
Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

84

AN OPTIMIZATION ALGORITHM OF RSA KEY
GENERATION IN EMBEDDED SYSTEM

1LI DONGJIANG, 2WANG YANDAN

1Department of Computer Science, North China Electric Power University, Beijing, China
2Department of Computer Science, North China Electric Power University, Beijing, China

Email: 1lidongjiang100@126.com , 2wyd418@126.com

ABSTRACT

To reduce the time complexity, this paper proposes an optimization algorithm to generate the large prime
number. Before the primality test, an improved prescreening algorithm is used to get rid of most of odd
composite numbers. Then we introduce the Fermat’s little theorem to make a further judgement, which can
decrease the times of using prescreening algorithm. At last, Miller-Rabin algorithm is used to make a final
primality test. The results show that the speed of key generation has been greatly improved.

Keywords: RSA Key Generation; Embedded System; Fermat’s Little Theorem; Miller-Rabin Algorithm

1. INTRODUCTION

RSA is an asymmetric encryption algorithm and
also the first and most successful public key
cryptosystem in theory. It is widely used in PKCS
(Public Key Cryptography Standards) and
Electronic Business. In this algorithm, there is
always the computation of large numbers, so great
time complexity is the greatest imperfection in
either hardware or software implementation.
Therefore, an efficient implementation of RSA key
generation is very important for theoretical study
and practical applications [2].

In the process of RSA key generation, the most
time-consuming process is the generation of large
prime number. So our main study is focused on the
optimization. Generally, in order to get rid of partial
odd composite numbers, prescreening is adopted
before the final Miller-Rabin algorithm. Up to now,
much research work has been taken to reduce key
generation time.

In this paper, we propose a much faster
prescreening algorithm based on the principle of
modular arithmetic. Furthermore, to reduce the
calling times of prescreening algorithm, the
Fermat’s little theorem is introduced between
prescreening algorithm and Miller-Rabin algorithm.
With those efforts, the generating time of key has
been considerably reduced. Under the system clock
frequency of 60MHz, a pair of 1024 bits RSA keys
needs 2.129s and 2048 bits 6.896s.

Firstly, the paper proposes the principle of RSA
key generation. Secondly, we mention the time
consumption regularity of RSA key generation and
probabilistic prime test and true prime test. Then we
put emphasis up on the generation of large prime
number. At last, the paper gives the results of
optimization algorithm.

2. PRINCIPLE OF RSA KEY GENERATION

In RSA algorithm, there are two kinds of key,
public key and private key. They are separately
used for RSA encryption and decryption operations.
Basic steps are as follows:

(1)Generate two large random positive integers p
and q. p is unequal to q. Then compute N, which is
equal to the value p multiplied by q;

(2)Select an integer e which is less than ϕ where
ϕ = (p-1)*(q-1). Here ϕ and e should be relatively
prime numbers;

(3)Use Expanded-Euclidean algorithm to
calculate d. The formula is as follows:

(1) d * e≡ 1 mod ϕ

After the above process, (N, e) is public key and
(N, d) is private key.

In embedded system, the number e is suggested
to select 3, 5, 17, 257, or 65537 by IEEE [1]. In the
practical applications, we always select a key length
of 1024 or 2048 bits for security reasons. Usually p
has the same bit width with q[2]. For example, if we

http://www.jatit.org/
mailto:1lidongjiang100@126.com
mailto:2wyd418@126.com

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

85

want to get a key of 2048 bits, p and q are supposed
to be 1024 bits.

3. TIME CONSUMPTION REGULARITY
OF RSA KEY GENERATION

Before the optimization of key generation, we

conducted runtime statistics of some critical blocks
of key generation as follows.

Table 1: Average Time Consumption Of Critical Blocks In Key Generation. Unit: S Annotations: The Content In
Parentheses Represents The Percentage Of Time.

large prime number private key public key others

1024 bits 5.599（86.0%） 0.845(13.0%) 0.008 (0.1%) 0.061（0.9%）

2048 bits 17.980（86.4%） 0.961(4.6%) 0.009 (0.04%） 1.849 (8.96%）

We can obviously see from Table 1 that the time

of large prime number generation occupies the vast
majority time of the key generation. Therefore, this
paper focuses on the optimization of prime number
generation.

4. PROBABILISTIC PRIME TEST AND
TRUE PRIME TEST

When generating a prime number, prime test is a

very important process. There are two kinds of
prime test algorithm. One is probabilistic prime test,
the other is true prime test. Probabilistic prime test
is relatively fast and simple, but it has erroneous
judgments to some extent which means the output
number is just a possible prime number. On the
contrary, the true prime test has no erroneous
judgments, but it’s not useful in practical because of
its time-consuming calculations. Moreover, the
probability of erroneous judgments of probabilistic
prime test can be controlled at a very low and
acceptable scale. Therefore, probabilistic prime test
is used in most practical applications.

5. THE GENERATION OF LARGE PRIME
NUMBER

In embedded system, there are three steps for the

generation of large prime number.

(1)Use random number generator to generate a
large odd number;

(2)Prescreening;

(3)Primality testing.

5.1 random number generation

The large random number is generated by
random number generator which is integrated in
single-chip. Table 2 shows the average time
consumption of random number’s generation in
large prime number generation.

Table 2: Average Time Consumption Of Random
Number’s Generation In Large Prime Number

Generation. Unit: S

Annotations: The Content In Parentheses Represents
The Percentage Of Time.

Random number generation Others
1024 bits 0.272（9.7%） 2.527 (90.3%）
2048 bits 0.544（6.1%） 8.446 (93.9%)

From Table 2, we can see that generating a

random number of 1024 bits takes up nearly 10% of
the whole prime number generating time, while
generating one of 2048 bits takes up 6%. It is time-
consuming to use the generator anytime if we want
a large number. Therefore, we use the following
method to generate searching sequence [4].

(1)Use generator to generate the first number of
the sequence. This number is named n which is odd.

(2)Increase 2 to n every time to form the
sequence of n, n+2, n+4, n+6 …

If any number of the sequence passes the
primality test, then drop the whole sequence to
ensure the randomness of the data.

5.2 rapid prescreening algorithm

In order to improve the speed of prime number
generation, we designed a rapid prescreening
algorithm to get rid of the majority of odd
composite numbers. Only those who pass the
prescreening algorithm can enter the final test [9].

The probability that a large integer n has a small
prime divisor is high, so the main idea of
prescreening is to construct a table with some small
primes. In the algorithm of this paper, the small
primes table we construct includes all prime
numbers less than 256. These numbers are named
continuously as t1, t2, t3 ….Then use prime
numbers in the table to screen the candidate number

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

p. If the remainder is 0, we can judge that p is a
composite number.

Because the number in the sequence mentioned
in 5.1 increases 2 every time, we design our
improved algorithm, which is based on the
following principle of modular arithmetic.

(2) (a+b) mod n= ((a mod n) + (b mod n)) mod n

Algorithm 1:

(1)Defining that R[i] =p mod ti (t1=3, t2=5,
t3=7,…);

(2)Use the formula (2) to make the following
conversion. If any R[i] is equal to 0, p is a
composite number. Then update R[i] = R[i]+2. If
R[i] ≥ti, then R[i]= R[i]- ti and p= p+2;

(3)If all elements of R[i] is unequal to 0, then p
passes the prescreening algorithm.

The results of prescreening for the improved
algorithm above are saved in the array R. With this
effort, all division procedures are very simple single
precision division except the first time. So it largely
reduces complexity and largely shortens the
computing time [6].

5.3 Primality Testing

5.3.1 Fermat’s little theorem

After the prescreening, the possibility, that the
large number is a prime, is still not high. A further
primality test is usually carried on. Before entering
the final Miller-Rabin algorithm, we have designed
the test with Fermat’s little theorem [8].

In Fermat’s little theorem, supposing that p is a
prime number, a and p are coprime numbers. Then
we can get the conclusion that ap-1 ≡ 1（mod p）
.Table 4 shows the contrast key generation time
before and after using Fermat’s little theorem.

Table 3 The Contrast Key Generation Time Before
And After Using Fermat’s Little Theorem（The System

Clock Is 60mhz）

Bits 1024 2048
Before(s) 2.780 9.620
After(s) 2.129 6.896

From the table above we can see that key

generation time of either 1024 bits or 2048 bits has
been largely shortened after we use Fermat’s little
theorem. This is because that it reduces the calling
times of prescreening after the superposition of
prescreening and Fermat’s little theorem. For

example, before using Fermat’s little theorem, the
average calling times is 230, and it is 152 after.

5.3.2 miller-rabin algorithm

At the end of the whole prime number’s
generation, Miller-Rabin algorithm is used to make
a final test.

Miller-Rabin algorithm is the rapidest method for
detecting primes by far. It is also the algorithm
which is recommended to use in Digital Signature
Standard (DSS) by National Institute of Standards
and Technology (NIST).

This algorithm is just a kind of probabilistic
primality test, so there exist erroneous judgments.
But based on the probability theory, it can be
accepted that if the probability of erroneous
judgement is less than (1/2)80. A security parameter
t which represents the times of algorithm execution
[7] is introduced to control the erroneous
judgments. And in embedded applications, it can
increase the computing time if the value of t is too
large. So after comprehensive consideration, table 5
gives us the appropriate valve of security parameter
t when meeting the condition of p< (1/2)80 in
practical applications [5].

Table 4 Security Parameter’s Selection Of Miller-
Rabin Algorithm

Bits 512 1024 2048
Security parameter t 6 3 2

6. TESTING RESULTS OF KEY

GENERATION

After the optimization of RSA key generation
above, we get the testing results as is shown in
Table 5. Under the system clock of 60MHz, it takes
2.129s on average to generate a pair of keys with
1024 bits and 6.896s with 2048 bits. Compared with
previous results, key generation time is largely
shortened after using the optimization method
designed in this paper.

Table 5 Average Time-Consuming Of Key Generating
Before And After Optimization

Before(s) After(s)
1024 bits 6.513 2.129
2048 bits 20.799 6.896

7. CONCLUSION

In this paper, we propose a remarkable
optimization algorithm of RSA key generation in

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th December 2012. Vol. 46 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

detail. Table 6 shows that it takes up only one thirds
of the previous key generation time.

In our algorithm, multiple precision divisions
have been transformed into single precision
divisions. And the improved small prime table
includes all primes numbers whose value is less
than 256. With these efforts, the speed of key
generating has been increased 38.2%. What’s more,
with the usage of Fermat’s little theory, the speed of
key generation has been increased 66.8% finally.

RSA algorithm is regarded as one of the most
excellent public key crypto schemes. Though it has
many advantages, speed is always the largest
drawback. The algorithm proposed in this paper has
brought us a remarkable optimization result, but we
need to optimize continually so as to adapt the
increasing market demand.

REFERENCES

[1] IEEE Std 1363-2000, IEEE standard

specifications for public-key cryptography,
2000.

[2] Alfred J Menezes, Paul C Oorschot, Scott A
Vanstone, Handbook of Applied Cryptography,
2005.

[3] Knuth D E, Art of Computer
Programming(Vol.2). the 3rd Edition. Su
Yunlin, translation, National Defence Industry
Press, Beijing, 2002.

[4]Cui Jingsong, Tu Hang, Peng Rong,etc.The quick
generation of large prime number in embedded
system.Computer engineering,2003,299(5):24-
58.

[5]Qin Xiaodong, Xin Yunwei, Lu Guizhang.
Research and optimization realization of Miller-
Rabin algorithm.Computer engineering,
2002,28(10):55-57.

[6] Li Jialu, Zhou Yujie, Efficient implementation of
RSA key generation in embedded system.
Computer Engineering and Design, 2009.

[7]Yao Guoxiang, Lin Liangchao. Efficient Method
of RSA Key-Pair Generation[A]. Computer
Engineering, 2007.

[8] Bahadori, M.; Mali, M.R.; Sarbishei, O.; Atarodi,
M.; Sharifkhani, M. A novel approach for secure
and fast generation of RSA public and private
keys on Smart Card. NEWCAS Conference
(NEWCAS), 2010.

[9] Jingwei Hu; Wei Guo; Jizeng Wei; Yisong

Chang; Dazhi Sun. A Novel Architecture for
Fast RSA Key GenerationBased on RNS.
Parallel Architectures, Algorithms and
Programming (PAAP)

http://www.jatit.org/

	1LI DONGJIANG, 2WANG YANDAN

