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ABSTRACT 

 
In this paper, a smoothing algorithm for training max-min neural networks is proposed. Specifically, we 
apply a smooth function to approximate  functions and use this smoothing technique twice, once 
to eliminate the inner  operator and once to eliminate the  operator. In place of actual network 
output by its approximation function, we use all partial derivatives of the approximation function with 
respect to weight to substitute those of the actual network output. Then, the smoothing algorithm is 
constructed by the gradient descent method. This algorithm can also be used to solve fuzzy relational 
equations. Finally, two numerical examples are provided to show the effectiveness of our smoothing 
algorithm for training max-min neural networks. 
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1. INTRODUCTION  
 

In recent years, fuzzy neural networks have attra-
cted considerable attention for their useful appli-
cations in such fields as control, pattern recognition, 
image processing, forecasting, etc., as described in 
[1, 2, 3, 4, 5, 6]. In all these applications, there are 
different fuzzy neural-network architectures pro-
posed for different purposes and fields. However, 
no matter how different architectures these neural 
networks have, two important operations  and 

 are often involved. Among various 
architectures, the so-called  neural 
networks have been extensively studied and applied 
[6, 7, 8, 9].   

Before we proceed, let us firstly introduce the 
 neural network considered in this paper 

and the problem of the  neural-network 
learning. Suppose that this network has  input 
nodes and one output node, and that we are supplied 
with a set of training samples    , 
where  is an  dimension input vector,   is the 
corresponding desired output, and  is the number 
of training samples. The topological structure of 
this network is illustrated in Fig. 1. Using  to 
denote the weight between node  in input layer and 
output 

  
Figure 1: Max-Min Neural Networks  

node and  to denote the actual network output 
corresponding to the training sample , the I/O 
relationship of the  neural network is 
described by 

 

where  and  are  and  operations 
respectively,  is the composition operation of   
and , and  and  
are the -th input vector and the weight vector, 
respectively. Define the cost function  for this 

 neural network as follows: 

 

Our task is to train this  neural network 
such that it can fit, up to a given precision, the 
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given set of desired network input and output pairs, 
i.e., to find  such that  

 

For this purpose, we use the conventional gradient 
descent method. First, we choose an arbitrary initial 
value  and a constant learning rate . Then, 
the weight vector  is refined by the following ite-
rative learning process 

1 ( ) , 0,1, 2,
k

k k k k
k

J WW W W W k
W

η+ ∂
= + ∆ = − =

∂


 
where  

Because of the difficulty in the analysis of  
and  operations, the training of this  
neural network appears not to be approachable ri-
gorously and systematically. The lack of an app-
ropriate analytical tool for the  and  op-
erations greatly limits their applicability. An initial 
attempt has been made in [10, 11] in trying to 
differentiate  operations and to apply 
them to the training of  neural networks. 
The key idea of their approach is using the unit step 
function. The derivatives of the functions  and 

 have a “crisp” behaviour (We name the al-
gorithm derived by these derivatives as Algorithm 
1.):  

 

By applying this learning process, it is not guaran-
teed that the network will learn, obviously because 
the value of   is null in the majority of cases. T-
o improve this behaviour, a new procedure is devel-
oped in [12]. The authors use  implication 
and give a kind of so-called smoothed derivatives 
of the functions  and  as follows (We 
name the algorithm derived by these derivatives as 
Algorithm 2.): 

 

 

However, the derivatives of functions  and 
 in [10, 11, 12] are formal and can not hold f-

or their corresponding operations in mathematics. 

To overcome this shortcoming, the authors have m-
ade another attempt in [13] in developing a rigorous 
theory for the differentiation of  functions 
by means of functional analysis, and derived an alg-
orithm for training  neural networks. The 
derivatives of the functions  and  are def-
ined as (We name the algorithm derived by these d-
erivatives as Algorithm 3.): 

( ) ( )( ( ) ( )) ( ) ( )( ) ( ) ( ) ( )f x g x f x g xlor g x f x lor f x g x
x x x

∂ ∧ ∂ ∂
= − + −

∂ ∂ ∂
 

( ) ( )( ( ) ( )) ( ) ( )( ) ( ) ( ) ( )f x g x f x g xlor f x g x lor g x f x
x x x

∂ ∨ ∂ ∂
= − + −

∂ ∂ ∂
 

where the function . Then 

the partial derivatives have the following rep-
resentation: 

 

Although a rigorous mathematical analysis for the 
differentiation of  functions is given, the 
learning performance of Algorithm 3 for training 
the  neural network is similar to the lear-
ning performance of Algorithm 1.  

In this paper, a smoothing algorithm for training 
 neural networks is proposed. 

Specifically, we apply a smooth function to 
approximate  functions and use this 
smoothing technique twice, once to eliminate the 
inner operator and once to eliminate the  
operator. In place of actual network output by its 
approximation function, we use all partial der-
ivatives of the approximation function with respect 
to weight to substitute those of the actual network 
output. Then, the smoothing algorithm is con-
structed by the gradient descent method. This alg-
orithm can also be used to solve fuzzy relational 
equations. Finally, two numerical examples are pr-
ovided to show the effectiveness of our smoothing 
algorithm for training  neural networks.   

The rest of this paper is organized as follows. In 
Section 2, we introduce a smoothing method to 
approximate  functions. Section 3 gives 
our smoothing algorithm for training  ne-
ural networks. Two numerical examples are pro-
vided in Section 4 to show the effectiveness of our 
smoothing algorithm. Some brief conclusions are 
drawn in Section 5. 
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2. SMOOTHING METHOD TO 
APPROXIMATE MAX-MIN FUNCTIONS  

 
Suppose , we first introduce the 

smoothing technique described in [14, 15] to  appr-
oximate the  function  with the following 
exponential function 

           (1) 

with a parameter .  

Since 

 

Let . By applying the smooth fun-
ction  to approximate the function , 

we get 

         (2) 

The following lemma summarizes some interest-
ing properties of the function  defined by (1). 

Lemma 1 Suppose  are all continuously diffe-
rentiable functions, 

 

and  is defined by (1), then we have: 

  is increasing with respect to , and 
; 

  is continuously differentiable for all 
, and  

 

where 

( )

( ) 1

1

exp ( ) /
( , ) (0,1), ( , ) 1

exp ( ) /

m
i

i im
i

j
j
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x t x t
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λ λ

=

=

= ∈ =∑
∑

 
Particularly, if  are all linear functions, then 

 is an infinite order differentiable function 
for all . 

 

3. SMOOTHING ALGORITHM FOR 
TRAINING MAX-MIN NEURAL 
NETWORKS 

 
To begin with, let a max-min neural network 

with  input nodes and one output node be given. 
With the same notations we have introduced in 
Section 1, the I/O relationship of the  
neural network is described by 

         (3) 

and the cost function  for this max-min neural 
network is defined as 

  (4) 

Our task is to train this  neural network 
such that it can fit the given set of desired network 
input and output pairs to a given precision. For this 
purpose, we use the conventional idea of gradient 
descent to design an algorithm to minimize . Since 
the  function  is not differentiable, 
it is difficult to use classical methods to derive the 
differentiation formulas for  with respect to 

. As a remedy for this point, we apply the 
smoothing technique introduced in Section 2 twice 
to approximate  functions  

as follows: 

Firstly, we use the smoothing technique to appr-
oximate the  function  

 

with the smooth approximation 

 (5) 

with a parameter . 

Then, we use it again to approximate the  
function 

 

with the smooth approximation 

        (6) 

with two parameters  and . 

Using the smooth function  to app-
roximate the actual network output , we can get 
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the following result about the approximating 
precision. 

Theorem 1 Let  and  

 where 

,  
and . Then, we have 

 

Proof. Since  , and 
, it is easy to get that 

exp exp exp 2exp
s s s
i i i i i ix w x w x w

t t t t
     ∧ ∧ ≤ + ≤      

      
 

Then, we have 

( ) ( )( )( ) ln 2 ln exp / exp / ( )s s s
i i i i i ix w t t x t w t x w∧ + ≤ + ≤ ∧   (7) 

Similarly, we can get that 

   (8) 

According to (7), we have 

  (9) 

The combination of (8) and (9) leads to 

Notice that . So this completes 

the proof of Theorem.                                             

In place of the actual network output  by 
its smooth approximation (6) and using  
to substitute  , we can get the following all 
partial differentials of   with respect to , and 
they have the following representations: 

(10) 

where , , 

 and . 

Based on the above illustration, we can derive 
our smoothing algorithm for training  
neural networks as follows: 

Choose an arbitrary initial value  and a co-
nstant learning rate . Then, the weight vector 

 is refined by the following learning iteration pr-
ocess 

(11) 

where   

 

and  

 

Remark: The  neural network can be 
viewed as a fuzzy relational system . T-
he training of the neural network is to identify the 
fuzzy relation  of a fuzzy relational equation 
based on the pairs  . Hence, our smoothing 
algorithm can also be used to solve fuzzy relational 
equations and  be extended to multiple input and 
multiple output systems.  

 

4. NUMERICAL EXAMPLES 
 

In this section, to demonstrate the validity of our 
smoothing algorithm derived in Section 3 for train-
ing  neural networks, we will compare it 
with the other three algorithms introduced in Secti-
on 1 by the following two examples. 

Example 1. The training sample pairs for this 
example are taken from the literature [16] and are 
shown in Tab. 1. In this example, the initial weight 
vector  is chosen stochastically in [0,1] and the 
learning rate  is 0.05. The maximum number of 
iteration epoches and the error bound are set 1000  

Table 1 : Training Sample Pairs for Example 1 

   

1 (1.0 0.9 0.9 0.9 1.0) (0.9) 
2 (0.6 0.6 0.4 0.3 0.6) (0.6) 
3 (0.7 0.6 0.5 0.6 0.5) (0.6) 
4 (0.0 0.9 0.6 0.5 0.4) (0.6) 
5 (0.2 0.2 0.1 0.4 0.2) (0.2) 
6 (0.1 0.1 0.2 0.5 0.1) (0.2)                          

and 1.0e-5, respectively. We set the parameters  
and  values in our smoothing algorithm as 

  and . In this case, 10 trials are 
carried out for our smoothing algorithm and other 
three algorithms introduced in Section 1. The avera-
ge errors and numbers of iteration epoches across 
the 10 trials are shown in Tab. 2. We see 
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Table 2 : Comparison of the results for Example 1 
Learning 
algorithm Average errors Average numbers 

of iteration epoches 
Our 

smoothing 
algorithm 

9.8907e-06 547 

Algorithm 1 0.0367 1000 
Algorithm 2 9.9935e-06 819 
Algorithm 3 0.0367 1000                       

from Tab. 2 that the performance of our smoothing 
algorithm is better than that of other three algor-
ithms. We also illustrate as an example in Fig. 2 the 
convergence behavior of our smoothing algorithm 
in one of the 10 trials. We note that cost  

  
Figure 2: Error And Norm Of Gradient Of The Cost 

Function For Example 1  

function  decreases monotonically and the no-
rm of   tends to zero. 

Example 2. The training sample pairs for this 
example are taken from [13] and are shown in Tab. 
3. In this example, the initial weight vector  is 
chosen stochastically in [0,1] and the learning rate  
is 0.1. The maximum number of iteration epoches  

Table 3 : Training Sample Pairs For Example 2 

   

1 (0.20 0.40 0.43) (0.27) 
2 (0.10 0.40 0.85) (0.30) 
3 (0.20 0.95 0.30) (0.59) 
4 (0.20 1.00 0.80) (0.61) 
5 (1.00 0.70 0.20) (0.75) 
6 (1.00 0.70 0.65) (0.80) 
7 (1.00 0.40 0.43) (0.88) 
8 (0.80 0.30 0.70) (0.77)                          

and the error bound are set 1000 and 0.005, res-
pectively. We set the parameters  and  values in 
our smoothing algorithm as  and . 
In this case, 10 trials are also carried out for our 
smoothing algorithm and other three algorithms. 
The average errors and numbers of iteration epo-
ches and the times of reaching the error bound 
within 1000 epoches across the 10 trials are shown 
in Tab. 4. We also see from Tab. 4 that the per-
formance of our smoothing algorithm is better  

Table 4: Comparison Of The Results For Example 2 

Learning 
algorithm 

Average 
errors 

Average 
numbers of 

iteration 
epoches 

Times of 
reaching 

of iteration 
epochs the 
error bound 

Our 
smoothing 
algorithm 

0.0048 32 10 

Algorithm 1 0.0317 724 3 
Algorithm 2 0.0050 418 7 
Algorithm 3 0.0317 724 3                      

than that of other three algorithms. Furthermore, we 
illustrate as an example in Fig. 3 the convergence 
behavior of our smoothing algorithm in one of the 
10 trials. We also note that cost function  
decreases monotonically and the norm of   
tends to zero. 

 
5. CONCLUSION 

 
This paper has introduced a smoothing technique 

to approximate  functions, and subse-
quently applied it to construct a smoothing algor-
ithm for training  neural networks. The 
algorithm can also be used to solve fuzzy relational 
equations. Specifically, we apply a smooth function 
to approximate   functions and use this 
smoothing technique twice, once to eliminate the 
inner  operator and once to eliminate the   

  
Figure 3: Error And Norm Of Gradient Of The Cost 

Function For Example 2  

operator. In place of actual network output by its 
approximation function, we use all partial 
derivatives of the approximation function with 
respect to weight to substitute those of the actual 
network output. Then, the smoothing algorithm is 
constructed by the gradient descent method. 
Finally, two numerical examples are provided to 
show the effectiveness of our smoothing algorithm 
for training max-min neural networks. 
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