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ABSTRACT 

 
Complex networks are everywhere. This paper explores a new type of complex network, complex 
algorithm network constructed from evolutionary algorithms. The main aim of this paper is to investigate 
the topological properties underling the dynamics of the evolutionary algorithms. It uses complex network 
to describe individuals and their relationships while execution of a specific evolutionary algorithm. It 
introduces the main parameters in complex network theory to uncover properties of the dynamics of 
evolutionary algorithms. Our simulations are based on one selected evolutionary algorithm (Guo' algorithm 
in 10 versions) and one test functions. Data obtained through the simulations are processed graphically as 
well as statistically. Some novel properties of the complex algorithm network are uncovered, which has 
great implications for the design and improvement of existing evolutionary algorithms. 
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1. INTRODUCTION  
 

Networks are everywhere. Over the past few 
years, complex networks have been intensively 
studied across many fields of science. Examples 
include social networks, bimolecular networks, 
software networks, the World Wide Web, etc [1]. 
Many real networks have been found to be neither 
regular graphs nor random graphs. They belong to 
a new type of graph, complex networks, which has 
completely different statistical properties than 
those of regular and random graphs [2]. Complex 
network theory can be used to study many 
different networks, the field of complex networks 
has been developing at a very fast pace and has 
brought together researchers from various areas 
such as computer science, mathematics, sociology, 
etc. However, there is still a type of network, 
algorithm network people seldom explore.  

Evolutionary algorithm is a sub-discipline of 
computer science belonging to the bio-inspired 
computing area. Due to their effectiveness to cope 
with optimization problems, evolutionary 
algorithms have been widely applied in lots of 
fields. Evolutionary algorithms are population-
based algorithms, using a population of 
chromosomes as candidate solutions to explore the 
search space. The candidate solutions are 

evaluated by a fitness function. Further, some 
reproduction operators such as crossover and 
mutation are used to promote the evolution of 
populations. The mechanism of the evolutionary 
algorithms is so simple, but it is very effective. 
However, there is little research work to explore 
the evolutionary process from a topological 
perspective underlying the parent and offspring 
individuals. 

In this paper evolutionary algorithms are 
proposed to be represented as complex algorithm 
networks. The idea is to take advantage of the 
parameters in complex network theory to explore 
the evolution mechanism and properties hidden in 
the evolution of algorithms. 

The rest of this paper is organized as follows. 
Section 2 discusses the preliminary knowledge 
with focus on complex algorithm network 
definition and an introduction of the main 
parameters in complex network theory. Section 3 
describes a case study as an illustration to our 
approach. And some major structural properties 
have been uncovered. The paper closes with our 
conclusions in Section 4. 

2. PRELIMINARY KNOWLEDGE 
 

In this section, we define the so-called complex 
algorithm network, and introduce some 
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preliminary knowledge of the complex networks 
[3], especially the main parameters in complex 
network research.  

2.1 Complex Algorithm Network 
Crossover and mutation are two main genetic 

operators used in a large set of evolutionary 
algorithms. Algorithms usually use crossover to 
combine two individuals to produce offspring. So 
obviously, there have strong relationships between 
the two or more parent individuals and the 
produced offspring. Similarly, though mutation 
takes place with a fairly low probability, it is 
applied by altering one or more gene values in an 
individual. So the produced new offspring also has 
a strong relationship to its parents. These two 
relationships should be captured when we are 
analyzing the performance of an evolutionary 
algorithm. In the following paragraphs, we will 
first give the formal definition of complex 
algorithm network. 

Definition 1 Complex Algorithm Network 
(CAN): CAN is a network (or graph) used to 
represent the individuals and their relationships 
during the population evolution process that 
promoted by the genetic operators such as 
crossover and mutation. Formally it can be 
represented as a graph 

( , )G V E=                              (1) 
where V is the set of nodes representing 
individuals undergoing genetic operations. And E 
is the set of edges denoting all genetic 
relationships between two individuals, i.e. an edge 
between two nodes means there are some genes in 
one node inherited from another. Figure 1 gives an 
illustration of the details to construct a very simple 
CAN. 
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Figure 1: Simple Illustration Of CAN 

2.2 Parameters of Complex Networks 
In this section, we apply the complex network 

theory to analyze the structural quality of complex 
algorithm networks. We will introduce the main 
parameters of complex networks from the 
perspectives of complexity science. 

2.2.1 Degree and degree distribution 
Degree is a basic characteristic of a specific 

node. It can be described as the number of links 
with one end on the node. Degree is usually used 

to quantify the importance of a node, i.e. the larger 
degree a node has, the more important it becomes. 
Additional information is provided by the degree 
distribution, P(k), which expresses the probability 
of finding a node with a degree k [3]. 
Mathematically, it can be described as 

( ) ~P K k k α−=  and used to check whether a 
network is of scale-free type or not. Networks with 
P(k) obeying a power law tail are scale-free. 

2.2.2 Average path length 
A shortest path between node i and j, dij , is one 

of the paths connecting two nodes with minimum 
links. Average path length, L = <dij>, is the 
average of shortest path length over all pairs of 
nodes in the network. It can be seen as an indirect 
reflection of the ability for two nodes to pass 
message with each other. Recently, it has been 
found that many real world complex networks 
have a small L which slowly grows with the sizes 
of networks. For example, the L of the method call 
network, class-class network and package-package 
network of Azureus is around 6, 3, and 2, 
respectively [1]. 

2.2.3 Clustering coefficient 
The clustering coefficient Ci for node i is a 

measure of degree to which its neighbors to be 
themselves neighbors in the network. Simply 
speaking, it is the mean probability that two nodes 
that are network neighbors of the same other nodes 
themselves will be neighbors [2]. If representing 
the number of links between neighbors of node i as 
li and the number of neighbors of node i as ki, Ci 
can be calculated as Ci = 2li/ki(ki −1). Then the 
clustering coefficient for the network as a whole is 
given as the average of clustering coefficients of 
all the nodes, i.e. C=<Ci>. 

2.2.4 Density 
The density D f a network is defined as a ratio 

of the number of edges E, nE to the number of 
possible edges, i.e.,   

 2 / | | (| | 1)D nE V V= × −                   (2) 

2.2.5 Diameter 
Diameter is another means of measuring 

network graphs. It is defined as the longest of all 
the calculated shortest paths in a network [3]. In 
other words, once the shortest path length from 
every node to all other nodes is calculated, the 
diameter is the longest of all the calculated path 
length. The diameter is representative of the linear 
size of a network. 
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3. A CASE STUDY 
 

In this section, for the illustration purpose, 
complex network theory will be applied to 
investigate the topology and its evolution of one 
evolutionary algorithm when represented by CANs. 
The parameters selected are of great importance to 
understand the evolution of algorithm. And the 
properties uncovered are useful for the design and 
development of new evolutionary algorithms. 

3.1 Subject Algorithm 
We defined a number of criteria to select the 

evolutionary algorithms used in this study, which 
take into consideration many aspects of the 
algorithms such as the availability of its source 
code, its effectiveness, and whether it has been 
used as subjects in case studies. 

We manually queried the google search engine 
for candidate evolutionary algorithms using the 
mentioned selection criteria. More than 1000 
algorithms returned. For limitation of time and 
resources, we only select Guo’s algorithm as a 
case study to be investigated here, simply for it has 
been ever introduced in [4] by Liu and Zeng for 
the algorithm structure analysis. 

Guo et al. proposed a new algorithm for solving 
function optimization problems with inequality 
constraints. And in many real applications, the 
performance of their algorithm is shown to be 
promising. Since many real-world problems can be 
described as a constraint optimization problem, 
Guo’s algorithm has a wide application potential. 
According to [5], the Guo’s algorithm can be 
described as Algorithm 1. It is just a simple 
version of their algorithm. For details, please refer 
to their paper. 

Algorithm 1 
Step 1: t:=1; initialize population p(t); p(t) = 
{x1(t), x2(t), …, xN(t)}, x i(t) ∈S 
Step 2: find xbest and xworst, such that ∀x∈P(t), 
better(xbest, x) and better(x, xworst); 
Step 3: while not better(xworst, xbest) do 

Select M individuals x1, 
x2, …, xM from p(t) randomly; 
Produce a new individual 
x∈V, V={x| x∈S,  

1 1
, 1,0.5 1.5

M M

i i i i
i i

x a x a a
= =

= = ≤ ≤∑ ∑ }; 

If better(x, xworst) then xworst:=x; 
Find xbest and xworst from P(t) 

end do  
Step 4: output xbest and f(xbest) 

Step 5: end 

We applied the Guo’s algorithm to solve a 
function optimization problem with inequality 
constraints, which can be depicted as 

Minimize: 
2
3 1 5

1

( ) 5.3578547 0.8356891
37.293239 40792.141
f x x x x

x
= + +

−
     (3) 

Subject to: 

2 5 1 4

3 5

0 85.334407 0.0056858 0.0006262
0.0022053 92

x x x x
x x

≤ + +
− ≤

 

2 5 1 2
2
3

90 80.51249 0.0071317 0.0029955

0.0021813 110

x x x x

x

≤ + +

+ ≤
 

3 5 1 3

3 4

20 9.300961 0.0047026 0.0012547
0.0019085 25

x x x x
x x

≤ + +
+ ≤

 

1 278 102.33 45.27 45, 3,4,5ix x x i≤ ≤ ≤ ≤ ≤ ≤ =  

Its optimum value is -3.0665.5. 
The reason we chosen this minimization 

problem is it has been introduced in [4]. While 
using the Guo’s algorithm, we take the same 
parameter setting, i.e. the population size N is 50, 
M is 8, and the maximum number of generations 
(MNG) is from 100 to 1000. 

We construct the CANs according to the method 
shown in CAN definition. Table 1 shows the 
statistics of CANs constructed from Guo’s 
algorithm when maximum number of generation is 
set to be 100 to 1,000. The data are in the form of 
number of nodes (|V|) and number of edges (|E|). 

Table 1 
Table statistics of CANs 

MNG |V| |E| 
100 228 1468 
200 527 3844 
300 1087 8342 
400 1566 12170 
500 2153 16866 
600 2624 20616 
700 2836 22375 
800 3887 30735 
900 4247 33643 

1,000 4333 34350 

3.2 Subject Algorithm 
 

Our experiments were carried out on a PC at 
2.30GHz with 2 GB of RAM. We collect the 
running information of Guo’s algorithm in all 
executions, and build their CANs. For illustration 
purpose, figure 2 shows the CANs for different 
setting of MNG from 100 to 500. And for MNG 
from 600 to 1,000 are omitted.  
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MNG = 100 MNG = 200 MNG = 300 MNG = 400 MNG = 500 

  Figure 2: CANs   
 
The degree of a node denotes the times it has 

been used to generate new offspring. Figure 3 
shows the degree distribution for different MNG 
settings. It can be easily found that, if we ignore 
the initial few nodes, the degree distributions 

roughly follow power law, especially with the 
increase of MNG. So the CANs are of nearly 
scare-free type networks. 
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MNG=900 MNG=1000   
 

Figure 3: Degree Distributions 
 
 

 

 
Figure 4: Average Path Length Evolution 

 
Figure 5: Clustering Coefficient Evolution 
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Figure 4 shows the evolution of average path 
length over the 10 different settings of MNG. And 
Figure 5 shows the evolution of clustering 
coefficient. It can be found the average path length 
and clustering coefficient roughly grows with the 
increase of MNG. It means it becomes increasingly 
difficult for two nodes to pass message with each 
other, and there is a high probability that two nodes 
that are network neighbors of the same other nodes 
themselves will be neighbors. 

L and C are usually used together to check a 
network is of small-world type or not [1]. Generally, 
a network can be viewed as small-world network if 
its L is similar to the corresponding random 
network with the same V and average degree <k>, 
and its clustering coefficient is larger. Lrand is the 
average path length in the corresponding random 
network, which can be approximately calculated 
through ln|V|/ln<k> and Crand through <k>/|V|.  

Table 2: Table statistics of CANs 
MNG L C Lrand Crand 

100 2.405 0.119 2.125 0.056 
200 2.539 0.125 2.338 0.028 
300 2.801 0.131 2.560 0.014 
400 3.002 0.136 2.681 0.010 
500 3.046 0.144 2.789 0.007 
600 3.432 0.148 2.858 0.006 
700 3.684 0.141 2.882 0.006 
800 4.074 0.144 2.994 0.004 
900 3.728 0.145 3.024 0.004 
1000 4.195 0.145 3.030 0.004 
 
Table II shows the L, C, Lrand and Crand for each 

MNG setting. We can find that though the number 
of nodes and edges are very large, L is very small. 
And its value is very similar to Lrand of the 
corresponding random network, and its C is much 
larger than that of the corresponding networks. So a 
conclusion can be made that CANs if of small 
world type. 

 

 
 

Figure 6: Density Evolution 

 
Figure 7: Diameter Evolution 

Figure 6 and 7 show the evolution of density and 
diameter over the 10 different settings of MNG, 
respectively. It can be found the density declines 
with the increase of MSN, while the diameter 
grows. 

4. A CASE STUDY 
 

Complex algorithm network is a new type of 
complex network. It can also be analyzed by 
complex network theory. This paper represented an 
evolutionary algorithm, Guo’s algorithm as a 
complex network, and used complex network 
theory to analyze its static property and its 
evolution process. And several properties have been 
uncovered. We found complex algorithm network 
are roughly a small-world type and scale-free type 
network. Further, average path length, clustering 
coefficient, and diameter grow with the increase of 
maximum number of generations, while diameter 
declines. These new results found in the current 
work should be taken into consideration when 
design or improve evolutionary algorithms. And we 
may propos some novel and efficient evolutionary 
algorithms by incorporating properties found in 
complex algorithm networks. 
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