
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

ENHANCEMENT OF SOFTWARE COMPONENT
COMPATIBILITY IN ENTERPRISE SOFTWARE

DEVELOPMENT USING HIGH PEER AND LOW PEER

K.R. SEKAR1, K.S. RAVICHANDRAN 1, ABHISHEK SINGH 1
School Of Computing, Sastra University, Tirumalaisamudram,

Thanjavur, Tamilnadu 613401, India

ABSTRACT

In any business enterprise application, services playing a vital role and are provided by the software
components. Every application requires a myriad of components based on umpteen types of services.
Among the components, finding an enhanced compatible component is a herculean task. The work can be
accomplished in terms with quality of service (QoS) with respect to different types of Applications and
Operating systems. The QoS relatively paramount for a certain combination can be identified through the
outcome. Here High and Low Peers have been segregated by identifying the threshold. A novel
methodology is incorporated using mapping with limits for High Peer and Low Peer qualities. The above
scenario will facilitate the application domain to make use of perfect fitting component available in
bountiful.

Keywords: Software Component (SC), High Peer, Low Peer, QoS, Application, Operating System (OS).

1. INTRODUCTION

Components are categorized into two parts in the
present software industry, namely commercial and
customized components. Normally commercial
components are in the end of the third party vendor,
rather the supplier. Customers like software
companies buy their required component only
through the suppliers. Appropriate selection of the
component is basically through third party vendor
description towards the component, and such a
component is referred to as commercial component.
Customized components are made for the literal
need of software design and their services. They are
more accomplished and have good accuracy
because of their nature. Customized components
need more experts, are time consuming and are not
cost effective. Core functionalities are available in
the same location so that the customers can have
high reliability with a fat component. On the other
hand, marketable components do not provide the
precise services, rather too many or little bit less.
Compared to specially formulated components,
saleable components are more economical and need
less effort. Considering the above facts, the
company can answer the billion-dollar question
whether to make or buy and overcome the
herculean task of identifying the most economical
and reliable component from the enormous market,
thus answering the second question as well.

Software component efficiency and its
compatibility are measured with respect to the
combination of the applications and operating
systems. For measuring the efficiency, the only
yard stick available is QoS [1]. The QoS of the
component selection is based on the following 16
component parameters which are, Performance
(Pe), Security (Se), Scalability (Sc), Accuracy (Ac),
Reliability(Re), Portability (Po), Documentation
(Do),Usability(Us),Consistency(Co),Customization
(Cu), Maintenance (Ma), Interface complex ability
(Ic),Robustness(Ro),Flexibility(Fl), Interoperability
(In), and Semantic (Sm). _______ (1)
Applications and the operating systems also have
good quality of services as stated above. Their QoS
are classified into High Peer and Low Peer. High
Peer has got some QoS which are more relevant
with high functionality of certain Application and
OS combination. High frequency QoS are available
in a High Peer segment and the remaining will be
placed inside Low Peer segment. Ranking has been
made according to the chronology in the segments
for every QoS. Each application interacts with
multiple OS, through which the ultimate vision is to
identify the ingredient of high degree QoS for
certain combination.The arrangement of the paper
is as follows. Introduction elaborates in section-1.
Section - 2 describes elaborately the work related to
this paper, the proposed methodology is explained
in section-3 and finally, the conclusion is given in
section-4.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

2. RELATED WORKS

Functional aspects, metrics and domain-specificity
are the common factors to identify the right
component for the architecture. Once the
component satisfies the above said factors, they are
more reliable and accommodated components [1].
Q-application needs Q-component for making their
service brilliant. Q-component selection for a Q-
application desires some quality so that the Q-
component will be rightly fitted in the Q-
application. Each and every Q-component has got a
description rather, with service directory, through
which the components are identified for their
services [2].
Quantifying every ingredient of the component
gives more vision for Dependability and Mean Turn
Around Time (MTAT) rather, response time is
calculated for their component selection in the
architecture using UniFrame approach [3].
In the proposed work, scenarios are developed for
each Quality attribute, also the risk and the tradeoff
is mentioned. Performance, request satisfaction,
reliability and security are some of the QoS
evaluated to get the right piece of component for
the architecture, like web services [4].
Functional based services, nonfunctional based
services and user based services are approaches
used to identify the best selection (QSS) of the
component for service oriented architecture (SOA)
[5].

3. PROPOSED METHODOLOGY

The need of finding an efficient component is that it
helps us in optimizing business applications. There
are different types of applications out of which few
important ones are selected. These are given in
equation (2).
 1.Web based applications (W), 2.Network
applications(N), 3.Expert systems applications(E),
4.Desktop applications(D), 5.Embbeded
applications(Em), 6.Tool based applications(T)
 ------ (2)
All the applications performed today are dependent
on the OS we use. Here some of the famous OS are
considered for the purpose of finding the suitable
efficient component in an application and are listed
in equation (3).
1.Windows XP(X), 2. Windows Vista(V), 3. Apple
Mac OS X(M), 4. Linux(L), 5. Novel Netware(N),
6. UNIX(U), 7. Sun Solaris(S) ------ (3)

The methodology uses the QoS with high effect on
the combination to determine the efficient,

compatible components for any particular
Application and OS. The components QoS is given
in equation (1). Now, these QoS are arranged into
chronological order. These QoS are then assigned
with rank specific to the particular application or
OS, and the adhered table is prepared for the
application. Then these ranked QoS for the
applications are mapped into the High Peer and
Low Peer depending on the place in the priority of
the QoS for the particular Application. Thus Table-
1 is obtained for High peer QoS, Table-2 for the
Low Peer, for applications.

Table 1: High peer Qos for various Applications.
 S.
No
.

Application
s

High Peer

1
Web based
applications

Pe Co Us Re Sc

0.30 0.15 0.10 0.07 0.06

2
Network
applications

Re Se Pe Ac Ic
0.30 0.15 0.10 0.07 0.06

3
Expert
systems
applications

Ac Re Ic Pe Se

0.30 0.15 0.10 0.07 0.06

4
Desktop
applications

In Us Re Ac Se
0.30 0.15 0.10 0.07 0.06

5
Embedded
applications

Se Pe Sc Re Co
0.30 0.15 0.10 0.07 0.06

6
Tool based
applications

Re Pe Us Co Cu

0.30 0.15 0.10 0.07 0.06

Here the value of the QoS for High Peer is found
using the formula
Value = Rank of the QoS/(Sum of Ranks in High
Peer + Sum of Ranks in Low Peer) eqn.(I)
whereas the value for the Low peer QoS is always a
constant i.e. a minimum limited value of 0.03.

Table-2: Low Peer QoS for various Applications

S.
No.

Applications
 High Peer

1
Web based
applications

Ma Do Se Ac Po Fl Cu Ic Ro In Se

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03

2
Network
applications

Co Us Sc Ma Do In Po Fl Cu Ro Se

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03

3
Expert
systems
applications

Us Co Sc Ma Do Po Fl Cu Ro In Se

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03

4
Desktop
applications

Co Do Pe Sc Ma Fl Cu Po Ro In Se

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03

5
Embedded
applications

Do Us Ma Ac Po Fl Cu Ic Ro In Se

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03

6
Tool based
applications

Ma Fl Sc Do Se Ac Po Ic Ro In Se

.03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

After forming the tables for the Applications the
next thing which needs to be taken into
consideration is Operating System (Os). These Os
are the interface in between the Application and
processor, its job is to manage resource for any
System. As the work environment for every System
may vary depending the processor or utility support
or any other aspect, more than one types of
Operating System are available so as many as
possible are needed to be contemplated. Already
some of the Operating Systems are specified in the
table 3.These Operating System are the once
against which the QoS will be mapped similar to
that as in the Application case i.e. the QoS will be
distribute into the pools of High Peer and Low Peer
depending on the position of that QoS in the
priority stack of the QoS for certain Operating
System, also the ambiguous ones will be handled in
the chronological manner. After all the Qos are
arranged and ranked, values are awarded to each
one of them in order to come up with the similar
tables. Similarly Tables for the Os and the QoS are
also prepared. Thus we came up with Table-3 and
Table-4 for High Peer and Low Peer QoS
respectively.

Table-3: High Peer QoS for various OS

S No OS High Peer

1. Windows XP Us Pe Re Sc Co Se

.30 .14 .10 .07 .06 .05

2. Windows
Vista

Pe Sc Re Co Us Se

.30 .14 .10 .07 .06 .05

3. Apple
MacOS X

Se Co Re Pe Us Sc

.30 .14 .10 07 .06 .05

4. Linux Se Pe Re Co Sc Us

.30 .14 .10 .07 .06 .05

5. Novel
Netware

Re Se Pe Sc Co Us

.30 .14 .10 .07 .06 .05

6. Unix Re Pe Sc Se Co Us

.30 .14 .10 .07 .06 .05

7. Sun Solaris Sc Re Pe Co Se Us

.30 .14 .10 .07 .06 .05

Table-4: Low Peer QoS for various OS

S
No

OS High Peer

1. Windows
XP

Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

2. Windows
Vista

Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

3. Apple
MacOS X

Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

4. Linux Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

5. Novel
Netware

Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

6. Unix Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

7. Sun
Solaris

Ae Pe Do Cu Ma Ie Ro Fl In Se
.03 .03 .03 03 03 03 03 03 03 03

After the Tables are prepared, these QoS are
mapped for the combinations of Applications and
OS. And final tables were made for any particular
combination. This step uses a mapping function for
finding the limits for High Peer and Low Peer
differentiation. These functions are as follows:
ƒhigh={x: w1(x)+w2(x)>0.06, ∀w1εApp, ∀w2εOS}
 (4)
w1= Any entity available in the set of Applications.
w2= Any entity available in the set of OS.
x= Any of the QoS taken into consideration.
From the equation (4) the value 0.06 is fixed as a
threshold value for separating High Peer and Low
Peer. This threshold is taken according to the
developer team and the perception of the author.
ƒhigh was used to determine the high peer were as
ƒlow was used for the low peer.
ƒlow ={x:w1(x)+w2(x)<=0.06,∀w1 ε App, ∀w2 ε OS}
These functions produce the set of QoS belonging
to the High Peer and Low Peer for the particular
Application and OS combination; in this case Web
based application and Windows XP. The set formed
from the ƒhigh is
={0.60,0.29,0.20,0.14,0.12,0.08}
={w 1(Usability)+w2(Usability), w1 (Performance)+
w2(Performance),w1(Reliability)+w2(Reliability),
w1(Scalability)+ w2(Scalability), w1 (Consistency)+
w2(Consistency), w1 (Security)+ w2(Security)}
={Usability, Performance, Reliability, Scalability,
Consistency, and Security}
Thus the set of the High Peer QoS for the
combination is formed and represented in Table-5.
Similarly the set for the ƒlow is also derived in
Table-6.
ƒlow={0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.06, 0.06}
={w1 (Accuracy)+ w2(Accuracy), w1 (Portability)+
w2(Portability),w1(Documentation)+
w2(Documentation),w1(Customization)+
w2(Customization),w1(Maintenance)+
w2(Maintenance), w1 (Interface complex ability)+
w2(Interface complex ability), w1 (Robustness)+
w2(Robustness), w1 (Flexibility)+ w2(Flexibility),
w1(Interoperability)+w2(Interoperability),w1
(Semantic)+w2(Semantic)}={Accuracy, Portability,
Documentation, Customization, Maintenance,
Interface coplex ability, Robustness, Flexibility ,
Interoperability, Semantic}

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

Table-5 Combination of Web based Application and

Windows XP
High Peer

QoS Us Po Ro Sc Co So
 .60 .29 .20 .14 .12 .03

Table-6: Combination of Web based Application and
Windows XP
Low Power

QoS Ac Po Do Cu Ma Ic Ro Fl In Sc
 .05 .06 .06 .06 .06 .06 .06 .06 .06 .06

From the above functions and table the graph is
derived explaining the effectiveness of the QoS on
the combination of the Application and OS, hence
providing with the efficient QoS. The component
handling High Peer QoS will definitely be the
efficient, compatible component.

Chart 1: Ranking QoS for Web Based Application under
Windows XP

In the above chart 1, X-axis is QoS and Y-axis for
performance level. Further the same methodology
is used for defining the combinations, which may
use the particular QoS as the defining factor for the
efficient compatible component. The function used
is
ƒ={1: w1(x)+w2(x)>0.10 ,∀w1εApp, ∀w2ε OS and
∀x ε QoS}
The variables used in this formula are:
w1 = any entity from the Application set.
w2 = any entity from the OS set.
x = any of the QoS proposed.
The value of 0.10 is found from the summation of
values for High Peer and Low peer, thus setting a

separating value for the set of QoS supporting high
efficiency. This is also according to the developer
team and perception of the author. Hence it came
up with the set of matrices for each QoS, here 1and
0 of them are taken into consideration. Following
are the formed matrices: The symbol of the
columns is clearly mentioned in equations (2) and
(3).

Re X V M L N U S

W 0 0 0 0 1 1 0

N 1 1 1 1 1 1 1

E 0 0 0 0 1 1 0

D 0 0 0 0 1 1 0

Em 0 0 0 0 1 1 0

T 1 1 1 1 1 1 1

Pe X V M L N U S

W 1 1 1 1 1 1 1

N 0 1 0 0 0 0 0

E 0 1 0 0 0 0 0

D 0 1 0 0 0 0 0

Em 1 1 0 1 0 1 0

T 1 1 0 1 0 1 0

Co X V M L N U S

W 0 1 0 0 0 0 0

N 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

Em 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

Sc X V M L N U S

W 0 0 0 0 0 0 1

N 0 0 0 0 0 0 1

E 0 0 0 0 0 0 1

D 0 0 0 0 0 0 1

Em 0 0 0 0 0 0 1

T 0 0 0 0 0 0 1

Cost for XP + Web Based Application

U
sa

bi
lit

y
P

er
fo

rm
an

ce

R
el

ia
b

ili
ty

S

ta
b

ili
ty

C

o
n

si
st

en
cy

S

ec
u

ri
ty

A

cc
u

ra
cy

P

al
p

ab
ili

ty

D
o

cu
m

en
ta

tio
n

C
u

st
o

m
iz

at
io

n

M
ai

n
te

n
an

ce

In
te

rf
ac

e
co

m
pl

ex
…

Cost of XP + Web Based Application

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

Through these matrices the QoS supporting the
efficient compatible component can be determined
among the various component used in any software.
Finding such component may lead to a smart
optimization of the application used on any OS
described. This may also help in a reverse manner,
by finding the least efficient component i.e. the
components using all the Low Peer QoS. By
finding these components, identifying the limitation
of any functionality will be easier, thus providing
an idea of which component should be taken in
consideration while resolving the efficiency of the
Application on any given Operating System. Here,
the same concept is implemented using the set of
components than can be used for various
Applications and OS. Let us consider the available
components as C1, C2, C3, C4….., C10, where
each component is having a set of Qos which
provide high results e.g.
C1={ Pe, Co, Fl, Do}, C2={Se, Ac, Us, Po},
C3={Ic, Co, Ma, Se}, C4={Ro, Pe, Us, Ma},
C5={In, Cu, Co, Se}, C6={Sc, Re, Fl, Do},
C7={Co, Ic, Ma, In}, C8={Pe, Se, Sc, Ac},
C9={Re, Po, Do, Us}, C10={Co, Se, Ro, Ma}.

Table 5: Result of the example considered

 Windows

Xp
Windows

Vista
Apple Mac

OS X
Linux Novel

Netware
Unix

Web based
applications

C4,C1,C2,
C8

C1,C3,C4,
C5,C7,C8,

C10

C8,C1
C2,C4,C5

C8,C1
C2,C4,C5

C1,C4,C6
C8,C9

C1,C4,C6
C8,C9

Network
applications

C2,C4,C6,
C9

C1,C2,C4,
C8,C9

C2,C5,C6,
C8,C9

C2,C5,C6,
C8,C9

C2,C5,C6,
C8,C9

C6,C9

Expert
System

applications

C2,C4,C8,
C9

C1,C2,C4,
C8

C2,C5,C8 C2,C5,C8 C2,C5,C6
C8,C9

C2,C6,C8
,C9

Desktop
applications

C2,C4,C9 C1,C4,C8

C2,C5,C8 C2,C5,C8 C6,C9 C6,C9

Embedded
applications

C1,C2,C4,
C5,C8,C9

C1,C2,C4,
C5,C8

C2,C5,C8 C1,C2,C4,
C5,C8

C2,C5,C6,
C8,C9

C1,C2,C4,
C5,C6,C8,

C9

Tool based
applications

C1,C2,C4,
C6,C8,C9

C1,C2,C4,
 C8,C9

C6,C2,C5,
C8,C9

C6,C2,C5,
C8,C9,C1

C4

C6,C9 C1,C6,C8,
C9

Se X V M L N U S
W 0 0 1 1 0 0 0

N 0 1 1 1 0 0

E 0 0 1 1 0 0 0

D 0 0 1 1 0 0 0

Em 1 1 1 1 1 1 1

T 0 0 1 1 0 0 0

Po X V M L N U S

W 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

Em 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

W 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

Em 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

Ac X V M L N U S

W 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0

E 1 1 1 1 1 1 1

D 0 0 0 0 0 0 0

Em 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

Us X V M L N U S

W 1 0 0 0 0 0 0

N 1 0 0 0 0 0 0

E 1 0 0 0 0 0 0

D 1 0 0 0 0 0 0

Em 1 0 0 0 0 0 0

T 1 0 0 0 0 0 0

Cu X V M L N U S

W 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

Em 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

3.1 Results & Discussions

 Through the proposed ideology it is
intended to say that for any specific combination of
Application and Operating System, the QoS lying
in the High Peer will provide efficient compatible
component. Thus while choosing the components
for any Application those components can be
preferred, resulting into an efficient system.
Similarly, the QoS lying in Low peer for the
combinations can also be identified thus providing
the information of the component with least
efficiency, so that more importance can be paid to
that component in providing high functionality of
that particular Application.

4. CONCLUSION

 From the Table 5 a set of components
were chosen for any combination of OS and
Application. This is used for selecting the
preferable components among a given set of valid
components. These components are the ones which
are having any of the QoS in the High Peer for that
particular combination of OS and Application.
Hence they are capable of providing an efficient
system.

REFRENCES:

[1] Lamia Yessad and Zizette Boufaida,”A QoS

Ontology-based Component Selection”,
International Journal on Soft Computing (IJSC),
Vol.2, No.3, August 2011,pp 16-30.

[2] Daniel A. Menasce, Honglei Ruan and Hassan
Gomaa,” A Framework for QoS-Aware Software
Components”,WOSP'04, 2004,pp 186 – 196

[3] Girish J. Brahnmath, Rajeev R. Raje, Andrew M.
Olson, Mikhail Auguston, Barrett R. Bryant and
Carol C. Burt, “A Quality of Service Catalog for
Software Components”, The Proceedings of the
Southeastern Software Engineering Conference,
Huntsville, Alabama, 2002,pp , 441-452

[4] M.Thirumaran , P.Dhavachelvan , S.Abarna and
G.Aranganayagi,,”Architecture for Evaluating Web
Service QoS Parameters using Agents”,
International Journal of Computer Applications
(0975 – 8887) ,Vol. 10– No.4, November 2010, pp
15-21

[5] M. Sathya, M. Swarnamugi , P. Dhavachelvan and
G. Sureshkumar ,”Evaluation of QoS Based Web-
Service Selection Techniques for Service
Composition”, International Journal of Software
Engineering (IJSE), Vol. (1): Issue (5), 2011,pp
73-90

[6] Q. Sun, S. Wang, H. Zou& F. Yang ,” QSSA: A
QoS-aware Service Selection Approach”,
International Journal of Web and Grid Services,
Vol. 7, No 2, May 2011, , pp 147-169

[7] L. Yessad, & Z. Boufaida ,”QoS-based Component
Selection using Semantic Web Technologies”, In
Proceedings of ICWIT’10, 231-240, June 2010, pp
16-19

[8] E. Giallonardo& E. Zimeo , “More Semantics in
QoS Matching “ , Proceedings of the IEEE
International Conference on Service-Oriented
Computing and Applications (SOCA'07), 2007, pp
163-171

[9] Matthias Klusch, Patrick Kapahnke, “Semantic
Web Service Selection with SAWSDL-MX” ,

German Research Center for Artificial Intelligence,
Vol.: 416, 2008, pp 3-16

[10] Roy Grønmo, Michael C. Jaeger.”Model-Driven
Methodology for Building QoS-Optimized

Web Service Compositions”, In Proceedings of the
fifth IFIP International Conference on

Distributed Applications and Interoperable Systems
(DAIS’05), Springer Press, May 2005, pp 68–82

[11] VuongXuan Tran, HidekazuTsuji ,Ryosuke
Masuda.” A new QoS ontology and its QoSbased
ranking algorithm for Web services”, Journal on
Simulation Modelling Practice and
Theory,ScienceDirect, Vol. 17, Issue 8, September
2009, pp 1378-1398

[12] Mohammad Alrifai, Thomas Risse,” Combining
global optimization with local selection for

 efficientQoS-aware service composition”, In
Proceedings of the 18th international conference on
World Wide Web, ACM, ISBN: 978-1-60558-487-
4, 2009, pp 881- 890

[13] J.F. Tang, L.F. Mu, C.K. Kwong , X.G. Luo ,”An
optimization model for software component
selection under multiple applications development”,
European Journal of Operational Research, Vol.
212, Issue 2, July 2011, pp 301–311

[14] Marko Palviainen, Antti Evesti, Eila Ovaska, “The
reliability estimation, prediction and measuring of
component-based software”, The Journal of
Systems and Software, 2011, pp 1054–1070

[15] C.K. Kwong, L.F. Mu, J.F. Tang, X.G. Luo,”
Optimization of software components selection for
component-based software system development”,
Computers & Industrial Engineering, 2010, pp 618–
624

