
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

GXBIT: COMBINING POLYHEDRAL MODEL WITH
DYNAMIC BINARY TRANSLATION

1ZHANG KANG, 2ZHOU FANFU AND 3LIANG ALEI

1China Telecommunication, Shanghai, China
2Department of Computer Science and Engineering,

 Shanghai Jiao Tong University, Shanghai 200240, China
3School of Software, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: 1zhangkang@shtel.com , 2zhoufanfu@sjtu.edu.cn , 3liangalei@sjtu.edu.cn

ABSTRACT

During the last decade, polyhedral model has been widely used as a mathematical model for auto-
parallelization, and in recent years, with the development of multi-core architecture, polyhedral model has
been employed to transform sequential code to parallel code that can run simultaneously on different cores.
At the same time, the rapid development of GPU makes CPU/GPU architecture become increasingly
popular because of GPU’s powerful parallel processing capabilities. However, we have no other methods of
using GPU except for CUDA and Stream SDK, which are all based on explicit programming. Apart from
this, there are two constraints for explicit programming: binary incompatibility among different GPUs as
well as the cost of rewriting source code. Considering these constraints, we use polyhedral model and a
dynamic binary translator to build a virtual execution environment: GXBit. GXBit is composed of analysis
and execution stage, and the former one is the main focus of this paper. Analysis stage uses binary
instrumentation and binary analysis to probe potential parallel parts (usually nested loop) of a binary
executable and then polyhedral model is employed to detect whether there is data dependence or not among
all iterations of a nested loop. Execution stage is discussed briefly in this paper. Although there are
performance loss in binary translation, GXBit has an 8x speedup on average to X86 compute-intensive
version through the result of running two applications taken from the CUDA SDK Sample and one test case
from the UIUC Parboil Benchmark Suite.

Keywords: Auto-Parallelization, Polyhedral Model, GXBit, Virtual Execution Environment

1. INTRODUCTION

Modern computers not only have multiple cores,
they are also equipped with one or more GPUs to
implement the efficient data level parallelism
support for some computation-sensitive application
domains such as image processing, linear algebra
and encryption. To exploit the GPU’s power of
computation, vendors provide C-like explicit
programming environment to program on a certain
GPU such as NVIDIA’s CUDA [13] and AMD’s
Stream SDK, whichis the only way we can use the
GPU recently.

However, there are two constraints for explicit
programming: the cost of rewriting the source code
as well as binary incompatibility [2, 3] (i.e.an
application compiled under a specific architecture

cannot run on a new one). So we need an effective
method to resolve these problems.

Currently, there is already a method of using
dynamic binary translator (DBT) to overcome the
binary incompatibility among different
architectures. However, DBT gets serious
performance loss when we get rid of this problem..

Now that there are no better methods of
modifying or optimizing DBT itself to improve its
performance, we can put our focus on the
applications executed on DBT. Many compute-
intensive applications spend most of their time in
nested loops and if we can accelerate these nested
loops, the performance of DBT will be improved.
During the last decade, the polyhedral model has
been widely used as a mathematical model for auto-
parallelization [4, 5, 7, 10]. If we can get nested
loops in a binary executable and use polyhedral

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

model to analyze the data dependence among all
iterations of nested loops, we can make some
transformations about these nested loops those
don’t have data dependence and put them to execute
on GPU. So, in order to overcome the two problems
above and improve the performance of DBT, we
use polyhedral model and a dynamic binary
translator of our own lab to build a virtual execution
environment: GXBit.

The rest of this paper is organized as follows. In
section 2, the architecture of GXBit is discussed.
Implementation of constructing CFG and building
polyhedral mode are presented in Section 3. Section
4 briefly discusses the mechanism of GXBit to
execute those parallel parts on GPU and shows the
performance evaluation. Related work and
conclusion s are discussed in Section 5.

2. GXBIT
As the main aim of GXBit is to improve the

performance of DBT, it is necessary for us to talk
about Crossbit, which was designed as a
resourceable and retargetable binary translation
infrastructure.

As GXBit is the improved edition of Crossbit,
most parts of them are same and there are three
main differences between Crossbit and GXBit. First
of all, the execution mode of GXBit is 2-phase, one
for binary analysis and the other for execution.
Secondly, to those parallel parts, GXBit has to start
the special translator to translate them into target
instructions that can be recognized by the
corresponding GPU. Finally, the execution engine
of GXBit is also different from Crossbit’s because
GXBit needs to execute those parallel parts on
GPU. The architecture of GXBit is shown in Fig. 1.

Figure 1 Architecture Of Gxbit. The Arabic Numbers Of The Second Phase Demonstrate The Execution flow When

Gxbit Encounters A Parallel Part.

3. IMPLEMENTATION

In GXBit, we have to discover potential parallel
parts, usually nested loops, and some information
that will be needed for GXBit’s execution of these
parallel parts on GPU, so we need to use static
binary analysis and dynamic analysis. At the first
stage of GXBit, static binary analysis is used to
probe the nested loops in the code section (.text) of
source binary. Then the dynamic binary analysis
starts to collect input and output information about
these parallel parts at the runtime and after that
polyhedral space is built. Finally, polyhedral model

is used to determine whether there is data
dependence between iterations for these potential
parallel parts.

We have noted that the execution mode of GXBit
is two phase and GXBit will execute these parts on
GPU at the second stage, so after these potential
parallel parts are probed and input and output
information are collected, we have to store all of
them in the form of intermediate representation.

In the process of building polyhedral space and
analyzing data dependence between iterations of
nested loops, GXBit must have the control flow

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

information of each parallel part, so it is necessary
for GXBit to construct control flow graphic (CFG)
for current execution path of binary executable.
CFG is composed of hundreds of CFG nodes and
each node contains the following information:

VBlock - a basic block located in current
executing path.

entry point - address of the VBlock’s first
instruction.

path number - number of branch.

next block[2] - record the address of branch’s
first intruction.

The process of constructing CFG starts when the
first stage of GXBit begins. When a VBlock located
in current executing path is produced, GXBit
creates new instance of CFG node with setting entry
point of the new node to the address of current
VBlock’s first instruction and initializing other
variables noted before.

To an n-nested loop, the process of building
polyhedral space starts from the outermost loop and
a new polyhedron is produced when the executing
flow enters the inner loop and finally n polyhedrons
with different dimensions are generated.

There is a classic book named Computer
Architecture A Quantitative Approach [16], in
which the author talk about three data hazards
(RAW, WAW, WAR) in detail. RAW (read after
write) happens when j tries to read a source before i
writes it. WAW (write after write) happens when j
tries to write an operand before it is written by i.
WAR (write after read) happens when j tries to
write a destination before it is read by i [16].

Through the analysis above, we get our solution
to analyze the data dependence for iterations of
nested loop. In GXBit, we record all reading and
writing operations for memory by storing entry
points of VBlocks which contain these operations
and writing operations into two maps (container in
STL) respectively when the static binary analysis
began. When the work of building polyhedral
model is completed, data dependence analysis
begins. In the building polyhedral space, we talk
about that each iterative analysis puts all
instructions in this iteration as a point into
polyhedral space, so when adding a new point into
the polyhedral space, we compare reading and
writing instructions contained in this point with
instructions of other points in current polyhedral
space to see whether data dependence exists or not.

4. EXECUTION AND EVALUATION

As the first phase has been discussed before, we

put our focus on the second phase, the same to the
first phase, GXBit firstly loads binary executable
and starts the execution engine, which will load the
entries analyzed at the first stage for all parallel
parts.

This section will present experimental results.
Table 1 shows the hardware configuration of our
experimental environment. As we note before, we
evaluate our virtual execution environment’s
performance by running two applications from
CUD SDK Sample and one test case from Parboil
Benchmark Suite. We compare the time of these
applications running on GXB with running directly
on X86 and present the speedup of GXBit.

Table 1. Hardware And Software Configuration Details

Hardware configuration Software configuration
CPU 4*Intel Xeon

5110 clocked at
1.60Ghz
(1066Mhz
FSB), 4M L2
cache

OS Linux with
kernel
2.6.18

RAM 8GB, DDR2-
667

Complier GCC3.4.3,
NVCC2.3

GPU NVIDIA
GeForce GTX
260,896MB
DRAM, 27
multiprocessors,
clocked at
1243MHz

CUDA
Version

2.3

The two applications that we choose from CUDA
SDK Sample are Matrix Multiplication and
ConvolutionFFT2D[14]. This application is
multiplication of two matrices. To make a more
perfect experiment, we set the size of matrices as
128*128, 512*512 and 1024*1024. To check the
correctness of the first stage, we examine the entries
and disassemble the corresponding binary
executable (objdump -d app-name >output) to
locate these potential parallel parts. To the size of
128*128, after executing the first stage, we get the
entries at the following: Enter = 0x0804820e, exit =
0x8048292.

Table 2 Performance Of Matrix Multiplication

MatriX size Native (ms) GXBit (ms)
128 * 128 25 35
 512 * 512 1970 930
1024 * 1024 47109 2530

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

Table 3 Performance Of Convolution FFT2D

Input size Native (ms) GXBit (ms)
1000 * 1000 1615 1350
 2000 * 2000 6520 930
4000 * 4000 25860 15320

After disassembling the executable, we locate the
entry point and find that the instruction located in
0x804820e is the first instruction of inner loop and
that is what we expect. As examining entries are
similar, we don’t show this process in the following
experiments. Table 2 shows the performance of this
application with different sizes and Figure 2
displays the speedup ratio. From Figure 2, we can
see that the speedup of GXBit rises with the
increase of matrix’s size. The performance of the
128*128 is abnormal because the size of matrices is
too small and the acceleration in computation-
intensive part can’t make up the performance loss
of DBT.

Figure 2 Speedup Of Matrix Mutliplication

Figure 3 Speedup Of Convolution FFT2D

This application uses Fast Fourier
Transformation (FFT) algorithm to implement a
Fourier-based general 2D convolution, which is
more efficient than the straightforward method.
Similar to matrix multiplication, we set the input
data array size as 1000*1000, 2000*2000, and
4000*4000. Table 3 shows the performance and
Figure 3 shows the speedup ratio. In the Figure 3,
we clearly see that the speedups do not vary
between each other because of the overhead of

random initializing the input data array and this
process will be executed by binary translation
procedure of GXBit.

5. RELATED WORK

In the process of transforming the sequential

code to a parallel one, to find the potential parallel
regions is the first step, and there are a lot of
researches about that on both source code and
binary level. [8, 11, 18, 9, 19, 20] do the work in
source level. In binary level, Moseley [1] uses an
instrumentation-based approach together detailed
information about loops. For our work, we not only
discover the nested loops of a binary executable,
but also use polyhedral mode to analyze the data
dependence and put these loops without data
dependence to execute on GPU as well.

To polyhedral model, there have been many
works using it to optimize regular programs,
especially for nested loops. Bondhugula[5]
designed and implemented an automatic polyhedral
source-to-source transformation framework to
optimize regular programs (sequences of possibly
imperfectly nested loops). Pouchet[7,17] used
polyhedral model to achieve good performance on
large loop nests, Baskaran [6] employed polyhedral
model to develop a compiler framework for
automatic parallelization and performance
optimization of affine loop nests on GPGPUs. In
these works, the usage of polyhedral model is based
on source code, but in our work, it is based on
binary level.

6. CONCLUSION & FUTURE WORK

In this paper, we describe how to use binary

analysis and polyhedral model to detect potential
parallelizable parts in X86 binaries, analyze
whether there are data dependence in these parts or
not and briefly discussed how to execute these
parallelizable parts on GPU. Several data structures
are designed to store information about these
parallelizable parts, such as entry and exit point,
data address needed to copy from main memory to
GPU’s memory and etc. Our experimental results
validate the correctness of probing parallelizable
parts in X86 binaries and demonstrate the
performance improvements using GXBit.

GXBit focuses on simple benchmarks, not deal
with more general and complicated applications. As
future work, we plan to tackle more universal and
practical applications.

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

92

REFERENCES

 [1] Tipp Moseley, Danial A. Connors, Dirk

Grunwald, Ramesh Peri, Identifying potential
parallelism via loop-centric profiling, In
Proceedings of the 4th International Conference
on Computing frontiers. (2007) 143-152.

[2] Nathan Clark, Why Should I Rewrite My
Software When Dynamic Compilation Can Be
Good Enough, Workshop on Software Tools for
Multi-Core Systems (STMCS), 2008.

[3] Nathan Clark, Jason Blome, Michael Chu, Scott
Mahlke, Stuart Biles, and Krisztian Flautner, An
Architecture Framework for Transparent
Instruction Set Customization in Embedded
Processors, International Symposium on
Computer Architecture (2005) 272-283.

[4] Uday Bondhugula, J.Ramanujam,
P.Sadayappan, PLuTo: A polyhedral automatic
parallelizer and locality optimizer for
multicores. http://pluto-
compiler.sourceforge.net.

[5] Uday Bondhugula Albert Hartono, J.
Ramanujam, P. Sadayappan, A Practical
automatic polyhedral parallelizer and locality
optimizer, In ACM SIGPLAN Programming
Languages Design and Implementation. (2008).

[6] Muthu Manikandan Baskaran, J. Ramanujan, A
Compiler Framework for Optimization of
Affine Loop Nests for GPGPUs (2008).

[7] Louis-Noel Pouchet, Cdric Bastoul, Albert
Cohen, John Cavazos. Iterative optimization in
the polyhedral model: part ii, multidimensional
time (2008).

[8] L. Shih-Wei, D. Amer, et al. SUIF Explorer: An
interactive and inter-procedural parallelizer, 34
(1999).

[9] W. Thies, V. Chandrasekhar, S. Amarasinghe,
A practical approach to exploiting coarse-
grained pipeline parallelism in C programs,
MICRO (2007).

[10] Georgios, Tournavitis, ZhengWang, Bjorn
Franke, Towards a Holistic Approach to Auto-
Parallelization: Integrating Profile-Driven
Parallelism Detection and Machine-Learning
Based Mapping, In Proceedings of the 2009
ACM SIGPLAN conference on Programming
language design and implementation (2009)
177-187.

[11] S. Rul, H. Vandierendonck, K. De Bosschere, A
dynamic analysis tool for finding coarse-grain
parallelism. In HiPEAC Industrial Workshop
(2008).

[12] http://www.crossbit.org.
[13] http://developer.nvidia.com/object/cuda.html.
[14] Victor Podlozhnyuk, FFT-based 2D

convolution, NVIDIA CUDA Sample
Documentation, 2007.

[15] http://impact.crhc.illinois.edu/parboil.php.
[16] John L. Hennessy, David A. Patterson,

Computer Architecture A Quantitative
Approach, 4th edition, 2006.

[17] Louis-Noel Pouchet, Uday Bondhugula, Cedric
Bastoul, J. Ramaujsm, and P. Sadyppan,
Combined Iterative and Model-driven
Optimization in an Automatic Parallization, In
Proceeding of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Network, Storage and Analysis.
(2010) 1-11.

[18] X Li, W Zhou, D Liu, Polyhedral model based
application source codes analysis for ASIP
design, System and Informatics (ICSAI). (2012)
962-965.

[19] Bruno Cuervo Parrino, Julien Naxboux, Eric
Violard, and Nicolas Magaud, Dealing with
arithmetic overflows in the polyhedral model,
IMPACT (2012).

[20] A. Jimborean, P. Clauss, B. Pradelle, L.
Mastrangelo and V. Loechner, Adatping the
polyhedral model as a framework for efficient
speculative parallization, PPoPP (2012).

