
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

114

A SMOOTHING ALGORITHM FOR TRAINING MAX-MIN
NEURAL NETWORKS

1LONG LI, 1TIAN XU, 2YAN LIU, 3JIE YANG

1Department of Mathematics and Computational Science, Hengyang Normal University, Hengyang,

421008, China
2Department of Applied Mathematics, Dalian Polytechnic University, Dalian, 116034, China
3School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

ABSTRACT

In this paper, a smoothing algorithm for training max-min neural networks is proposed. Specifically, we
apply a smooth function to approximate functions and use this smoothing technique twice, once
to eliminate the inner operator and once to eliminate the operator. In place of actual network
output by its approximation function, we use all partial derivatives of the approximation function with
respect to weight to substitute those of the actual network output. Then, the smoothing algorithm is
constructed by the gradient descent method. This algorithm can also be used to solve fuzzy relational
equations. Finally, two numerical examples are provided to show the effectiveness of our smoothing
algorithm for training max-min neural networks.

Keywords: Smoothing Algorithm, Neural Networks, Functions, Approximation

1. INTRODUCTION

In recent years, fuzzy neural networks have attra-
cted considerable attention for their useful appli-
cations in such fields as control, pattern recognition,
image processing, forecasting, etc., as described in
[1, 2, 3, 4, 5, 6]. In all these applications, there are
different fuzzy neural-network architectures pro-
posed for different purposes and fields. However,
no matter how different architectures these neural
networks have, two important operations and

 are often involved. Among various
architectures, the so-called neural
networks have been extensively studied and applied
[6, 7, 8, 9].

Before we proceed, let us firstly introduce the
 neural network considered in this paper

and the problem of the neural-network
learning. Suppose that this network has input
nodes and one output node, and that we are supplied
with a set of training samples ,
where is an dimension input vector, is the
corresponding desired output, and is the number
of training samples. The topological structure of
this network is illustrated in Fig. 1. Using to
denote the weight between node in input layer and
output

Figure 1: Max-Min Neural Networks

node and to denote the actual network output
corresponding to the training sample , the I/O
relationship of the neural network is
described by

where and are and operations
respectively, is the composition operation of
and , and and
are the -th input vector and the weight vector,
respectively. Define the cost function for this

 neural network as follows:

Our task is to train this neural network
such that it can fit, up to a given precision, the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

115

given set of desired network input and output pairs,
i.e., to find such that

For this purpose, we use the conventional gradient
descent method. First, we choose an arbitrary initial
value and a constant learning rate . Then,
the weight vector is refined by the following ite-
rative learning process

1 () , 0,1, 2,
k

k k k k
k

J WW W W W k
W

η+ ∂
= + ∆ = − =

∂


where

Because of the difficulty in the analysis of
and operations, the training of this
neural network appears not to be approachable ri-
gorously and systematically. The lack of an app-
ropriate analytical tool for the and op-
erations greatly limits their applicability. An initial
attempt has been made in [10, 11] in trying to
differentiate operations and to apply
them to the training of neural networks.
The key idea of their approach is using the unit step
function. The derivatives of the functions and

 have a “crisp” behaviour (We name the al-
gorithm derived by these derivatives as Algorithm
1.):

By applying this learning process, it is not guaran-
teed that the network will learn, obviously because
the value of is null in the majority of cases. T-
o improve this behaviour, a new procedure is devel-
oped in [12]. The authors use implication
and give a kind of so-called smoothed derivatives
of the functions and as follows (We
name the algorithm derived by these derivatives as
Algorithm 2.):

However, the derivatives of functions and
 in [10, 11, 12] are formal and can not hold f-

or their corresponding operations in mathematics.

To overcome this shortcoming, the authors have m-
ade another attempt in [13] in developing a rigorous
theory for the differentiation of functions
by means of functional analysis, and derived an alg-
orithm for training neural networks. The
derivatives of the functions and are def-
ined as (We name the algorithm derived by these d-
erivatives as Algorithm 3.):

() ()(() ()) () ()() () () ()f x g x f x g xlor g x f x lor f x g x
x x x

∂ ∧ ∂ ∂
= − + −

∂ ∂ ∂

() ()(() ()) () ()() () () ()f x g x f x g xlor f x g x lor g x f x
x x x

∂ ∨ ∂ ∂
= − + −

∂ ∂ ∂

where the function . Then

the partial derivatives have the following rep-
resentation:

Although a rigorous mathematical analysis for the
differentiation of functions is given, the
learning performance of Algorithm 3 for training
the neural network is similar to the lear-
ning performance of Algorithm 1.

In this paper, a smoothing algorithm for training
 neural networks is proposed.

Specifically, we apply a smooth function to
approximate functions and use this
smoothing technique twice, once to eliminate the
inner operator and once to eliminate the
operator. In place of actual network output by its
approximation function, we use all partial der-
ivatives of the approximation function with respect
to weight to substitute those of the actual network
output. Then, the smoothing algorithm is con-
structed by the gradient descent method. This alg-
orithm can also be used to solve fuzzy relational
equations. Finally, two numerical examples are pr-
ovided to show the effectiveness of our smoothing
algorithm for training neural networks.

The rest of this paper is organized as follows. In
Section 2, we introduce a smoothing method to
approximate functions. Section 3 gives
our smoothing algorithm for training ne-
ural networks. Two numerical examples are pro-
vided in Section 4 to show the effectiveness of our
smoothing algorithm. Some brief conclusions are
drawn in Section 5.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

116

2. SMOOTHING METHOD TO
APPROXIMATE MAX-MIN FUNCTIONS

Suppose , we first introduce the

smoothing technique described in [14, 15] to appr-
oximate the function with the following
exponential function

 (1)

with a parameter .

Since

Let . By applying the smooth fun-
ction to approximate the function ,

we get

 (2)

The following lemma summarizes some interest-
ing properties of the function defined by (1).

Lemma 1 Suppose are all continuously diffe-
rentiable functions,

and is defined by (1), then we have:

 is increasing with respect to , and
;

 is continuously differentiable for all
, and

where

()

() 1

1

exp () /
(,) (0,1), (,) 1

exp () /

m
i

i im
i

j
j

g x t
x t x t

g x t
λ λ

=

=

= ∈ =∑
∑

Particularly, if are all linear functions, then

 is an infinite order differentiable function
for all .

3. SMOOTHING ALGORITHM FOR
TRAINING MAX-MIN NEURAL
NETWORKS

To begin with, let a max-min neural network

with input nodes and one output node be given.
With the same notations we have introduced in
Section 1, the I/O relationship of the
neural network is described by

 (3)

and the cost function for this max-min neural
network is defined as

 (4)

Our task is to train this neural network
such that it can fit the given set of desired network
input and output pairs to a given precision. For this
purpose, we use the conventional idea of gradient
descent to design an algorithm to minimize . Since
the function is not differentiable,
it is difficult to use classical methods to derive the
differentiation formulas for with respect to

. As a remedy for this point, we apply the
smoothing technique introduced in Section 2 twice
to approximate functions

as follows:

Firstly, we use the smoothing technique to appr-
oximate the function

with the smooth approximation

 (5)

with a parameter .

Then, we use it again to approximate the
function

with the smooth approximation

 (6)

with two parameters and .

Using the smooth function to app-
roximate the actual network output , we can get

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

117

the following result about the approximating
precision.

Theorem 1 Let and

 where

,
and . Then, we have

Proof. Since , and
, it is easy to get that

exp exp exp 2exp
s s s
i i i i i ix w x w x w

t t t t
     ∧ ∧ ≤ + ≤      

      

Then, we have

() ()()() ln 2 ln exp / exp / ()s s s
i i i i i ix w t t x t w t x w∧ + ≤ + ≤ ∧ (7)

Similarly, we can get that

 (8)

According to (7), we have

 (9)

The combination of (8) and (9) leads to

Notice that . So this completes

the proof of Theorem.

In place of the actual network output by
its smooth approximation (6) and using
to substitute , we can get the following all
partial differentials of with respect to , and
they have the following representations:

(10)

where , ,

 and .

Based on the above illustration, we can derive
our smoothing algorithm for training
neural networks as follows:

Choose an arbitrary initial value and a co-
nstant learning rate . Then, the weight vector

 is refined by the following learning iteration pr-
ocess

(11)

where

and

Remark: The neural network can be
viewed as a fuzzy relational system . T-
he training of the neural network is to identify the
fuzzy relation of a fuzzy relational equation
based on the pairs . Hence, our smoothing
algorithm can also be used to solve fuzzy relational
equations and be extended to multiple input and
multiple output systems.

4. NUMERICAL EXAMPLES

In this section, to demonstrate the validity of our
smoothing algorithm derived in Section 3 for train-
ing neural networks, we will compare it
with the other three algorithms introduced in Secti-
on 1 by the following two examples.

Example 1. The training sample pairs for this
example are taken from the literature [16] and are
shown in Tab. 1. In this example, the initial weight
vector is chosen stochastically in [0,1] and the
learning rate is 0.05. The maximum number of
iteration epoches and the error bound are set 1000

Table 1 : Training Sample Pairs for Example 1

1 (1.0 0.9 0.9 0.9 1.0) (0.9)
2 (0.6 0.6 0.4 0.3 0.6) (0.6)
3 (0.7 0.6 0.5 0.6 0.5) (0.6)
4 (0.0 0.9 0.6 0.5 0.4) (0.6)
5 (0.2 0.2 0.1 0.4 0.2) (0.2)
6 (0.1 0.1 0.2 0.5 0.1) (0.2)

and 1.0e-5, respectively. We set the parameters
and values in our smoothing algorithm as

 and . In this case, 10 trials are
carried out for our smoothing algorithm and other
three algorithms introduced in Section 1. The avera-
ge errors and numbers of iteration epoches across
the 10 trials are shown in Tab. 2. We see

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

118

Table 2 : Comparison of the results for Example 1
Learning
algorithm Average errors Average numbers

of iteration epoches
Our

smoothing
algorithm

9.8907e-06 547

Algorithm 1 0.0367 1000
Algorithm 2 9.9935e-06 819
Algorithm 3 0.0367 1000

from Tab. 2 that the performance of our smoothing
algorithm is better than that of other three algor-
ithms. We also illustrate as an example in Fig. 2 the
convergence behavior of our smoothing algorithm
in one of the 10 trials. We note that cost

Figure 2: Error And Norm Of Gradient Of The Cost

Function For Example 1

function decreases monotonically and the no-
rm of tends to zero.

Example 2. The training sample pairs for this
example are taken from [13] and are shown in Tab.
3. In this example, the initial weight vector is
chosen stochastically in [0,1] and the learning rate
is 0.1. The maximum number of iteration epoches

Table 3 : Training Sample Pairs For Example 2

1 (0.20 0.40 0.43) (0.27)
2 (0.10 0.40 0.85) (0.30)
3 (0.20 0.95 0.30) (0.59)
4 (0.20 1.00 0.80) (0.61)
5 (1.00 0.70 0.20) (0.75)
6 (1.00 0.70 0.65) (0.80)
7 (1.00 0.40 0.43) (0.88)
8 (0.80 0.30 0.70) (0.77)

and the error bound are set 1000 and 0.005, res-
pectively. We set the parameters and values in
our smoothing algorithm as and .
In this case, 10 trials are also carried out for our
smoothing algorithm and other three algorithms.
The average errors and numbers of iteration epo-
ches and the times of reaching the error bound
within 1000 epoches across the 10 trials are shown
in Tab. 4. We also see from Tab. 4 that the per-
formance of our smoothing algorithm is better

Table 4: Comparison Of The Results For Example 2

Learning
algorithm

Average
errors

Average
numbers of

iteration
epoches

Times of
reaching

of iteration
epochs the
error bound

Our
smoothing
algorithm

0.0048 32 10

Algorithm 1 0.0317 724 3
Algorithm 2 0.0050 418 7
Algorithm 3 0.0317 724 3

than that of other three algorithms. Furthermore, we
illustrate as an example in Fig. 3 the convergence
behavior of our smoothing algorithm in one of the
10 trials. We also note that cost function
decreases monotonically and the norm of
tends to zero.

5. CONCLUSION

This paper has introduced a smoothing technique

to approximate functions, and subse-
quently applied it to construct a smoothing algor-
ithm for training neural networks. The
algorithm can also be used to solve fuzzy relational
equations. Specifically, we apply a smooth function
to approximate functions and use this
smoothing technique twice, once to eliminate the
inner operator and once to eliminate the

Figure 3: Error And Norm Of Gradient Of The Cost

Function For Example 2

operator. In place of actual network output by its
approximation function, we use all partial
derivatives of the approximation function with
respect to weight to substitute those of the actual
network output. Then, the smoothing algorithm is
constructed by the gradient descent method.
Finally, two numerical examples are provided to
show the effectiveness of our smoothing algorithm
for training max-min neural networks.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

119

ACKNOWLEDGEMENTS

This work was supported by the National Natural

Science Foundation of China (11171095) and Coll-
ege Students' Research Learning and Innovative
Experiment Foundation of Hunan Province
(cx1108)

REFERENCES:

[1] I. S. Baruch, R. Lopez, J. O. Guzman, J. M.

Flores, “A fuzzy-neural multi-model for non-
linear systems identification and control”, Fuzzy
Sets and Systems, Vol. 159, 2008, pp. 2650-
2667.

 [2] H. Song, C. Miao, Z. Shen, Y. Miao, B. Lee, “A
fuzzy neural network with fuzzy impact grades”,
Neurocomputing, Vol. 72, 2009, pp. 3098-3122.

[3] J. R. Castro, O. Castillo, P. Melin, A.
, “A hybrid learning algorithm

for a class of interval type-2 fuzzy neural
networks”, Information Sciences, Vol. 179,
2009, pp. 2175-2193.

 [4] C. Juang, Y. Lin, C. Tu, “A recurrent self-
evolving fuzzy neural network with local
feedbacks and its application to dynamic system
processing”, Fuzzy Sets and Systems, Vol. 161,
2010, pp. 2552-2568.

[5] A. Khajeh, H.Modarress, “Prediction of
solubility of gases in polystyrene by Adaptive
Neuro-Fuzzy Inference System and Radial
Basis Function Neural Network”, Expert
Systems with Applications, Vol. 37, 2010, pp.
3070-3074.

 [6] Y. Li, Z. Wu, “Fuzzy feature selection based on
min-max learning rule and extension matrix”,
Pattern Recognition, Vol. 41, 2008, pp. 217-
226.

[7] A. Quteishat, C. Lim, “A modified fuzzy min-
max neural network with rule extraction and its
application to fault detection and classification”,
Applied Soft Computing, Vol. 8, 2008, pp. 985-
995.

 [8] J. Park, T. Kim, T, Sugie, “Output feedback
model predictive control for LPV systems based
on quasi-min-max algorithm”, Automatica,
Vol.47, 2011, pp. 2052-2058.

[9] H. Dastkhan, N. Gharneh, H. Golmakani, “A
linguistic-based portfolio selection model using
weighted max–min operator and hybrid genetic
algorithm”, Expert Systems with Applications,
Vol. 38, 2011, pp. 11735-11743.

 [10] R. J. Marks II, S. Oh, P. Arabshahi, T. P.
Caudell, J. J. Choi, B. G. Song, “Steepest
descent adaptation of min-max fuzzy if-then
rules”, In Proc. IJCNN, Beijing, China, Vol. III,
1992, pp. 471-477.

[11] A. Nikov, S. Stoeva, “Quick fuzzy backpro-
pagation algorithm”, Neural Networks, Vol. 14,
2001, pp. 231-244.

 [12] A. Blanco, M. Delgado and I. Requena,
“Identification of fuzzy relational equations by
fuzzy neural networks”, Fuzzy Sets and
Systems, Vol. 71, 1995, pp. 215-226.

[13] X. Zhang, C. Hang, “The min-max function
differentiation and training of fuzzy neural
networks”, IEEE Trans. on Neural Networks,
Vol.7, No.5, 1996, pp. 1139-1149.

[14] J. Peng, Z. Lin, “A non-interior continuation
method for generalized linear complementarity
problems”, Math. Program. Ser. A, Vol. 86,
1999, pp. 533-563.

[15] X. Tong, L. Qi, F. Wu, H. Zhou, “A smoothing
method for solving portfolio optimization with
CVaR and applications in allocation of
generation asset”, Applied Mathematics and
Computation, Vol. 216,2010, pp. 1723-1740.

[16] C. T. Yeh, “On the minimal solutions of max-
min fuzzy relational equations”, Fuzzy Sets and
Systems, vol. 159, 2008, pp. 23-39.

http://www.jatit.org/

	1LONG LI, 1TIAN XU, 2YAN LIU, 3JIE YANG
	ACKNOWLEDGEMENTS

