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ABSTRACT 
 

During the last decade, polyhedral model has been widely used as a mathematical model for auto-
parallelization, and in recent years, with the development of multi-core architecture, polyhedral model has 
been employed to transform sequential code to parallel code that can run simultaneously on different cores. 
At the same time, the rapid development of GPU makes CPU/GPU architecture become increasingly 
popular because of GPU’s powerful parallel processing capabilities. However, we have no other methods of 
using GPU except for CUDA and Stream SDK, which are all based on explicit programming. Apart from 
this, there are two constraints for explicit programming: binary incompatibility among different GPUs as 
well as the cost of rewriting source code. Considering these constraints, we use polyhedral model and a 
dynamic binary translator to build a virtual execution environment: GXBit. GXBit is composed of analysis 
and execution stage, and the former one is the main focus of this paper. Analysis stage uses binary 
instrumentation and binary analysis to probe potential parallel parts (usually nested loop) of a binary 
executable and then polyhedral model is employed to detect whether there is data dependence or not among 
all iterations of a nested loop. Execution stage is discussed briefly in this paper. Although there are 
performance loss in binary translation, GXBit has an 8x speedup on average to X86 compute-intensive 
version through the result of running two applications taken from the CUDA SDK Sample and one test case 
from the UIUC Parboil Benchmark Suite. 
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1. INTRODUCTION 
 

Modern computers not only have multiple cores, 
they are also equipped with one or more GPUs to 
implement the efficient data level parallelism 
support for some computation-sensitive application 
domains such as image processing, linear algebra 
and encryption. To exploit the GPU’s power of 
computation, vendors provide C-like explicit 
programming environment to program on a certain 
GPU such as NVIDIA’s CUDA [13] and AMD’s 
Stream SDK, whichis the only way we can use the 
GPU recently.  

However, there are two constraints for explicit 
programming: the cost of rewriting the source code 
as well as binary incompatibility [2, 3] (i.e.an 
application compiled under a specific architecture 

cannot run on a new one). So we need an effective 
method to resolve these problems. 

Currently, there is already a method of using 
dynamic binary translator (DBT) to overcome the 
binary incompatibility among different 
architectures. However, DBT gets serious 
performance loss when we get rid of this problem.. 

Now that there are no better methods of 
modifying or optimizing DBT itself to improve its 
performance, we can put our focus on the 
applications executed on DBT. Many compute-
intensive applications spend most of their time in 
nested loops and if we can accelerate these nested 
loops, the performance of DBT will be improved. 
During the last decade, the polyhedral model has 
been widely used as a mathematical model for auto-
parallelization [4, 5, 7, 10]. If we can get nested 
loops in a binary executable and use polyhedral 
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model to analyze the data dependence among all 
iterations of nested loops, we can make some 
transformations about these nested loops those 
don’t have data dependence and put them to execute 
on GPU. So, in order to overcome the two problems 
above and improve the performance of DBT, we 
use polyhedral model and a dynamic binary 
translator of our own lab to build a virtual execution 
environment: GXBit.  

The rest of this paper is organized as follows. In 
section 2, the architecture of GXBit is discussed. 
Implementation of constructing CFG and building 
polyhedral mode are presented in Section 3. Section 
4 briefly discusses the mechanism of GXBit to 
execute those parallel parts on GPU and shows the 
performance evaluation. Related work and 
conclusion s are discussed in Section 5. 

2. GXBIT 
As the main aim of GXBit is to improve the 

performance of DBT, it is necessary for us to talk 
about Crossbit, which was designed as a 
resourceable and retargetable binary translation 
infrastructure. 

As GXBit is the improved edition of Crossbit, 
most parts of them are same and there are three 
main differences between Crossbit and GXBit. First 
of all, the execution mode of GXBit is 2-phase, one 
for binary analysis and the other for execution. 
Secondly, to those parallel parts, GXBit has to start 
the special translator to translate them into target 
instructions that can be recognized by the 
corresponding GPU. Finally, the execution engine 
of GXBit is also different from Crossbit’s because 
GXBit needs to execute those parallel parts on 
GPU. The architecture of GXBit is shown in Fig. 1.

 
Figure 1 Architecture Of Gxbit. The Arabic Numbers Of The Second Phase Demonstrate The Execution flow When 

Gxbit Encounters A Parallel Part. 
 
3. IMPLEMENTATION 
 

In GXBit, we have to discover potential parallel 
parts, usually nested loops, and some information 
that will be needed for GXBit’s execution of these 
parallel parts on GPU, so we need to use static 
binary analysis and dynamic analysis. At the first 
stage of GXBit, static binary analysis is used to 
probe the nested loops in the code section (.text) of 
source binary. Then the dynamic binary analysis 
starts to collect input and output information about 
these parallel parts at the runtime and after that 
polyhedral space is built. Finally, polyhedral model 

is used to determine whether there is data 
dependence between iterations for these potential 
parallel parts. 

We have noted that the execution mode of GXBit 
is two phase and GXBit will execute these parts on 
GPU at the second stage, so after these potential 
parallel parts are probed and input and output 
information are collected, we have to store all of 
them in the form of intermediate representation.  

In the process of building polyhedral space and 
analyzing data dependence between iterations of 
nested loops, GXBit must have the control flow 
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information of each parallel part, so it is necessary 
for GXBit to construct control flow graphic (CFG) 
for current execution path of binary executable. 
CFG is composed of hundreds of CFG nodes and 
each node contains the following information: 

VBlock - a basic block located in current 
executing path. 

entry point - address of the VBlock’s first 
instruction. 

path number - number of branch. 

next block[2] - record the address of branch’s 
first intruction. 

The process of constructing CFG starts when the 
first stage of GXBit begins. When a VBlock located 
in current executing path is produced, GXBit 
creates new instance of CFG node with setting entry 
point of the new node to the address of current 
VBlock’s first instruction and initializing other 
variables noted before.  

To an n-nested loop, the process of building 
polyhedral space starts from the outermost loop and 
a new polyhedron is produced when the executing 
flow enters the inner loop and finally n polyhedrons 
with different dimensions are generated.  

There is a classic book named Computer 
Architecture A Quantitative Approach [16], in 
which the author talk about three data hazards 
(RAW, WAW, WAR) in detail. RAW (read after 
write) happens when j tries to read a source before i 
writes it. WAW (write after write) happens when j 
tries to write an operand before it is written by i. 
WAR (write after read) happens when j tries to 
write a destination before it is read by i [16].  

Through the analysis above, we get our solution 
to analyze the data dependence for iterations of 
nested loop. In GXBit, we record all reading and 
writing operations for memory by storing entry 
points of VBlocks which contain these operations 
and writing operations into two maps (container in 
STL) respectively when the static binary analysis 
began. When the work of building polyhedral  
model is completed, data dependence analysis 
begins. In the building polyhedral space, we talk 
about that each iterative analysis puts all 
instructions in this iteration as a point into 
polyhedral space, so when adding a new point into 
the polyhedral space, we compare reading and 
writing instructions contained in this point with 
instructions of other points in current polyhedral 
space to see whether data dependence exists or not. 

4. EXECUTION AND EVALUATION 
 
As the first phase has been discussed before, we 

put our focus on the second phase, the same to the 
first phase, GXBit firstly loads binary executable 
and starts the execution engine, which will load the 
entries analyzed at the first stage for all parallel 
parts. 

This section will present experimental results. 
Table 1 shows the hardware configuration of our 
experimental environment. As we note before, we 
evaluate our virtual execution environment’s 
performance by running two applications from 
CUD SDK Sample and one test case from Parboil 
Benchmark Suite. We compare the time of these 
applications running on GXB with running directly 
on X86 and present the speedup of GXBit. 

Table 1.  Hardware And Software Configuration Details 

Hardware configuration Software configuration 
CPU 4*Intel Xeon 

5110 clocked at 
1.60Ghz 
(1066Mhz 
FSB), 4M L2 
cache 

OS Linux with 
kernel 
2.6.18 

RAM 8GB, DDR2-
667 

Complier GCC3.4.3, 
NVCC2.3 

GPU NVIDIA 
GeForce GTX 
260,896MB 
DRAM, 27 
multiprocessors, 
clocked at 
1243MHz 

 
CUDA 
Version 

 
2.3 

The two applications that we choose from CUDA 
SDK Sample are Matrix Multiplication and 
ConvolutionFFT2D[14]. This application is 
multiplication of two matrices. To make a more 
perfect experiment, we set the size of matrices as 
128*128, 512*512 and 1024*1024. To check the 
correctness of the first stage, we examine the entries 
and disassemble the corresponding binary 
executable (objdump -d app-name >output) to 
locate these potential parallel parts. To the size of 
128*128, after executing the first stage, we get the 
entries at the following: Enter = 0x0804820e, exit = 
0x8048292. 

Table 2 Performance Of Matrix Multiplication 

MatriX size Native (ms) GXBit (ms) 
128 * 128 25 35 
 512 * 512 1970 930 
1024 * 1024 47109 2530 
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Table 3 Performance Of Convolution FFT2D 

Input size Native (ms) GXBit (ms) 
1000 * 1000 1615 1350 
 2000 * 2000 6520 930 
4000 * 4000 25860 15320 

After disassembling the executable, we locate the 
entry point and find that the instruction located in 
0x804820e is the first instruction of inner loop and 
that is what we expect. As examining entries are 
similar, we don’t show this process in the following 
experiments. Table 2 shows the performance of this 
application with different sizes and Figure 2 
displays the speedup ratio. From Figure 2, we can 
see that the speedup of GXBit rises with the 
increase of matrix’s size. The performance of the 
128*128 is abnormal because the size of matrices is 
too small and the acceleration in computation-
intensive part can’t make up the performance loss 
of DBT. 

 

Figure 2 Speedup Of Matrix Mutliplication 

 

Figure 3 Speedup Of Convolution FFT2D 

This application uses Fast Fourier 
Transformation (FFT) algorithm to implement a 
Fourier-based general 2D convolution, which is 
more efficient than the straightforward method. 
Similar to matrix multiplication, we set the input 
data array size as 1000*1000, 2000*2000, and 
4000*4000. Table 3 shows the performance and 
Figure 3 shows the speedup ratio. In the Figure 3, 
we clearly see that the speedups do not vary 
between each other because of the overhead of 

random initializing the input data array and this 
process will be executed by binary translation 
procedure of GXBit. 

5. RELATED WORK 
 
In the process of transforming the sequential 

code to a parallel one, to find the potential parallel 
regions is the first step, and there are a lot of 
researches about that on both source code and 
binary level. [8, 11, 18, 9, 19, 20] do the work in 
source level. In binary level, Moseley [1] uses an  
instrumentation-based approach together detailed 
information about loops. For our work, we not only 
discover the nested loops of a binary executable, 
but also use polyhedral mode to analyze the data 
dependence and put these loops without data 
dependence to execute on GPU as well. 

To polyhedral model, there have been many 
works using it to optimize regular programs, 
especially for nested loops. Bondhugula[5] 
designed and implemented an automatic polyhedral 
source-to-source transformation framework to 
optimize regular programs (sequences of possibly 
imperfectly nested loops). Pouchet[7,17] used 
polyhedral model to achieve good performance on 
large loop nests, Baskaran [6] employed polyhedral 
model to develop a compiler framework for 
automatic parallelization and performance 
optimization of affine loop nests on GPGPUs. In 
these works, the usage of polyhedral model is based 
on source code, but in our work, it is based on 
binary level. 

 
6. CONCLUSION & FUTURE WORK 

 
In this paper, we describe how to use binary 

analysis and polyhedral model to detect potential 
parallelizable parts in X86 binaries, analyze 
whether there are data dependence in these parts or 
not and briefly discussed how to execute these 
parallelizable parts on GPU. Several data structures 
are designed to store information about these 
parallelizable parts, such as entry and exit point, 
data address needed to copy from main memory to 
GPU’s memory and etc. Our experimental results 
validate the correctness of probing parallelizable 
parts in X86 binaries and demonstrate the 
performance improvements using GXBit. 

GXBit focuses on simple benchmarks, not deal 
with more general and complicated applications. As 
future work, we plan to tackle more universal and 
practical applications. 
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