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ABSTRACT 
 

The purpose of our study is to try to extend the life of the sensor network, without affecting the uses 
functions in wireless sensor networks. As our method reduces the amount of data communications and 
reduces the energy consumption of wireless sensor networks significantly, the compression problem in the 
data transferring process is solved. From the experiments, we conclude that this algorithm improves the 
decoding accuracy and improves the survival time of the network. Therefore, it has a great potential in the 
wireless sensor networks applications. 
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1. INTRODUCTION  
 
We know that the sensor energy saving methods 

can significantly reduce energy consum ption, by 
dynamic power management (Dynamic Power 
Management, DPM) technologies, in order to run 
various parts of the system in the energy-saving 
mode in addition to low-power hardware node 
design. The most common power management 
strategy is detecting the intelligent module and 
turns it on or off. In the study, we found great 
savings can be achieved on energy consumption 
during the dynamic power management and 
dynamic voltage scaling, because the operating 
system can get all of the performance requirements 
of the application and can directly control the 
underlying hardware resources, thus make the 
compromise of between the performance and 
energy consumption.  

For the inevitable loss in data transmission, 
wireless sensor networks can provide different 
accuracy of the data according to the network 
environment to gain a certain degree of flexibility. 
As the monitoring objects’ properties changes over 
time, which leads the needs for network computing 
and communication also changed. In this way, we 
can make, to some degree, predict in the real-time 
scheduling algorithm, active management of energy 
consumption. In addition, the application layer can 
be designed into the main computing tasks early 
implementation and early termination of the 
algorithm, before the normal end of the algorithm, 
so the energy is saved in the case of small data 
accuracy. It has a great potential in the wireless 

sensor networks applications. Our study on the 
distributed compressed sensing model based 
energy-saving algorithm of wireless sensor 
networks, to reduce the power consumption of 
wireless sensor networks, has a great potential in 
the wireless sensor networks applications. 

2. COMPRESSION PERCEPTION THEORY 
 

We analyze the compressed sensing, also known 
as compressing sensing or compressed sampling, 
which is a signal reconstruction technique on a 
sparse or compressible signal. In other words, the 
signal is compressed, while sampling, thus largely 
reducing the sampling rate. The step of the 
compressed sensing collecting N samples is 
skipped, and a representation of the compressed 
signal is obtained directly. Compressed sensing 
theory use many natural signals, with the compact 
representation of specific basis Ψ . That is to say, 
these signals are "sparse" or "compressible". 
Because of this property, compression codes 
perception theory framework is very different from 
traditional compression process, mainly including 
the sparse representation of the signal, encoding 
measurement and reconstruction algorithms. 

These days, compressed sensing theory involves 
three core issues: 

A. The ability to have a sparse representation on 
over-completed dictionary design; 

B. Measurement matrix is designed to meet the 
non-coherent or isometric binding guidelines; 

C. Quick robust signal reconstruction algorithm 
design.  
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2.1 Compression Sensing Principle 
For the limited length of a real-valued one-

dimensional discrete-time signal X which can be 
seen as a N×1dimensional column vector in 
space NR  , elements [n], n = 1,2, ... N. Any signal in 
the space can be represented by linear combination 
of the N x 1-dimensional base vectors [5]. To 
simplify the problem, it is assumed that they are 
normal. When we use the vector  { }N

ii 1=
Ψ  as column 

vector to form the base matrix [ ]NΨΨΨ=Ψ ,,, 21  , 
then any signal X can be expressed as: 

ΨΘ=X                                (1) 

Candes, Romberg, Tao and Donoho proposed the 
sensing theory in 2004. The theory shows that with 
the least number of observations in the case of 
approximation of the original signal, we can have 
no loss of information requiring to sample the 
signal, reducing the dimension of the signal. In 
other words, we can compress the fewer signal 
without the intermediate stage of N samples, to save 
the cost of sampling and transmission, and achieve 
the purpose of compression in the sample. Candes 
proved that as long as the signal in an orthogonal 
space is sparse, the signal can be sampled at a lower 
frequency (M << N), and can be reconstructed with 
a high probability. [6] If we set the transform 
coefficient of a signal X (length is N) which is 
sparse on the orthogonal basis or frame Ψ , we can 
use an observation basis which is not irrelevant to 
the orthogonal basis to do the linear transformation 
for the coefficient vector and get the observations 
set 1: ×MY . At this point, we can use the 
optimization method to reconstruct the original 
signal X from the observation collection with a high 
precision and probability. 

Figure 1 is the reconstruction process diagram 
based on compressed sensing signal. 

 
Fig 1: Reconstruction Process Based On Compressed 

Sensing Signal.  

2.2 Sparse representation of the signals 
Mathematical definition for Sparse: If the 

transform coefficient vectors of the signal X 
towards the orthonormal basis Ψ  can be written in 

XTΨ=θ . E.g. for 0 <p <2 and R> 0, these 
coefficients satisfy:  

RPP
P ≤∑≡ i

/1
i )||(|||| θθ                    (2) 

Then the coefficient vector Θ  is sparse in some 
sense. The best signal sparse domain is the basis 
and premise for compressed sensing applications. If 
and only if we select the appropriate basis, the 
sparsity of the signal can be guaranteed, in order to 
ensure the accuracy of signal recovery. When we 
study the sparse representation of signals, we can 
use the decay rate to show the sparse representation 
capabilities by transform coefficients. 

2.3 Signal Reconstruction Algorithm 
If the matrix Θ satisfies RIP guidelines, 

compression perception theory has inverse analysis 
of the above equation. First we solve sparse 
coefficient χα TΨ=  , then reconstruct the signal X 
(sparsity is K) from the measurement value Y (M-
dimensional projection). The most direct method of 
decoding is to solve the optimization problem 
on 0L : 

ααα ΦΨ=⋅ ytsl0
||||min

              (3) 

The sparse coefficient estimation can be 
achieved. Because the solving process above is a 
NP-Hard problem, and the optimization problem 
with signal sparse decomposition is very similar. So 
scholars look for more effective ways from solving 
signal sparse decomposition theory. Studies have 
shown that, under certain conditions (minimum 
norm of 1L  is equivalent with the minimum 
norm

0
L ), the same solution can be obtained. That is 

to say, the equation above can be changed to the 
optimization problem with minimum norm of 1L : 

ααα ΦΨ=⋅ ytsl1
||||min

        (4) 

 The optimization problem with minimum norm 
of 1L , is also known as Basis Pursuit (BP), which is 
commonly solved as an algorithm: the interior point 
method and the gradient projection method. Interior 
point method is slow, but the result is very accurate: 
the gradient projection method is fast, but it is a 
non-accurate interior point method. In the two-
dimensional image reconstruction, in order to make 
full use of the image of the gradient structure, we 
can correct an integral part of (Total Variation, TV) 
minimization. New fast greedy method is gradually 
used, such as matching pursuit (MP) and orthogonal 
matching pursuit (OMP). In addition, efficient 
algorithms also conclude iterative threshold method 

Compression 
signals 

Sparse transform 

XTΨ=Θ  
Observations 

M 
Dimensional 
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as well as a variety of corresponding improved 
algorithms. 

3. DISTRIBUTED COMPRESSION 
PERCEPTUAL MODEL 

 
Our method receives the sub-data block 

compression coding measurement values, by 
distributed data compressed sensing measurements 
on the encoding side; after the measurement data 
obtained at the decoding side, in order to overcome 
the huge storage and calculation problem during the 
distributed compression data splicing, our method 
does not deduct the sub-data directly, However 
obtains the fully compressed and measured original 
data by integrating of the measurement data. 
Finally, get the original information by the 
reconstruction of compressed sensing. 

Since the data expanded into the one-dimensional 
signal is very large, this make the direct 
compression on measured data and reconstruction 
quite complex and the computation and the storage 
are not able to be accepted. This paper processes 
the data by separate columns, and each column is 
expressed as the signal x with length-n, so when we 
compress the signal x by sensing processing, then 
the measured value y can be obtained by the 
formula (5). 

y=Ax                                       (5) 

In formula (5) 1×∈ mRy , m is the length of the 
measured data, nmRA ×∈ the measurement matrix. 
The distributed compressed sensing analyze the 
signal x by segments, suppose x is divided by u 
segments, marked by u21 ,,x,x x…  and the length of 
each segment is u21 ,,n,n n… ; then the measured 
value iy （i=1,2,…,u） on the segments of x can 
be written to be formula(6) : 

iii XAy =                                 (6)  
inim

i RA ×∈  is the thi  measurement matrix on the 
thi  segment of signal x; im is the measurement 

length. 
From formula (6), we know that each element of 

the measured value jy  (j = 1, 2, ... , m) contains all 
of information of the elements of x, that 
is XjAyi )(:,= , which shows each of jy  
associated with the measurement of the signal 
values of all segments, and the measured value is 
obtained by linearity multiplying the measurement 
matrix and signal x. So, if we want to get the 
complete matrix A by the fusion of the segmental 
measurement- Ai, we need to consider the nature 

and characteristics of the measurement matrix. As 
compressed sensing theory requires the sensing 
matrix satisfies the condition-’restricted isometry 
property’ and [7, 8] proved when the measurement 
matrix is a Gaussian random matrix, the sensing 
matrices satisfy the condition’ restricted isometry 
property’ with a high probability. 

According to the probability theory, we know 
that a linear combination of two Gaussian 
distributions is also a Gaussian distribution. As the 
number of rows of the matrix Ai is less than the 
number of rows of the measurement matrix A, so 
we can guarantee that the fused measurement 
matrix is Gaussian random matrix which satisfies 
the condition- ’restricted isometry property’, by the 
weighted linear combination of iA .  

4. ENERGY-SAVING MODEL OF 
WIRELESS SENSOR NETWORKS 

 
The current researches on data compression of 

wireless sensor networks mainly focus in the raw 
data; this kind of compression algorithm removes 
the redundancy of raw data collected by sensor 
nodes to reduce transport energy consumption. For 
example, the spatial and temporal data correlation 
removal is an effective compression method. [5] 
described an encoding method to remove time 
correlation redundancy and [6] also proposed a 
temporal data compression algorithm based on 
species loop model.  

These studies show good results in removing the 
redundancy of the original data; [7-8] also did some 
researches on the compression algorithm for 
original data. Therefore, in the communication 
process of the nodes, we apply the compressed 
sensing during the data transferring; this will reduce 
the amount of data transferred, increase the energy 
saving effect of the sensor network and reduce the 
data redundancy. 

4.1 Compression coding on random nodes 
The storage capacity of the sensor nodes is a 

bottleneck for the sensor network compression, as 
the storage space for various coding algorithm is 
different. The sensor nodes do not merely collect 
data and send data. If the storage space for the 
compression algorithm is too large, the space for 
other business in the node is shrunk. According to 
[5]”s coding algorithm, we need to study various 
encoding methods and do a good compromise 
between the storage space and the algorithm 
performance before we design the algorithm. 

Here, we did a network simulation for the 
random wireless network model. As shown in Fig. 
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2, the random wireless network is generated by 
simple statements such as: ‘while, if’.  

In our simulation, we get the adjacency Lists for 
weighted directed graph. We use adjacent diagram 
to describe one node with its neighbors for a given 
graph. 

 
Figure 2: Network Random Topology Diagram 

The random network diagram is complicated 
based on the random topology in Fig.2. Because it 
generates the chart, whatever they are truly 
connected, there will be a high degree of 
connectivity for them. The method generates a 
wireless network of radius r, which can ensure the 
connection, and then generate N random point (X, 
Y). For one node, other nodes in this distance(less 
than or equal to the radius (r) are determined 
neighbors of this node. For minimizing the number 
of solitary nodes, we can change the radius to 
achieve our connection expectation. 

The radius used to generate the random network 
is the key problem of the energy-saving, as the 
connections number of nodes is very important, 
which highly affects the final performance. Connect 
the simulation results in order to minimize the 
impact of our fundamental purpose is and randomly 
generated chart roughly the same connections as a 
grid map of the same size. For getting low effects 
on the test result, we try to generate a nearly “same” 
network diagram to the random topology. 

4.2 Coding algorithms 
We suppose the files for encoder are KSSS …,, 21   

and each of them is a source symbol, which can 
only be completely transferred or deleted. We also 
suppose each KS  having the same size (number of 
bits). In each clock cycle, the encoder generates a k 
order random binary matrix }{ knG , and the output of 
encoder nt  is calculated by XOR KS  while 1=knG  
for corresponding KS  in the operation, i.e.: 

       Kn

K

K Kn
Gst ∑ =

=
1                            (7) 

The encoding algorithm we used is shown in 
Figure 2. We assume a transmission sequence 
length is k, and each symbol is represented as 

)1( kiA
i

≤≤ . The encoding process is the K input 
symbols through the XOR parity check matrix G, to 
generate the n output symbols (encoded symbols). 

],,,,,,[
121 nnj

gggggG
−

……= ， is the checking matrix, 
the columns of G are called degrees-

)1( njd
j

≤≤ .The XOR efficacy relationship 
between the coded symbols- )1( njX

j
≤≤ and 

input symbols is： 
)],,,([

211 jK

K

ij
gAAAX ×…⊕= ∑=       (8) 

∑=
⊕K

i 1
 represents the XOR of the K elements in 

the Matrix. 
 

  
n
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1-nj21
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 Fig 3: Coding Principle Diagram 

As the sum is continuously from the XOR of 
different Ks , we define a new column in the semi-
infinite binary matrix for every K random nt (Fig. 3). 

Thus, after the transmission of the channel and 
the data packet deleting, the receiving end has been 
receiving data packets until it receives the N 
packets. Why the receiving end is able to recover 
source file without error? We believe that the 
receiving end knows the connection random matrix 
G, G related to KS  and nt  . For example, the matrix 
G may be generated by a random sequence, and the 
receiver can also produce the same sequence used 
in the sender, and thus likely produce a random 
matrix. The sender can be randomly generated by a 
pseudo-random sequence nk , which is deemed the 
beginning of the transmission symbols. As long as 
the size of the symbol is much larger than nk   (only 
32bits), there is only a small impact for introducing 

nk  . In some programs, packets always have an 
opening for other uses, so the fountain codes can be 
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as nk  . Simply, we called some part of the matrix- 
K-BY-N for "G". 

5. SIMULATIONS ON THE MODEL 
 

Simulation experiment tested via a plurality of 
nodes, and the simulation is for various 
environments. The results are as follows. 

5.1. Simulation conditions 
 

 
Figure 4: Six Trunk Effect Diagram On Experiment 

Data 

Six trunk routes, with number 01, 02, 03, 05, 06, 
07 (assuming the 4th route damaged) are setup in 
the simulation, while, the 5th route the curves is 
marked as white. The left border in the lower right 
corner of records the maximum signal strength in 
each route of the whole process, and the right box 
records the minimum value. The interval is 800mS, 
which is the basic unit of the X axis for the solid 
squiggle curve. 

From the general waveform trend, it is able to 
determine the location information. However, 
problems are: The difference among curves’ crest 
height is big, that is the maximum signal strength of 
each route is much different. They are 64 75 81 75 
55 60. Since the box body is not enough, the first 
and the last route is bare board. While light rain in 
the test, part of the routes damaged due to the 
welding problems which leads a certain level of 
performance damage of the device-CC2591, There 
is a big difference among routes’ welding and 
procurements, e.g.: different materials of 
inductance. Although some curves’ trends are 
obvious, the fluctuations are big. For example, the 
weak signal point (red) (X = 19 at the 7th route), 
will be filtered  out as a interference, when the host 
computer is taking location identification.  

For part frames dropped situation, such as the 
frame is dropped in the 7th route at X = 41, we need 
to improve the wireless transmitter mechanism for 
avoiding the collision to increase the non-response 
retransmission, minimize the number of dropped 
frames. According to the data reported from the No. 
1 route (gateway, trunk route), the signal strength of 

each route timely reports, and in the case of no 4th 
route, nodes between the 5th and the 3rd are able to 
transmit normally and no redundancy in the data 
reported. 

5.2. Simulation conditions 
 

Five trunk routes (interval is 70 m), with ID 01, 
02, 03, 04, 05 (No. 4 is lack of battery), speed of 
routes are 60km / h (acceleration or deceleration, 
non-uniform). 

 
Figure 5: Five Trunk Effect Diagram On Experiment 

Data 

The 2nd, 3th and 4th route’s power is battery. As 
the routes are used of battery-powered many times 
before and we here don’t have the low-power 
design, so the batteries are weak in this test. 
Because 4th route’s battery not able to provide 
enough power, no signal from the 4th route (4th 
routes work well after replacing its battery). The 
largest signal strength of 5th route is only 37 and 
when the measurer approaching the 5th route, a 
package lost in the 5th route. So, we should 
improve the avoiding collision mechanism, to 
increase the non-response retransmission 
mechanism to minimize the number of dropped 
frames. The data transmission is not affected by the 
4th route damaged and 1st; route and 5th route still 
link correctly and receive the data submitted from 
other routes/nodes. 

6. CONCLUSIONS 
 

In this paper, we firstly analyze the compression 
perception theory and the representation for signal 
sparse. Through the study on signal reconstruction 
algorithms, carried out a complete analysis of signal 
compression theory.  

We proposed a distributed compressed sensing 
model and apply it to energy saving filed in the 
wireless sensor networks. The random node 
network application testing shows that the method 
is effective. However, there are still some 
improvement can be achieved, such as improving 
compressed sensing reconstruction accuracy when 
the data is divided into sub-blocks; reducing the 
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energy consumption caused by a random number of 
changing nodes. These will be resolved in our 
future works. 
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