
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

284

A CONTROL FLOW OBFUSCATION SCHEME BASED ON
GARBAGE CODE

1,2YONGYONG SUN, 1GUANGQIU HUANG

1School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
2School of Computer Science and Engineering, Xi'an Technological University, Xi’an 710032, Shaanxi,

China

ABSTRACT

Control flow obfuscation is used to obfuscate program execution flow, thus preventing reverse engineering
of software. However, the code size and execution time will be increased greatly after program is
obfuscated. Since opaque predicate is difficult to resist the dynamic attack, the paper proposes the scheme
about control flow obfuscation based on garbage code. The algorithm combines branch garbage code with
loop garbage code, and hash function is introduced to limit the number of insert operation about code.
Thereby controlling the growth of the code size and reducing the accuracy of program analysis and resisting
tampering attack. Experimental results show that the obfuscation algorithm can control performance
overloading effectively that is brought by obfuscation transformation, while preventing a variety of reverse
engineering attacks effectively.
Keywords: Control Flow Obfuscation, Reverse Engineering, Opaque Predicate, Garbage Code, Hash

Function

1. INTRODUCTION

At present, more and more software is released as
a platform-independent intermediate code. The
code is easier to attack maliciously than the
traditional binary executable code, such as static
analysis, reverse engineering and tampering [1].
With the development of network technology, a lot
of software will be run under an uncertain
environment, and the software can be analyzed and
tracked randomly by host. Moreover, with the
development and widespread application of various
reverse engineering technology, the attack on
software becomes easier [2]. How to protect the
core algorithms and confidential data in the
software is a focus. Technology of code obfuscation
is an important protection method for software [3].
It means that transforms program by maintaining
the semantics, so that the program after
transformation has the same or similar function
with original program, but more difficult to attack
by static analysis and reverse engineering [4, 5].
The purpose of code obfuscation is not to provide
absolute protection for software, and it makes the
attackers abandon attack behavior because the cost
of attack is far more than they can afford.

Many scholars have proposed the scheme on Java
byte code obfuscation. Code security system against
malicious host is established, and its obfuscation
algorithm core is to destroy the program control

information, then, undermine the call information in
process of program. For the characteristics of Java
language, the difficulty of understanding on the
code is increased by constructing complex data
structure, control flow information in process is
obfuscated by inserting the multi-branch statements
[6, 7]. We can know that the research on program
data flow is less than program control flow. Many
obfuscation algorithms of control flow use opaque
predicate or the design gap between Java language
and JVM to obfuscate program. These obfuscation
methods are difficult to resist the dynamic attack
and de-obfuscation attack of pattern matching [8,
9].

 In this paper, the algorithm of control flow
obfuscation based on garbage code is proposed, and
the hash function is introduced to limit insert
operation of code, thereby controlling the growth of
code size. The algorithm of control flow
obfuscation based on Java byte code is designed
and implemented, and the algorithm combines
branch garbage code with loop garbage code. It can
implement the iteration obfuscation of Java byte
code. Moreover, the obfuscation results are
irreproducible.

2. DEFINITION OF CODE OBFUSCATION

Code obfuscation essence is to provide a

translation mechanism [10], and the program after
transformation is difficult to be understood.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

Obfuscation transformation can be divided into five
types, which is layout obfuscation, control flow
obfuscation, data obfuscation, class structure
obfuscation and preventive obfuscation. The
definition of obfuscation transformation can be
described as definition one.

Definition one: The program 1 2()P v v= is

changed into the program()Pτ , then, there is a

program P', original output context of program P is
recovered, and() 'P Pτ is equivalent to the program

P when the context S is inputted and the context S’
is output. That is called obfuscation transformation.

()()P v vττ = is the obfuscation transformation of

() 'P v v= which is equivalent to

'
('() ' () ' () ')

P
P v v P P P v vτ τ∨ = ∧ ≡ = .

Instruction sequence P’ is called the end of
obfuscation transformation. Some instructions can
not change the context, such as input instruction,
output instruction, so not all instructions given
architecture can be obfuscated transformation. The
obfuscated program is divided into τ(P) and P', it is
possible to bind reversible algorithm for
obfuscation transformation. Equivalence conditions

() ' () 'P P P v vτ ≡ = means program ()()P v vττ =

and () 'P v v= is constant mapping.

Branch garbage code and loop garbage code are
combined in this paper, including the
determination of basic program modules and
opaque predicate. The basic modules and
opaque predicate are defined as definition two and
definition three.

Definition two: Program basic block is an
instruction sequence. There is not
any transfer instruction in the sequence. The range
of module address does not contain not only any
transfer instruction but also the target address of
transfer instruction.

Definition three: The value of predicate P is
obfuscated when it is p, it can be gotten by
obfuscator not de-obfuscator,, then, the predicate is
opaque. It is described that ()F T

p pP P always is

False or True when its value is p. If its value
sometimes is True and sometimes is False, it is
defined as ?

pP .

3. THE REALIZATION ON OBFUSCATION
ALGORITHM

There is not any code to meet the condition of the

garbage code insertion. It is not easy to construct
garbage code, and it is more difficult to propose a

universal practical garbage code algorithm. Branch
garbage code and loop garbage code are described
in this paper.

3.1 The Definition Of Garbage Code
Garbage code is the code that is inserted into the

Java byte code array, and it can be executed during
the Java program is running. But it does not change
the operation results. Garbage code has the
characteristics as the following.
(1) Whether any class or instance variable in the
Java program is referred, its value can not be
changed. But the value of the class or instance
variable that is added by obfuscator can be
changed.
(2) The value of any local variable in the original
Java program can be referred, while the value can
not be changed.
(3) Assuming that the state of the stack is A before
the control flow comes into the garbage code, no
matter what the place where control flow left from
the garbage code, the state of stack must maintain
A.
(4) Garbage code can create objects in heap, but the
state of original objects in heap can not be changed.
(5) Garbage code does not change the original
control flow of Java method. That is, if the original
control flow is from A to B before garbage code is
inserted, the control flow is from A to C after
garbage code C is inserted, and the control flow
must turn to B after the garbage code C is run.

 The above characteristics can ensure the
operational environment of original program
instruction not to be changed. At the same time,
control flow of the original program can not be
changed. So the running results of Java method also
can not be changed.

3.2 Branch Garbage Code
The process of obfuscation transformation about

branch garbage code is shown in Figure.1.The
realization on algorithm is described as following.
Input: Given the program control flow graph G.
Step1. Examine all basic blocks in control flow
graph G, find some basic blocks B, and the state of
blocks B are no change when program control flow
leaves them, and data of stack top is numeric. Insert
an opaque predicate ()F T

p pP P to interfere the

statements execution after control flow.
Step2. Add a new local variable in Java byte code,
and its type is double. Add pseudo instruction
sequence insert id and store index before the basic
blocks that is selected in Step1, id is unique
identification of a basic block, insert is any
instruction that pushes float data into stack, and

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

store is any instruction that stores float data
in local variable.
Step3. Introduce a class variable, and the type of
variable is the same with the type of stack top
element that control flow left any basic block in B.
Step4. Construct the following pseudo instruction
sequence: open, put static index _ pool, load index,
lookup switch. The jump table of lookup switch is
constructed as the following way: id and a certain
subsequence in basic block that is corresponding
with id turn to open, put static index _ pool, load
index, lookup switch, not turn to branch of the
subsequence.
Step5. Instruction sequence that is constructed in
Step4 inserts the basic block that is selected in
Step1. At the same time, the branch of basic block
points to open, put static index _ pool, load index,
lookup switch.
Output: Program control flow graph G'.

Figure 1: Obfuscation Transformation Of Branch
Garbage Code

3.3 Loop Garbage Code

The local control flow after the loop garbage
code is inserted is shown in Figure.2. The
realization on algorithm is described as following.

Figure 2: Obfuscation Transformation Of Loop

Garbage Code

Input: Given the program control flow graph G.
Step1. Examine control flow graph of Java byte
code and find basic block B. The basic block should
have several precursors. And the stack top
element is numeric before control flow came into
the basic block.
Step2. Add a new local variable in Java byte code,
and its type is double.
Step3. Introduce a class variable, and the type of
variable is the same with the type of stack top
element that control flow came into basic block B.
Step4. Construct the following pseudo instruction
sequence one: insert id, open, store index, if, insert
pool, load index, add, open, store index, go to. And
insert is any instruction that pushes float data into
stack, store is any instruction that stores float data
in local variable, if is conditional branch
instruction, its target is basic block B, load is any
instruction that loaded integral data from local
variable into stack, go to is unconditional transfer
instruction, and its transfer target is if instruction of
the new code, pool is any float constant.
Step5. Instruction sequence that is constructed in
Step4 is inserted before the basic block that is
selected in Step1. At the same time, a certain
original precursor of the basic block points to the
first new instruction, and other precursors point to

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

the new pseudo instruction sequence two: insert
pool, load index, add, open, store index, go to, if
instruction is the only exit for instruction sequence
insert id, dup, store index, if, push const, load
index, add, dup, store index, go to.
Output: Program control flow graph G’.

3.4 The Insertion of Hash Function
The obfuscated program will bring the cost of

execution time and required storage space. Even it
can not run because the memory space is run out.
So the obfuscation method should be improved and
limit the number of obfuscation operation. In this
paper, the improved idea is to use hash function to
select operation modules to obfuscate when
operation modules are too large, in order to limit
the number of obfuscation operation and reduce the
cost of time and space on obfuscated program.

4. PERFORMANCE ANALYSIS OF THE
ALGORITHM

The effectiveness and feasibility of obfuscation

algorithm about control flow based on garbage code
is verified by CPU clock cycle and the success rate
of the implementation. Since the control flow of
general Java program is mainly made of several
control statements, six different Java programs are
selected for the experiment. Test case is shown in
Table 1. The capability of resist tampering on
garbage code is compared with the algorithm of
class structure. The experimental results are shown
in Figure.3 and Figure.4.

Table 1 : Test case

Number of
program

Name of
program

Description

1 P_if if-else program
2 P_for for program
3 P_while while program
4 P_do-while do-while program
5 P_Switch switch program
6 P_ colligate compositive program

0

100

200

300

400

500

600

700

1 2 3 4 5 6

test program

C
P

U
 c

os
t

source code obfuscated code

Figure.3: Execution Cost Of Source Code And

Obfuscated Code

0

1

2

3

4

5

1 2 3 4 5 6

test program

tim
e/

h

class structure garbage code

Figure.4: Comparison Of Ability On Resisting

Tampering

Through the experimental results, it can be seen
the execution cost of obfuscated program is larger
than the original program, no matter what the
original code size. In addition, with the growth of
program complexity, the capability of resist
tampering about the obfuscation algorithm based on
garbage code is better than the obfuscation
algorithm of class structure. The algorithm can
extend the time of tampering attack, and prevent
static analysis and reverse engineering for software.

5. CONCLUSION

In this paper, garbage code is used to implement

obfuscation algorithm of control flow, and the
realization processes about branch garbage code
and loop garbage code are provided. Furthermore,
the number of insertion operation about garbage
code is limited by hash function. It can ensure the
code obfuscation strength to some extent, and it
also can avoid code not to run properly because of
excessive cost. The capability on resisting dynamic
attack of garbage code is stronger than the opaque
predicate, and the garbage code also can prevent
static analysis and reverse engineering for software
effectively. The obfuscated program has a higher
security. But the execution cost is increased. The
next work should find the balance point of security
and performance.

REFRENCES:

[1] T. W. Hou, H. Y. Chen, M. H. Tsai, "Three

control flow obfuscation methods for Java
software", IEE Proceedings: Software, 2006,
Vol. 153, No. 2, pp.80-86.

[2] Y. Hiroki, M. Akito, N. Masahide, “A goal-
oriented approach to software obfuscation",
Computer Science and Network Security, Vol.
8, No. 9, 2008, pp.59-70.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

[3] M. Nikos, K. Nessim, P. Bart, "A taxonomy of
self-modifying code for obfuscation",
Computers and Security, Vol. 30, No. 8, 2011,
pp.679-691.

[4] K. A. Bakar, B. S. Doherty, "An enhancement
of the random sequence 3-level obfuscated
algorithm for protecting agents against
malicious hosts", International Journal of
Computers Communcations and Control, Vol. 2,
No. 2, 2007, pp.159-173.

[5] B. Shlomo, K. Tsvi, R. Francesco, "The impact
of data obfuscation on the accuracy of
collaborative filtering", Expert Systems with
Applications, Vol. 39, No. 5, 2012, pp.5033-
5042.

[6] A. Hessler, T. Kakumaru, H. Perrey,
D.Westhoff, "Data obfuscation with network
coding", Computer Communications, Vol. 35,
No. 11, 2010, pp.1-14.

[7] C. R. Subhra, B. Swarup, "RTL hardware IP
protection using key-Based control and data
flow obfuscation", 23rd International
Conference on VLSI Design, January 3-7, 2010,
pp.405-410.

[8] C. S. Collberg, C. Thomborson, "Watermarking,
tamper-proofing, and obfuscation-tools for
software protection", IEEE Transactions on
Software Engineering, Vol. 28, No. 8, 2002,
pp.735-746.

[9] G. V. Anjaiah, S. Ashutosh, "A neural network
approach for data masking", Neurocomputing,
Vol. 74, No. 9, 2011, pp.1497–1501.

[10] N. M. Karnik, A. R. Tripathi , "Security in the
ajanta system", Software-Practice and
Experience, Vol. 31, No. 4, 2000, pp.301-329.

