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ABSTRACT 

Chaotic particle swarm optimization (CPSO) algorithm is proposed to optimize the Kriging model, which can improve 
the precision of curve fitting. A typical example is selected to demonstrate the advantage of the optimized Kriging 
model, compared with other curve fitting tools. 
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1. INTRODUCTION  
 
Curve fitting plays an important role in the 

numerical simulation, which is gaining attention by 
many researchers from different fields. Polynomials 
and artificial neural network (ANN) are used to 
simulate the curve by some researchers[1-11]. 
However the errors produced by using these 
methods to simulate the curve are hardly acceptable 
when the number of input sample points is small. It 
is necessary to find another model to simulate the 
curve, which only needs a small number of input 
sample points. 
Kriging as an alternative model has been used in 

engineering design applications since it was first 
introduced by Sacks et al.(1989)[11] in a statistical 
literature. Lophaven published the open source 
code for the Kriging MATLAB toolbox. However 
the work done by Lophaven cannot get the optimal 
of the kriging parameter, which will affect the 
precision of kriging prediction in the curve fitting. 
In this paper, a chaos embedded particle swarm 
optimization algorithm is used here to search the 
global optimal of parameter θ  for kriging model. 
And then, a typical example is selected to 
demonstrate the advantage of the optimized Kriging 
model, compared with other curve fitting tools. 

2. KRIGING MODELING 
 
2.1 Basic Model  

Kriging treats the deterministic response of a 
system as a realization of a random function 
(stochastic process), y , that consists of a regression 
model[11] and a stochastic error. 

1

( ) ( ) ( ) ( ),
p

T
j j

j

y f x z x f x z xβ β
=

= + = +∑          (1) 

with 1 2[ , ,  ... , ]T
pβ β β β=  and 

1 2( ) [ ( ), ( ),  ... , ( )]T
pf x f x f x f x= . β  is a column 

vector of regression parameters and ( )f x  is a 
column vector of basis functions. Here quadratic 
polynomials are used as the basis functions.And the 
error ( )z x  is assumed to be a second-order 
stationary stochastic process with the following  

statistical characteristics ： 
2[ ( )] 0,  [ ( ) ( )] 0,  [ ( ) ( )] ( , , )E z x E z x d z x E z z x R xω σ θ ω= + − = =

                                                                                (2) 

where 2σ is the variance of ( )z x  and ( , , )R xθ ω is a 
correlation function with parameter θ  to be 
determined. 

We define S  as a set of m  design sites with 

1[ ,..., ]T
mS s s= ， ( )1,...,n

is i m∈ℜ = . 
Correspondingly, we have the expanded m p×  
design matrix F ： 
 1[ ( ),..., ( )] , ( )T

m ij j iF f s f s F f s= =   (3) 

where 1 2( ) [ ( ), ( ),  ... , ( )]T
i i i p if s f s f s f s=  and 

( )1,2,...,jf j p=  are the same as the above. 
Further, define R as the matrix R of stochastic-

process correlations between 'z s  at design sites, 
with ( , , ),  , 1,...,ij i jR R s s i j mθ= = .  

At an untried point x ， let 

1( ) [ ( , , ),..., ( , , )]T
mr x R s x R s xθ θ=  be the vector of 

correlations between 'z s  at design sites and x . 
The correlation model we use here is Gauss 
correlation function: 

2

1

( , , ) ( , ) exp( ),   
m

j j j j j j j j
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R w x R w x d d w xθ θ θ
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= − = − = −∏
      (4) 
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2.2 Prediction Model 
Kriging predicts the response of an untried point 

based on linear combination of iy ( 1, 2,..., )i m= , 
 ˆ( ) ,Ty x c Y=  (5) 

with ( ) mc c x R= ∈  and 1 2=[ , ,..., ]T
mY y y y . The 

prediction error is 
ˆ( ) ( ) ( ) ( ( ))T T T Ty x y x c Y y x c Z z F c f x β− = − = − + −

 
                                                                           (6) 

where 1 2 =[ , ,..., ]T
mZ z z z  are the errors at the design 

sites. To keep the predictor unbiased, we demand 
( ) 0  or  ( )T TF c f x F c f x− = =             (7) 

Under this condition the mean squared error 
(MSE) of the predictor is： 

2 2ˆ( ) [( ( ) ( )) ] (1 2 )T Tx E y x y x c Rc c rϕ σ= − = + −   (8) 
The Lagrangian function for the problem of 

minimizing ϕ  with respect to c and subject to the 
constraint (7) is 

2( , ) (1 2 ) ( ).T T T TL c c Rc c r F c fλ σ λ= + − − −       (9) 
The partial derivatives of ( , )L c λ with respect to 

c  and λ  are 
1 1 1( ) ( )T TF R F F R r fλ − − −= −  (10) 

1( )c R r Fλ−= −   (11) 
The matrix R  and therefore 1R−  is symmetric, 

and by means of (5) we find 
1 1 1 1 1ˆ( ) ( ) ( )T T T T Ty x r R Y F R r f F R F F R Y− − − − −= − −  (12) 

Also with the generalized least squares solution 
to the regression problemY Fβ , we have 

1 1 1( )T TF R F F R Yβ ∗ − − −=  (13) 

 2 1 ( ) ( )TY F Y F
m

σ β β∗ ∗= − −  (14) 

and insert β ∗  in (12), we find the predictor 
 ˆ( ) ( ) ( )T Ty x f x r xβ γ∗ ∗= +  (15) 

with 1( )R Y Fγ β∗ − ∗= − . 
From (15), it follows that the gradient 

1

ˆ ˆˆ ...
T

n

y yy
x x

 ∂ ∂′ =  ∂ ∂ 
 can be expressed as 

 ˆ ( ) ( ) ( )T T
f ry x J x J xβ γ∗ ∗′ = +  (16) 

where fJ  and rJ  is the Jacobian of f  and r , 
respectivel     

( ( )) ( ),     ( ( )) ( , , ),i
f ij r ij i

j j

f RJ x x J x s x
x x

θ
∂ ∂

= =
∂ ∂

   

(17) 
From the above, we find that R , β ∗  and 2σ are 

determined by θ  ,where the optimum of θ ( θ ∗ ) 
can be determined by the maximum likelihood 
estimate, in other words, we have to determine the 
solution to the following constrained optimization 
problem. 

1
2   ( ) ( ) ( )

 :   0

mMin R
Subject to

j θ θ σ θ
θ

 = ⋅

 ≥

 (18) 

When θ ∗  is found, Kriging prediction model can 
be established. Pattern search method was used to 
find the θ ∗  in Lophaven[15]. However, this method 
would get trapped into % and the solution would be 
greatly affected by the given initial value θ . 
Therefore, an advanced and efficient global 
optimization algorithm, chaos embedded particle 
swarm optimization algorithm[1], is first used here 
to search θ ∗ . 

3.  CHAOS EMBEDDED PARTICLE SWARM 
OPTIMIZATION ALGORITHM 

 

3.1 Particle Swarm Optimization 
PSO is a population-based optimization 

technique, where the performance of each particle is 
measured according to a predefined fitness 
function. Each solution called a ‘‘particle’’, flies in 
the problem search space looking for the optimal 
position to land. A particle, as time passes through 
its quest, adjusts its position according to its own 
‘‘experience’’ as well as the experience of 
neighboring particles. 

In PSO, a swarm consists of m  particles, which 
is defined by 1 2{ , ,..., ,..., }i mX x x x x= , moving 
around in a D-dimensional search space. The 
position and velocity of the i th particle at the t th 
iteration is represented by 1 2( ) ( , ,..., )i i i iDX t x x x=  
and 1 2( ) ( , ,..., )i i i iDV t v v v=  respectively. During the 
search process the particle successively adjusts its 
position toward the global optimum according to 
the two factors: the best position encountered by 
itself (i.e. local-best position or its experience) 
denoted as 1 2( , ,..., )i i i iDP p p p=  and the best 
position encountered by the whole swarm (i.e. 
global-best position) denoted 
as 1 2( , ,..., )g g g gDP p p p= .The velocity and position 
of the particle at next iteration are updated 
according to the following equations: 
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1 1 2 2( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))i i i i g iV t wV t c r t P t X t c r t P t X t+ = + − + −
  

(19) 
 ( 1) ( ) ( 1)i i iX t X t V t+ = + +  (20) 

Here, w  is called inertia weight that controls the 
impact of previous velocity of particle on its current 
one; 1c and 2c  are positive constant parameters 
called acceleration coefficients which control the 
maximum step size; 1r and 2r are two independently 
uniformly distributed random variables with range 
[0,1] 

In PSO, proper control of global exploration and 
local exploitation is crucial in finding the optimum 
solution efficiently. And w  plays an important role 
in balancing between exploration and exploitation 
in PSO [17-18], which can be determined by the linear 
descend inertia weight (LDIWF) model. 

 1 2
1

( )t w ww w
T
−

= −  (21) 

Here, 1w and 2w are starting and final values of 
inertia weight respectively; t  is the current 
iteration number, and T  is maximum iteration 
number. Normally, 1w  is set to 0.9 and 2w to 0.4. 

3.2 Chaotic local search (CLS) 

Step 1. Set 0k =  and map the decision variables 
( )k
jx among the 

intervals min, max,( , )j jx x , 1, 2,...,j D=  to the 

chaotic variables ( )k
jcx  located in the interval 

[0,1] using(22); 

 
( )

min,( )

max, min,

k
j jk

j
j j

x x
cx

x x
−

=
−

               (22) 

Step 2. Determine the chaotic variables ( 1)k
jcx + for 

the next iteration using(23)； 
1( ) ( )2              0( 1) 2

1( ) ( )2(1 )     12

k kcx cxj jkcx j k kcx cxj j







≤ <
+ =

− ≤ ≤

    (23) 

Step 3. Convert ( 1)k
jcx + to ( 1)k

jx +  using (24)； 
( 1) ( 1)

min, max, min,( )k k
j j j j jcx x cx x x+ += + −      (24) 

Step 4. Evaluate the new solution with the 
decision variable ( 1)k

jx + ； 

Step 5. If the new solution is better than 
(0) (0) (0)

1[ ,..., ]DX x x=  or the predefined 
maximum iteration is reached, output the new 
solution as the result of the CLS; otherwise, let 

1k k= +  and go back to Step 2. 

3.3Chaotic PSO 
Based on the proposed PSO with LIDWF and the 

chaotic local search, a two-phased iterative strategy 
named Chaotic PSO (CPSO) is proposed, in which 
PSO with LIDWF is applied to perform global 
exploration and CLS is employed to perform 
locally oriented search (exploitation) for the 
solutions resulted by PSO, and in which N  denotes 
the size of population, if  represents the function 
value of the i th particle, and [ ]bestf i  represents the 
local-best function value for the best position 
visited by the i th particle. 
Step 1. Set 0t = . For each particle i in the 

population: (1) Initialize   i iV and X  
randomly. (2) Evaluate if . (3) Initialize gP . 
(4) Initialize iP . 

Step 2. For each particle ,i  update 
  i iV and X according to (19), (20) and (21). 

Step 3. Evaluate if  for all particles. 
Step 4. Reserve the top / 5N  particles. 
Step 5. Implement the chaotic local search (CLS) 

for the best particle, and update the best 
particle using the result of CLS with 
variables ( )

, ,   j 1, 2,..., .k
g jp D=  

Step 6. If iteration number k  reaches its 
maximum value K , output the solution 
found best so far. 

Step 7. Decrease the search space: 

Step 8. min, min, , max, min,

max, max, , max, min,

max( ,  *( )),  0 1

min( ,  *( )),  0 1
j j g j j j

j j g j j j

x x p r x x r
x x p r x x r

= − − < <

= − − < <

 
Step 9. Randomly generate 4 4 / 5N  new particles 

within the decreased search space and 
evaluate them. 

Step 10. Construct the new population consisting of 
the 4 / 5N  new particles in Step 9 and the 

/ 5N  particles in Step 6. (1) for each 
particle i , i iP X=  if [ ],  .i bestf f i i N< ∀ ≤  
(2) Find gP  such that [ ]  , g if P f i N≤ ∀ ≤ . 

Step 11. If the iteration number t  reaches its 
maximum value T , output the result; 
otherwise, let 1t t= +  and go back to Step 
2. 
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4.  FURTHER DEVELOPMENT OF KRIGING 
TOOL BOX 

 
In Lophaven[15], a matlab-based kriging toolbox 

is provided to establish the model. The function 
[dmodel, perf] = dacefit(S, Y, regr, corr, theta0) is 
used to establish the basic model. The output 
argument dmodel provides the values of parameters 
needed in the prediction model such as θ  and β ∗ , 
while perf provides the optimization information of 
the objective function ( )ϕ θ  such as the optimal 
and iteration numbers. Input arguments S and Y are 
the same as in the Section 2.1. The input argument 
regr is the basis function used in the basic model, 
and corr the correlation function, while theta0 is the 
arbitrary initial value of θ . And in the function 
dacefit, pattern search method is used by Lophaven 
to search the optimal of ( )ϕ θ , which would get 
trapped into the local minimal, as shown in Table 1. 

After the further development of the toolbox in 
the present study, the function [dmodel, perf] = 
dacefitcpso(S, Y, regr, corr) can be used to 
establish the basic model. Note that the input 
arguments of the function dacefitcpso do not 
include theta0, which can be initialized in the 
CPSO that is embedded in dacefitcpso to search the 
optimal of ( )ϕ θ . 

Table 1 compares the results of two methods 
using the data provided in Lophaven[15], which 
shows that dacefitcpso is better than dacefit. And 
Figure 1 shows that dacefitcpso finds out the 
optimal of ( )ϕ θ  after 40 iterations. 

Table 1 : Results Of Two Methods 
 Function 1 2( , )ψ θ θ  1θ  2θ  

Lophaven’w
ork dacefit 0.041968 3.53553 2.10224 

Present sudy dacefitcps
o 0.036979 1.27689 5.07057 

 
 
 
 
 

 
  

 

 

 

 

Figure 1: The Search Process By Dacefitcpso 

5.  COMPARISON WITH OTHER CURVE 
FITTING TOOLS 

 
It is well known that performance of curve 

fitting can be evaluated from both its interpolating 
point and extrapolating points. Therefore, in the 
resent study, optimized Kriging model, polynomial 
function, back propagation artificial neural 
network(BP-ANN) and radial basis function 
artificial neural network (RBF-ANN) are used to 
simulate y=sinx with the sample points  

* *( ,sin ),  0,1, 2,3, 4,5,6
10 10

i i iπ π
= , as shown in Fig. 

2 through Figure 1: 5. From the figures, it is found 
that the BP-ANN method simulates the function 
worst, even within the range of sample points; the 
RBF-ANN method and classical RSM will produce 
obvious error when extrapolating unobserved points; 
the kriging model by dacefitcpso is the best one to 
simulate the nonlinear function by interpolating and 
extrapolating the unobserved points.  
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Figure  2: Simulation Of Y=Sinx By Dacefitcpso 
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Figure 3: Simulation Of Y=Sinx By Classical Rsm             
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Figure 4: Simulation Of Y=Sinx By BP-ANN 
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Figure5: Simulation Of Y=Sinx By RBF-ANN 

6.  CONCLUSIONS 
 
The paper uses the chaotic particle swarm 

optimization algorithm to search the optimal value 
of parameters required in establishing kriging 
model, which is important for the precision of 
kriging model-based curve fitting. Then a typical 
example is selected to demonstrate the CPSO 
optimized Kriging model has a good curve fitting 
performance not only for the interpolating points 
but also for the extrapolating points, compared with 
other curve fitting tools like polynomials and 
artificial neural network. 
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