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ABSTRACT 

 
Fault diagnosis of analog circuits is essential for guaranteeing the reliability and maintainability of 
electronic systems. A novel analog circuit fault diagnosis approach based on greedy kernel principal 
component analysis (KPCA) and one-against-rest support vector machine (OARSVM) is proposed in this 
paper. In order to obtain a successful fault classifier, eliminating noise and extracting fault features are very 
important. Due to better performance of nonlinear fault features extraction and noise elimination, KPCA is 
adopted as a processor. However, a drawback of KPCA is that the storage required for the kernel matrix 
grows quadratically, and the computational cost for eigenvector of the kernel matrix grows linearly with the 
number of training samples. Therefore, greedy KPCA which can approximate KPCA with small 
representation error is introduced to enhance computational efficiency. Based on statistical learning theory 
and the empirical risk minimization principle, SVM has advantages of better classification accuracy and 
generalization performance. The extracted fault features are then used as the inputs of OARSVM to solve 
fault diagnosis problem. The effectiveness of the proposed approach is verified by the experimental results. 

Keywords: Fault Diagnosis, Analog Circuit, Greedy Kernel Principal Component Analysis, One-against-
Rest, Support Vector Machine 

 

1. INTRODUCTION  
 

Analog circuit plays an important role in 
electronic circuits and systems. Although most part 
of an electronic system is digital, about 80% of the 
faults occur in the analog segment [1]. Fault 
diagnosis in digital electronic circuits has been 
successfully developed to the point of automation. 
As compared with the digital circuits, analog 
circuits fault diagnosis is known to be difficultly 
due to the huge number of possible faults, the lack 
of good fault models for analog components similar 
to the stuck-at-one and stuck-at-zero fault models, 
which are widely accepted by the digital test 
community, the presence of components tolerance 
and the inherent nonlinearity of the circuits. Even 
linear circuits exhibit nonlinear relations between 
circuit parameters and the output response.  

With the development of electronic technology, 
the circuit fault diagnosis is also put forward higher 
requirements. The traditional circuit fault diagnosis 
approaches such as fault dictionary, k-fault 
hypothesis and network decomposition which need 
plenty of accessible nodes of the circuit-under-test 
which have been difficult to adapt to the 
requirements of modern electronic circuits. In order 
to solve these problems, automating fault diagnosis 

using artificial intelligence technique has been a 
major research topic in the past two decades. 
Analog circuit fault diagnosis can be regarded as a 
pattern recognition issue and addressed by machine 
learning theory. Such as artificial neural networks 
and support vector machine have been successfully 
applied to fault diagnosis for analog circuit [2]. In 
literature [3], the BP neural networks is adopted to 
the fault diagnosis of linear circuits. Because there 
is no preprocessing for the impulse response of the 
circuits, even for relatively small circuits, complex 
neural networks architecture is demanded for this 
approach. In literature [4] and [5], the authors have 
applied BP neural networks with wavelet 
decomposition and PCA as preprocessors to fault 
diagnosis of analog circuits. Compared with 
literature [3], the proposed approach demands a 
much smaller network and has better diagnostic 
accuracy. In literature [6], a novel approach for 
analog fault diagnosis based on BP neural networks 
and genetic algorithms is proposed nevertheless the 
approach needs to simultaneously sample the data 
of several accessible nodes, which is difficult to 
carry out. That is because only the output node can 
be accessed directly in the most practical circuits. In 
literature [2], a novel analog circuit fault diagnosis 
approach based on improved SVM is proposed, but 
the drawback of the approach is that the number of 
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the required accessible nodes is up to 6. In literature 
[7], a comparison between fuzzy approach and 
radial basis function networks for soft fault 
diagnosis in analog circuits is given. The 
experimental results point out that both approaches 
provide low classification errors in the presence of 
noise and non-faulty components tolerance effects. 

Support vector machine (SVM) is a relatively 
new machine learning approach based on the 
statistical learning theory (SLT) and the empirical 
risk minimization principle. Compared with the 
other machine learning methods, such as artificial 
neural networks, SVM has better generalization and 
convergence performance [8]. In this paper, SVM is 
adopted to diagnose fault for analog circuit. In order 
to obtain a successful SVM-based fault classifier, 
eliminating noise and extracting fault feature are 
very important. We know that the fault features of 
analog circuit that cannot be separated linearly in 
the input space can be separated linearly in the high 
dimensional feature space. The output of circuit-
under-test (CUT) is sampled in frequency domain 
and then preprocessed by greedy KPCA to 
eliminate noise and extract the nonlinear fault 
features. The fault features are then used as the 
input of SVM to solve fault diagnosis problem. The 
paper is organized as follows. In Section 2, kernel 
principal component and greedy kernel principal 
component analysis are introduced. In Section 3, a 
brief overview of SVM and one-against-rest SVM 
are introduced. Section 4 gives the experimental 
results and analysis. The conclusions are drawn in 
the last section. 

2. KPCA AND GREEDY KPCA 

2.1 KPCA 
Principal component analysis (PCA) is a standard 

linear transformation technique that reduces the 
number of data dimensions without much loss of 
data information. Although PCA has been 
successfully applied in many fields as the most 
popular dimensionality reduction method, it cannot 
extract the nonlinear feature in the high dimension 
data effectively. Kernel principal component 
analysis (KPCA) successfully extends PCA to 
nonlinear cases by performing PCA in a higher or 
even infinite dimensional feature space which is 
nonlinearly transformed from input space and 
implicitly defined by a kernel function [9]. The 
main idea of KPCA is to map the input data ∈ mx R  
into a new high dimensional feature space F firstly 
via a nonlinear mapping ( )φ ⋅ , and then perform a 
linear PCA in F [10].  

Let 1 2[ , , , ]=  nX x x x ( ∈ m
ix R , 1, 2, ,= i n ) be 

the observation set, where n  is the sample number, 
m  is the number of variables. By the nonlinear 
mapping : ( )φ φ ∈ hx x F , the measured inputs 
are extended into the high dimensional feature 
space, where h is the dimension in feature space 
which is assumed to be a sufficiently large number. 
The sample covariance matrix in the feature space 
can be expressed by 

1

1 ( ( ) )( ( ) )φ φ φφ φ
=

= − −∑
n

T
i i

i
C x m x m

n
   (1) 

where 
1

1 ( )φ φ
=

= ∑
n

i
i

m x
n

 is the sample mean. We 

denote ( ) ( ) φφ φ= −i ix x m  as the centered feature 
space sample.  

Then formula (1) can be expressed as  

1

1 ( ) ( )φ φ φ
=

= ∑
n

T
i i

i
C x x

n
              (2) 

For convenience, we assume that ( )φ ix  have 
been centralized, where 1,2,= i n .  

The kernel principal component can be obtained 
by solving the eigenvalue problem in the feature 
space: 

1

1 ( ( ), ) ( )φλ φ φ
=

= = ∑
n

T
i i

i
v C v x v x

n
     (3) 

where eigenvalues 0λ ≥ and eigenvectors ∈v F .  

It is easy to see that every eigenvector v of φC  
lies in the span of 1( ), , ( )φ φ nx x . Hence φλ =v C v  
is equivalent to  

( ( ), ) ( ( ), )φλ φ φ=k kx v x C v            (4) 

where 1,2, ,= k n and there exist coefficients αi , 
1, 2, ,= i n   

Such that  

1
( )α φ

=

= ∑
n

i i
i

v x                           (5) 

Combining equations (4) and (5), we get  

1

1 1

( ( ), ( ))

1 ( ( ), ( ))( ( ), ( ))

λ α φ φ

α φ φ φ φ

=

= =

=∑

∑ ∑

n

i k i
i

n n

i k j j i
i j

x x

x x x x
n

   (6) 
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Defining kernel matrix K  with size ×n n  by 
[ ] ( ( ), ( ))φ φ=ij i jK x x , then its elements are 
determined by virtue of kernel tricks. 

[ ] ( ( ), ( )) ( , )φ φ κ= =ij i j i jK x x x x        (7) 

where ( , )κ i jx x is the calculation of the inner 
product of two vectors in feature space F with a 
kernel function. This reads 

2λ α α=n K K                           (8) 

where α denotes the column vector with entries 
1 2, , ,α α α n . To get solutions of equation (8), we 

solve the eigenvalue problem, and it is equivalent to 
perform PCA in F .  

λα α=n K                              (9) 

Let 1 2λ λ λ≥ ≥ ≥ n denote the eigenvalues of 
K , and 1 2, , ,α α α n the corresponding complete 
set of eigenvectors. The dimensionality of the 
problem can be reduced by retaining only the first 
p eigenvectors. We normalize 1 2, , ,α α α p by 

requiring that the corresponding vectors in feature 
space F be normalized, i.e., ( , ) 1=k kv v  for all 

1, 2, ,= k p . 

According to equation (5) we get  

1 1
( ( ), ( )) 1α φ α φ

= =

=∑ ∑
n n

k k
i i j j

i j
x x           (10) 

Further, we get  

1 1 1 1
( ( ), ( ))

( , )
( , )

α φ α φ α α

α α
λ α α

= = = =

=

=
=

∑ ∑ ∑ ∑
n n n n

k k k k
i i j j i j ij

i j i j

k k

k k k

x x K

K     

(11) 

Knowing the normalized vectors , the PCs t  of 
a test vector x  are then extracted by projecting 

( )φ x  onto eigenvectors kv  in F , ( , ( ))φ= =k
kt v x  

1
( , )α κ

=
∑

n
k
i i

i
x x , where 1,2, ,= k p , p is the number 

of principal components. 

In order to avoid performing the nonlinear 
mappings and computing dot products of the form 
( ( ), ( ))φ φx y in the feature space F , kernel function 
of form ( , ) ( ( ), ( ))κ φ φ=x y x y  is introduced. 
According to Mercer's theorem which states that 
any positive semi-definite kernel ( , )κ x y can be 

expressed as a dot product in a high-dimensional 
space. More specifically, if the arguments to the 
kernel are in a measurable space X, and if the kernel 
is positive semi-definite, i.e.  

, 1
( , ) 0α α κ

=

≥∑
n

i j i j
i j

x x                  (12) 

for any finite subset 1{ , , } nx x of X  and subset 

1 2{ , , , }α α α n of real numbers, then there exists a 
function ( )φ x  whose range is in an inner product 
space of possibly high dimension, such that 

( , ) ( ( ), ( ))κ φ φ=x y x y .  

Mercer's theorem guarantees the existence of a 
number of kernel functions. Three popular kernel 
functions are as follows 

thd degree polynomial kernel 

( , ) ( , )κ = dx y x y                     (13) 

Gaussian kernel (Radial basis kernel) 
2 2( , ) exp( || || /2 )κ σ= − −x y x y          (14) 

Sigmoid kernel: 

1 2( , ) tanh( ( , ) )κ = +x y c x y c           (15) 

where d ,σ , 1c and 2c  are positive real numbers.  

Kernel functions provide a low-dimensional 
KPCA subspace that represents the distributions of 
the mapping of the training vectors in the feature 
space. Before applying KPCA, the centered kernel 
matrix K  should be calculated by 

1 1 1 1= − − +n n n nK K K K K               (16) 

where 
1 1

11
1 1

 
 =  
  



  


n n

.  

2.2 Greedy KPCA 
Greedy KPCA is proposed by France [11] to 

reduce training set in feature space F . It is an 
efficient algorithm to compute the ordinary kernel 
PCA. The approach aims to represent data in a low 
dimensional feature space that spanned by the 
subset of the feature sample set with possibly 
minimal representation error which is similar to the 
PCA.  

Let 1{ ( ), , ( )}φ φ=  nT x xF  be a training set of 
samples represented in the feature space F . Select 
a subset ⊂S TF F  of the training set such that the 
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linear span of SF is similar to the linear span of 
TF . Let {1, 2, , }=  nI denote a set of indices of 
the training samples TF  and 1 2{ , , , }=  lj j jJ  a 
set of indices of l  selected samples SF . In such a 

case ⊂J I . Let 1 2{ ( ), ( ), , ( )}φ φ φ=     nT x x xF be 
an approximation of the training samples TF  
represented in the basis given by the selected subset 
SF . The approximate feature space representation 
of the training samples can be expressed as follows: 

( ) ( ),φ β φ
∈

= ∀ ∈∑
i ij j

j J
x x i I          (17) 

where, the set ⊂J I  contains indices of l  
selected samples { ( ) : }φ= ∈ ⊂jS x j TF FJ  and 

β ∈ l
i R  are coefficients of linear combinations.  
Assume that the subset φS  is selected from the 

training set 1[ ( ), , ( )]φ φ φ=  nX x x  and the size of 

φS is l . The reconstructed training set 1[ ( ),φ φ= X x  

, ( )]φ nx from subset φS  can be expressed in the 
compact form 

φ φ=X S B                          (18) 

where 1[ , , ]β β=  nB .  
The number l of selected samples J determines 

the complexity of the ( )φ ix  (in the worst case). The 
problem of finding the reduced linear span in 
feature space F can be expressed as an 
optimization problem. We can take minimum mean 
square error as the objective function 

2

2

( / )
1 || ( ) ( ) ||

1 || ( ) ( ) ||

ε

φ φ

φ β φ

∈

∈ ∈

= −

= −

∑

∑ ∑



MS

i i
i

i ij j
i j

x x
n

x x
n

F

I

I J

T J

      (19) 

As shown in the literature, the optimal 
coefficients βi  can be computed as  

2

1

arg min ( ) ( )[ ]

( ) ( ),

β
β φ φ β

κ

∈ ∈

−

= −

= ∀ ∈

∑
l

i i j i j
R j

S S i

x x

K x i
J

I

    (20) 

where ×∈ l l
SK R  is a kernel matrix of the selected 

sample set SF  and the vector 1( ) [ ( , ),κ κ=S i j ix x x  

, ( , )]κ ∈ T l
jl ix x R .  

The objective function ( / )εMS FT J can be 
rewritten as  

1( / ) ( ( , )

2 ( ) ( ( ), ( )))

ε κ

κ κ κ
∈

= −

+

∑MS i i
i

S S i S i S S i

x x
n

K x x K x

F
I

T J
     (21) 

In order to select SF  efficiently, as shown in the 
literature, firstly, the minimum mean square error 
can be upper bounded by  

21( / ) || ( ) ( ) ||

max

ε φ φ
∈

∈

= −

−
≤

∑ 
MS i i

i

j

x x
n

n l
n

F
I

I

T J

2|| ( ) ( ) ||φ φ− 
j jx x

J

   (22) 

where ( )=l Card J is the number of selected 
samples in the set J .  

Secondly, we can use orthonormalized basis 
1[ , , ]=  mW w w  and the selected subset SF  to 

evaluate the approximated data and partial 
reconstruction error efficiently.  

( ) ( )φ φ= x W z                           (23) 
where ( )φ z  is a new representation of ( )φ x .  

The reconstruction error ε i  is computed as  

( ) ( )

( ( ), ( )) ( ( ), ( )),

ε φ φ

φ φ φ φ

= −

= − ∀ ∈


i i i

i i i i

x x

x x z z i I
  (24) 

Finally, the kernel matrix can be computed by 
using ≈ TK Z Z , the reduced kernel matrix K  is an 
×l l  matrix where l n .  
Then the optimization problem can be solved by 

the greedy algorithm as shown below.  
 

Greedy minimization of upper bound on ( / )εMS FT J  

1)  Initialization. Set (0) { }= ∅J , 
0 ( , )ε κ=i i ix x , ∈i I . 

2)  For 1=t to l  
① arg max

∈
=t

j
j

I

1ε −t
j

J
 

② 

1

1
1

1[ ] ( , ) [ ] [ ] ,κ
ε

−

−
=

 = − 
 

∀ ∈

∑t t

t

t

i t i j i h j ht
hj

z x x z z

i I

 

③ 
1

1
1

1 ( ) [ ]α δ α
ε

−

−
=

 
= − 

 
∑ t

t

t

t j i it
ij

t z  

④ ( ) ( 1) 2([ ] ) ,ε ε −= − ∀ ∈t t
i i i tz i I  

⑤ ( ) ( 1) { }−= ∪t t
tjJ J  

 
Obviously, the iteration number of the Greedy 

KPCA algorithm equals to l . Nonetheless, it is 
reasonable to terminate the algorithm earlier, if one 
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of the terminal conditions as shown below is 
satisfied: 

(a) The algorithm halts if the mean square 
reconstruction error ( / )εMS FT J  falls below pre-
specified limit;  

(b) The algorithm halts if ( )( )tCard J  reaches a 
pre-specified limit;  

(c) The algorithm halts if maximum error 
max
∈j I

2|| ( ) ( ) ||φ φ− 
j jx x

J
 falls below pre-specified 

limit. The use of a particular terminal condition 
depends on a practical application.  

2.3 A Simple Example 
In order to show that KPCA has better ability of 

nonlinear feature extraction and noise elimination, 
the following system with three variables but only 
one factor is adopted [12].  

1 1
2

2 2
3 2

3 3

3

3

= +

= − +

= − + +

x t e
x t t e
x t t e

                    (25) 

where e1, e2 and e3 are independent noise variables 
(0,0.01)N , and [0.01,2]∈t .  
Normal data comprising 100 samples were 

generated according to these equations.  
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Figure 1: Comparison Between Noisy Data And 

Reconstructed Data By KPCA 
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Figure 2: Comparison Between Reconstructed Data By 

KPCA And PCA 

From Figure 1 and Figure 2, it is seen clearly that 
the nonlinear data have been reconstructed 
splendidly using KPCA due to better ability of 
nonlinear feature extraction and noise elimination 
as compared with PCA.  

3. ONE-AGAINST-REST SVM 
 
SVM is originally designed for binary 

classification. However, the practical issues often 
require the discrimination for more than two 
categories, especially in fault diagnosis field. How 
to extend SVM for multi-class classification issues 
effectively is still an ongoing research issue. In 
practice, the multi-class issues can be decomposed 
into a series of binary classification issues and then 
solved by binary SVMs.  

3.1 Support Vector Machine 
Given a training set 1 1{( , ), , ( , )}= ∈ l lT x y x y  

( )×n lR Y , where l is the number of samples, 
1, 2, ,= i l . We refer to ∈ n

ix R  as the ith sample 
and { 1,1}∈ = −iy Y as its label. The classification 
problem is to find the hyperplane in a high 
dimensional feature space H , which divides the 
sample set in H  such that all the points with the 
same label are on the same side of the hyperplane. 
SVM is to construct a map ( )φ ⋅  from the input 
space nR  to a high dimensional feature space H  
and to find an optimal hyperplane ( , )w b  in H  
such that the separation margin between the 
positive and negative examples is maximized. 
Mathematically, the SVM classification amounts to 
finding a weight vector w and a threshold b 
satisfying 

1

1min
2

[ ( ) ] 1
. .

0

ξ

φ ξ
ξ

=

+

+ ≥ −
 ≥

∑
l

T
i

i

i i i

i

w w c

y x b
s t

              (26) 

where 1, , , 0= >i l c  is a regularization parameter 
for the tradeoff between model complexity and 
training error, and ξi  measures the absolute 
difference between ( )φ +iw x b  and iy . Figure 3 
gives a binary classification SVM graphical 
illustration. The balls and squares stand for two 
separable samples, H  is the optimal hyperplane, 

1H  and 2H  are the convex hull of each class 
samples respectively.  
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Figure 3: Principle Of Binary Classification SVM 

The Lagrange dual format of (27) is easier to 
solve 

  (27) 

where ,  is the kernel function 

that satisfies .  
Therefore, the learning problem in SVM is 

equivalent to the convex quadratic programing 
problem in (26). We have the decision function  

      (28) 

where , .  

3.2 One-against-rest SVM 
In order to solve the multi-class classification 

problems, we need to extend bin-class SVM for 
multi-class SVM and there are two mainly used 
schemes: one-against-rest (OAR) approach and 
one-against-one (OAO) approach.  

In this paper, we adopt the most widely used 
one-against-rest approach to diagnose the analog 
circuit. One-against-rest approach constructs m sub-
classifiers where m is the number of classes. The ith 
sub-classifier is trained in the way that all sample 
points of the ith class are labeled with positive and 
all sample points of other classes labeled with 
negative. The structure of the OARSVM is shown 
in Figure 4. 

Given a training set  
, where l is the number of examples. We 

refer to  as the ith sample and 
 as its label. The ith SVM 

solve the following problem that yields the ith 
decision function  

       (29) 

 

 
Figure: 4 Structure of OARSVM 

At the classification stage, a sample x is 
classified as in class  for which produces the 
largest value 

          (30) 

where  and  

. 

4. EXPERIMENTAL RESULTS 

4.1 Diagnostic Flowchart 
The flowchart of analog circuits fault diagnosis 

based on Greedy KPCA and multi-class SVM is 
shown in Figure 5, which includes two procedures, 
namely, the training procedure and the diagnosis 
procedure. First, we perform 180 Monte Carlo 
simulations for the fault-free circuit and faulty 
circuit respectively and the output responses have 
been randomly divided into two parts including 100 
training samples and 80 testing samples. Then, we 
extract the fault features of the CUT using Greedy 
KPCA from the training set and construct the one-
against-rest SVM.  

When performing fault diagnosis, we extract the 
corresponding major fault features from testing set 
and import the features to the diagnosis model that 
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have been constructed. Then the multi-class SVMs 
can assort all the fault classes of the CUT. 

 
Circuit-under-test

(CUT)

Normalization

Fault feature extraction 
using KPCA 

One-against-rest SVM

Training 
process

Diagnositic 
process

Diagnostic results

Fault sample
set for training

Fault sample 
set for diagnosis

 
Figure 5: Flowchart Of The Proposed Approach For 

Analog Circuits Fault Diagnosis  

In order to demonstrate the superiority of the 
proposed approach in feature extraction and fault 
diagnosis, we compare our approach with PCA-
OARSVM approach and OARSVM approach 
without fault feature extraction and noise 
elimination, respectively. The number of principal 
components (PCs) is determined via cumulative 
percent variance (CPV).  

4.2 CUT and Diagnostic Results  
 
Two analog circuits are diagnosed in this section 

to verify the effectiveness of the proposed approach. 
The first circuit-under-test (CUT) is Sallen-Key 
bandpass filter[4], which is a nonlinear circuit. The 
nominal values of the components which results in 
a center frequency of 25KHZ are shown in Figure 6. 
The resistors and capacitors are assumed to have 
tolerances of 10% and 5%, respectively.  

1(5 )C Fµ1(1 )R k
inV

outV

2 (5 )C Fµ
3 (2 )R k

2 (3 )R k

4 (4 )R k

5 (4 )R k

+
−

 
Figure 6: Sallen-Key Bandpass Filter 

The frequency response of Sallen-Key filter with 
the components varying within their tolerances, 
belong to the fault-free class. The sampled data are 
preprocessed by greedy KPCA for feature 
extraction.  

In our experiment, four faulty components (C1, 
C2, R1 and R3) are chosen by absolute sensitivity 
analysis, as shown in Figure 7 and Figure 8. 
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Figure 7: 3db Bandwidth Sensitivity Analysis 
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Figure 8: Highpass Cutoff Frequency Sensitivity Analysis 

 
Table 1 : Fault Classes Of Sallen-Key Filter 

Fault code Fault class Nominal value Faulty value 

F0 Fault-free — — 
F1 C1↑ 5nF 10nF 
F2 C1↓ 5nF 2.5nF 
F3 C2↑ 5nF 10nF 
F4 C2↓ 5nF 2.5nF 
F5 R1↑ 3kΩ 6kΩ 
F6 R1↓ 3kΩ 1.5kΩ 
F7 R3↑ 2kΩ 6kΩ 
F8 R3↓ 2kΩ 1.5kΩ 

 
When any of the four components is higher or 

lower than its nominal value by 50% with the other 
three components varying within their tolerances, 
we obtain the faulty responses. These faulty 
responses are similarly fed to the greedy KPCA-
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based preprocessors for fault feature extraction so 
as to form the fault classes C1↑, C1↓, C2↑, C2↓, 
R1↑, R1↓, R3↑, R3↓, where ↑ and ↓ stand for high 
and low, respectively. The fault classes and the 
faulty component values are listed in Table 1. 

The 2nd CUT is the four-op-amp biquad highpass 
filter, which is more complex than the 1st CUT. As 
shown in Figure 9, the nominal values of the 
components resulting in a cut-off frequency of 10 
kHz. The fault classes and the faulty component 
values are listed in Table 2, where ↑ and ↓ imply 
significantly higher or lower than nominal value by 
50% similar to the 1st circuit.  

+
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+
−

4 (1.6 )R k

6 (5.1 )R k

+
−

7 (10 )R k

1(6.2 )R k
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9 (10 )R k

+
−

8 (10 )R k

 
Figure: 9 Four-Op-Amp Biquad Highpass Filter 

 
Table 2:  Fault Classes Of Four-Op-Amp Biquad 

Highpass Filter 

Fault code Fault class Nominal value Faulty value 

F0 Fault-free — — 
F1 C1↑ 5nF 10nF 
F2 C1↓ 5nF 2.5nF 
F3 C2↑ 5nF 15nF 
F4 C2↓ 5nF 1.5nF 
F5 R1↑ 6.2kΩ 15kΩ 
F6 R1↓ 6.2kΩ 3kΩ 
F7 R2↑ 6.2kΩ 18kΩ 
F8 R2↓ 6.2kΩ 2kΩ 
F9 R3↑ 6.2kΩ 12kΩ 
F10 R3↓ 6.2kΩ 2.7kΩ 
F11 R4↑ 1.6kΩ 2.5kΩ 
F12 R4↓ 1.6kΩ 0.5kΩ 

 
In order to demonstrate the superiority of the 

proposed approach, the fault features are extracted 
by PCA and greedy KPCA, respectively. The 
scatter diagrams of all 9 fault classes of 1st CUT 
characterized by 2 PCs and 3 PCs using PCA and 
greedy KPCA approaches are shown in Figure 8 to 
Figure 12. The contribution rates of the first 5 PCs 
for PCA and greedy KPCA are given in Table 3. 
We can see that the CPV of the first 3 PCs for PCA 
and greedy KPCA are 99.82% and 98.95%, both 
are more than 95%.  

 
Table 3 : The Contribution Rates Of Pcs For PCA And 

Greedy KPCA 

PC PCA Greedy KPCA 

PC1 79.79% 79.08% 
PC2 17.47% 17.39% 
PC3 2.56% 2.48% 
PC4 0.13% 0.78% 
PC5 0.02% 0.17% 

 
The OARSVM are trained by feeding the fault 

features extracted from the training set. In the 
experiment, the RBF kernel function ( , )κ =x y  

2exp( / 2 )σ− −x y  is selected and the kernel 
width 4σ = , the penalty parameter 20=C . Then 
we feed the fault features extracted from the test 
samples into the diagnosis model whose outputs 
estimate the probabilities that input features belong 
to different fault classes. The fault diagnosis results 
of OARSVM without data preprocessing 
(Approach 1), OARSVM using PCA as a 
preprocessor (Approach 2) and OARSVM using 
greedy KPCA as a preprocessor (Approach 3) are 
listed in Table 4.  
 

Table 4 : Diagnostic Accuracy Of Sallen-Key Filter 

Fault code 
Diagnostic Accuracy 

Approach 1 Approach 2 Approach 3 
F0 98.33% 98.33% 100% 
F1 100% 100% 100% 
F2 100% 100% 100% 
F3 100% 100% 100% 
F4 100% 100% 100% 
F5 100% 100% 100% 
F6 100% 100% 100% 
F7 100% 100% 100% 
F8 100% 100% 100% 

 
From Figure 10-14, it is seen clearly that there 

are only slight overlaps among the fault classes. 
Approach 2 can obtain nearly the same high 
diagnostic accuracy, owing to the simple spatial 
distribution structure of the fault classes.  
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Figure 10: Fault Classes In 2 Dimensional Pca-Based 

Subspace 
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Figure 11: Fault Classes In 3 Dimensional PCA-Based 

Subspace 
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Figure 12: Fault Classes In 3 Dimensional KPCA-Based 

Subspace 
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Figure 13: Fault Classes In 3 Dimensional KPCA-Based 

Subspace 
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Figure 14: 7 Fault Classes In 3 Dimensional KPCA-

Based Subspace 

From the diagnostic process of the 2nd CUT, we 
can see evidently that the proposed approach 
outperforms approach 1 and approach 2, when the 
spacial distribution structure of the fault classes is 
complex. The scatter diagrams of the fault classes 
for the 2nd CUT in the PCA-based subspace are 
shown in Figure15 and Figure 16, respectively.  
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Figure15: Fault Classes In 2 Dimensional PCA-Based 

Subspace 
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Figure 16: Fault Classes In 3 Dimensional PCA-Based 

Subspace 
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Figure 17: Fault Classes In 2 Dimensional KPCA-Based 

Subspace 
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Figure 18: Fault Classes In 3 Dimensional KPCA-Based 

Subspace 

Evidently, there are many overlaps among some 
fault classes in PCA-based low-dimensional 
subspace, due to the poor ability of nonlinear fault 
features extraction. The scatter diagrams of the fault 
classes in the KPCA-based subspace are shown in 
Figure 17 and Figure 18, respectively. From these 
two diagrams, we can see that there are still many 
overlaps among the fault classes in KPCA-based 
low-dimensional subspace, but the separabilities of 
some fault classes are better than which in PCA-
based subspace. At most, only the three-
dimensional spacial distribution structure of the 
fault classes can be displayed in form of diagram, 
which caused the difficulties to exhibit the fact that 
the separabilities are better in KPCA-based high-
dimensional subspace in form of diagram. But this 
is explained clearly by the contribution rate of each 
kernel principal component.  

From table 5, it is obviously that the 4th PC and 
the 5th PC can still provide effective nonlinear 
features information which are useful for fault 
classification in high-dimensional space compared 
with the 4th PC and the 5th PC obtained by PCA.  

 
 

Table 5 : The Contribution Rates Of Pcs For PCA And 
Greedy KPCA 

PC PCA Greedy KPCA 

PC1 59.34% 30.90% 
PC2 18.75% 19.62% 
PC3 11.75% 10.76% 
PC4 4.46% 9.71% 
PC5 2.31% 8.38% 
PC6 1.38% 6.86% 
PC7 0.72% 2.89% 
PC8 0.49% 2.28% 

 
The diagnostic results of the 2nd CUT are listed 

in Table 6. It can be seen that the diagnostic 
accuracy obtained by the proposed method is higher 
than the other two approaches on any fault class. 
After simple calculation, we can get that the 

average diagnostic accuracy of Approach 1 is 
63.77% and Approach 2 is 74.75%, while the 
average diagnostic accuracy of Approach 3 is 
88.73%, when KPCA is used as preprocessor for 
features extraction. Apparently, the proposed 
approach obtains the highest average diagnostic 
accuracy. 

 
Table 6 : Diagnostic Accuracy Of Four-Op-Amp Biquad 

Highpass Filter 

Fault code 
Diagnostic Accuracy 

Approach 1 Approach 2 Approach 3 
F0 12.50% 72.50% 83.75% 
F1 77.50% 87.50% 92.25% 
F2 68.75% 66.25% 90.75% 
F3 68.75% 85.50% 90.00% 
F4 81.25% 81.25% 85.25% 
F5 77.50% 88.75% 93.75% 
F6 27.50% 35.00% 91.25% 
F7 98.75% 100% 100% 
F8 85.00% 91.25% 100% 
F9 55.00% 61.25% 83.75% 
F10 95.00% 97.50% 98.75% 
F11 26.25% 46.25% 76.25% 
F12 55.25% 58.75% 67.75% 

 
5. CONCLUSION 

 
Fault diagnosis of analog circuit is of essential 

importance for guaranteeing the reliability and 
maintainability of electronic systems. We have 
applied OARSVM approach with greedy kernel 
principal component analysis as preprocessor to 
diagnose analog circuits. Our work indicates that 
the proposed preprocessing techniques have a 
significant impact on analog circuits fault 
diagnosis, due to the better ability of nonlinear 
features extraction compared with PCA. Two 
examples demonstrated that the proposed approach 
can obtain a high diagnostic accuracy, if the spatial 
distribution structure of the fault classes is not 
complex. Even though the separabilites of the fault 
classes are not high in low-dimensional space, we 
can make use of the high-dimensional information 
extracted by greedy KPCA to obtain a satisfactory 
diagnostic accuracy.  
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