
method based on grid”, Computer Engineering
and Application, Vol. 43, No. 17, 2007,
pp.167-171.

[6] Fan Wen, “Mobile robot obstacle avoidance in
unknown environment research”, Harbin
Engineering University Journal, Vol. 30, No.
7, 2009, pp.751-756.

[7] Houfei,Qiao, Z.J,Hou, “Based on neutral
network intensive learning application in
obstacle avoidance”, Tsinghua University
Journal, Vol. 48, No. S2, 2008, pp.1748-1755.

[8] Lian Duan, Lida Xu, Feng Guo, “A local-
density based spatial clustering algorithm with
noise”, Information Systems, Vol. 32, 2007, pp.
978-986.

[9] P.Viswanath, Rajwala Pinkesh, “l-DBSCAN:A
Fast Hybrid Density Based Clustering Method”,
IEEE Proceedings of the 18th International
Conference on Pattern Recognition, 36, 2006,
pp.34-39.

[10] Pan, Donghua, Zhao, Lilei, “Uncertain data
cluster based on DBSCAN”, 2011
International Conference on Multimedia
Technology, 2011,pp.3781-3784.

http://www.jatit.org/
http://www.engineeringvillage.com/controller/servlet/Controller?CID=expertSearchCitationFormat&searchWord1=%7bPan%2C+Donghua%7d+WN+AU&database=1&yearselect=yearrange&searchtype=Expert&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=expertSearchCitationFormat&searchWord1=%7bZhao%2C+Lilei%7d+WN+AU&database=1&yearselect=yearrange&searchtype=Expert&sort=yr

	1XIAONING FENG ，2ZHUO WANG , 1GUISHENG YIN，1YING WANG
	ACKNOWLEDGEMENTS

