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ABSTRACT 

 
On-line monitoring and recognition of mill load status has significant effect on the operating efficiency, 
product quality and energy consumption for the milling circuit. Due to low reliability to recognize the 
operating states near the boundary region, a multi- classification model is built to identify the operating 
status of ball mill load. Spectrum features of shell vibration signals are extracted using kernel principal 
component analysis as input of the multi-classification model. Partial least square-based extreme learning 
machine model predicts the output coding of ball mill load status. Bayesian decision theory further 
enhances the reliability and accuracy of the classification model. The proposed method is compared with 
one-against-one multi-classification strategy and verified with the experimental ball mill. Experimental 
results show the accuracy and stability of the proposed multi-classification model of ball mill load status 
outperforms multi-classification with one-against-one strategy.  
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1. INTRODUCTION  
 

Ball mills are large energy-consuming 
equipments for grinding, which are widely applied 
in the dry and wet grinding like ores, chemicals, 
ceramic raw materials and paints [1]. Ball mill load 
is one of the key factors for the monitoring, control 
and optimization of the grinding process. It is 
difficult to online measure the internal load of ball 
mills because of a series of complex impact and 
grinding among steel balls and materials, steel balls 
and lining [2]. Due to the lack of effective ball mill 
load measurements, a blockage in the ball mill 
occurs quite often under over load conditions, 
which results in the "swollen belly" accident and 
spoiled the normal performance of the ball mill. 
Reversely, ball mill under the low-load condition 
may result in very high unit electricity consumption 
and steel consumption, low production efficiency 
and high operating costs, even damage of the 
grinding devices. Therefore, ball mill should be run 
under optimal operating condition, avoiding the 
incident of over-load and low-load operating states. 

Ball mill load status has significant effect on the 
operating efficiency, product quality and energy 
consumption for the grinding process. 
Measurements on mill load mainly depend on the 
skilled operators in the industrial fields so that some 
economic benefits lost in order to ensure equipment 
safety and process continuity [3].  

The unsupervised learning and supervised 
learning methods are usually used for recognizing 
the operating conditions of complex industrial 
process. The unsupervised learning methods don't 
make full use of the guide of the labeled patterns so 
that the specific operational states are difficult to be 
located. However, the supervised learning methods 
are widely applied in the pattern classification. 
Pérez et al. (2009) proposed a probabilistic 
discriminant partial least squares (p-DPLS) method 
to improve the reliability of the classification by 
integrating density methods and Bayes decision 
theory [4]. Zhao et al. (2011) proposed a binary 
probabilistic extreme learning machine (p-ELM ) 
classification method to enhance the reliability of 
classification and avoid the misclassification caused 
by the uncertainty of extreme learning machine 
(ELM) predictions [5]. ELM simply generates 
neural network models using parameterized linear 
summation of random basis functions [6,7]. Such 
the idea originated in random vector of the 
functional-link (RVFL) nets [8,9,10]. However, p-
DPLS and p-ELM belonging to the binary 
classification methods only deal with the 
classification with two classes. 

Multi-classification problem is classifying the 
real field data into different class libraries. Multi-
classification can be solved by dividing the 
classification problem into several binary 
classifications. Pérez et al (2010) proposed a multi-
classification based on binary probabilistic 
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discriminant partial least squares (p-DPLS) models, 
developed with the strategy one-against-one (OAO) 
and the principle of winner-takes-all [11]. Zhao et 
al. (2012) proposed an OAO probabilistic ELM 
multi-classification method to identify the operating 
state of ball mill [12]. Zong et al. (2012) studied the 
performance of the one-against-all (OAA) and one-
against-one (OAO) ELM for classification in multi-
label face recognition applications [13].  Though 
the strategy one-against-one (OAO) overcomes 
some of the problems of PAQ and OAA, such as 
misclassification and incompatible classes for the 
imbalanced samples among the different classes, it 
increase complexity of model and computational 
load. Zhao et al. (2012) proposed a partial least 
square based extreme learning machine (called 
PLS-ELM) modeling method to enhance the 
estimate performance in terms of accuracy and 
reliability [14]. The one-against-one (OAO) 
strategy overcomes some problems of PAQ and 
OAA, such as misclassification and incompatible 
classes for the imbalanced samples among the 
different classes, However, it increases model 
complexity and computational load.  

Shell vibration signals have potential advantages 
of process monitoring, control and optimization for 
high sensitivity and strong anti-interference. 
However, the unobvious time-domain feature, 
vibration frequency spectrum with high 
dimensionality and colinearity may worsen the 
model performance. In the study, a probabilistic 
OAO multi-classification strategy using PLS-ELM 
and KPCA is proposed to identify the status of ball 
mill load and enhance recognition stability of 
process states near the adjoining region. Spectrum 
features of shell vibration signals are extracted 
using kernel principal component analysis as input 
of the multi-classification model. Partial least 
square-based extreme learning machine model 
predicts the output coding of ball mill load states. 
Bayesian decision theory further enhances the 
reliability and accuracy of the classification model. 
The proposed method is compared with one-
against-one multi-classification strategy and 
verified with the experimental ball mill. 
Experimental results show the effectiveness of the 
proposed method. 

 
2. KERNEL FEATURE EXTRACTION OF 

VIBRATION FREQUENCY SPECTRUM 
 

High dimensionality and colinearity of the 
vibration frequency spectrum are unfavorable to 
build the effective mill load model in the wet ball 
mill [15]. KPCA is usually used for nonlinear 

feature extraction [16]. Features of shell vibration 
frequency spectrum signals are extracted using 
kernel principal component analysis (KPCA) before 
the multi-classification.  

Let ( )nNX ×  be vibration frequency spectrum, 
where T n

1 2[ , ,..., ] Ri i i inx x x= ∈x  1, ,i N=  . 
Feature extraction of vibration frequency spectrum 
is formulated as the diagonalization of the estimate 
of the covariance matrix in the high dimensional 
feature spaces:  

1

1 ( ) ( )
1

N
T

i i
i

C X X
N =

= Φ Φ
− ∑          ( 1 ) 

where )( iXΦ  are centered nonlinear mapping of 
the input variables. An eigenvalue-decomposition 
of C  is computed: 

k k kCu uλ= , 1, 2, ,k N=        ( 2 ) 
where kλ  and ku  represent the kth eigenvalue-
eigenvector pair of C . KPCA circumvents the 
calculation of mapping function ( )xΦ  by the 
eigenvalue-decomposition of the centered Gram 
matrix ( ) ( ) NNT RXXG ×∈ΦΦ= .  

( ) ( ) kkk vv ξ=ΦΦ XXT                   (3) 
where kξ  and kv  represent the kth eigenvalue-
eigenvector pair of G. Assuming the kernel 
definition )()()(),(, j

T
ijiji XXXXK ΦΦ=ΦΦ= , 

Gram matrix can be computed from the kernel 
matrix K .  
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After constructing the KPCA model in the 
feature space, the kernel score vector for a new 
sample ( )x X N n∉ × is given by  







 −= N

T K
N

XKAt 1)x,(                (5) 

where ( ) ( ) ( )1, , , , ,
T

MK X x K X x K X x==    represents 

the kernel vectors and 1
NA I E V

N
 = −  

. 

 

3. PREDICTION MODEL OF BALL MILL 
LOAD STATUS CODING 

 
According to the filed operation experience, 

there are mainly three kinds of ball mill operation 
statuses: overload, normal load and low load. In 
order to facilitate ball mill load status classification 
model, the output data are coded into integer and 
sorted according to the classification labels on the 
operating statuses. Each number of output labels 
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corresponds to a type of the operating status. 
Prediction model between independent and integer 
coding based on the ELM-PLS algorithm can 
reduce the output coding prediction uncertainty to a 
certain degree. Assume H- and Y- space have been 
standardized to zeros mean and unit variance. PLS 
is used for the linear modeling of the relationship 
between a set of response variables ( )mNY ×  and 
the hidden layer feature space ( )LNH × . PLS-ELM 
model is expressed as  

eHY PLS += β                                           (6) 
where H  is the output vector of the hidden layer 
with respect to input X, PLSe β,  are noise and 
coefficient matrix, respectively. Coefficient matrix 

PLSβ  are solved by bilinear decomposition of both 
the hidden layer feature space ( )LNH ×  and the 
response variables ( )mNY ×  as 

1

1

h
T T

k k
k

h
T T

k k
k

H TP E t p E

Y UQ F u q F

=

=

 = + = +

 = + = +


∑

∑
              (7) 

where [ ]1,..., N h
hT t t R ×= ∈ , [ ]1,..., N h

hU u u R ×= ∈  are 
latent score vectors with the extracted h 
principal components in the H- and Y- space, 
respectively; [ ]1,..., m h

hP p p R ×= ∈  and 

[ ]1q ,..., m h
hQ q R ×= ∈  represent the loadings 

vectors in H-space and Y-space, respectively; E 
and F are residuals in the H- and Y- space, 
respectively. If enough latent variables are 
remained in the PLS-ELM model, residual E 
and F can equal to zeros. Coefficient matrix 

PLSβ  is expressed as follows 

( ) 1T Tˆ
PLSβ = W P W BQ

−
                      (8) 

where W  is the weight matrix and B  is the 
diagonal coefficient matrix of inner model. 

Given ( ){ }, | , , 1,n m
i i i ix y x R y R i N∈ ∈ =  , 

the hidden node output function ( , , )i i jG a b x  and 
the number of hidden nodes L . PLS-ELM 
algorithm is as follows:  
Step 1 Randomly assign the input weights. 
Step 2 Calculate the hidden layer output matrix H .  
Step 3 Scale the hidden layer output matrix H and 
output Y  to zero mean and unit variance.  
Step 4 Initialize 0 0,E H F Y= = , and 0k = . Let 

1k k= +  and take the output scores ku  as some 
column of 1kY − . 

Step 5 Compute input weights kw  by regressing 

1kE −  on ku , normalize kw  to unit length and 
calculate the input scores kt  in the 1kH −  block:  

1

1 1

/
/

T T
k k k k k

k k k k k

E u u u
t E E

−

− −

 =


=

ω
ω ω

                  (9) 

Step 6 Compute output loadings kq  by regressing 
Y on kt , normalize kq  to unit length, and calculate 
the new output score u  in the Y  block. 

1 1

1

/T T
k k k k k

k k k

q Y t Y t

u Y q
− −

−

 =


=
                     (10) 

Step 7 Check convergence on ku . If yes, go to step 
8, else go to step 5. 
Step 8 Compute the input loadings kp  by 
regressing E  on kt , and normalize kp  to unit 
length in the H  block. 

1

/

T T
k k k

k k k

p t E
p p p

− =


=
                       (11) 

Step 9 Compute inner model regression coefficients. 
T

k k kb u t=                                 (12) 
Step 10 Calculate the residuals E  of the deflated 
H  and the residuals F  of deflated Y in the 
residual space:  

1

1

T
k k k k

T
k k k k k

E E t p

F F b t q
−

−

 = −


= −
                       (13) 

Step 11 Repeat steps 4 to 11 until all principal 
factors are calculated. 

 

4. PROBABILISTIC DIRECT MULTI-LABEL 
CLASSIFICATION BASED ON PLS-ELM 

 
Classification is to construct a model to make a 

map of samples with a peculiar class label. Binary 
classification model based on PLS-ELM can 
improve the computational speed due to the easy of 
accomplishment, low computational cost and high 
robustness performance. In the binary PLS-ELM 
model, output Y-block is firstly coded with the 
integer 1 if the sample belongs to the class of 
interest (class 1ω ) or 0 otherwise (class 0ω ). PLS-
ELM can not only deal with regression problem, 
but can be easily generalized to classification 
problems. The class of the unlabelled samples is 
judged by  

( )PLS
ˆY Hβsign= .                           (14) 
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For the multi-label classification, the output 
variables of multi-classification model are discrete 
class labels. The class is classified as index ID 
corresponding to the maximum output value of the 
output node of PLS-ELM model. Let iy  be the 
thi output variable of PLS-ELM model, the class 

label on the sample x  is judged by 
( )

{ }
( )

1, ,
arg i

i m
maxlabel y x

∈
=


x .                        (15) 

In the study, binary probabilistic PLS-ELM is 
directly extended a multi-classification based on 
PLS-ELM, called the direct multi-classification. It 
is applied to the multi-label classification of the 
operating status on the ball mill load.  

The standard error of prediction (SEP) is used 
to account for the prediction uncertainty of the 
PLS-ELM model. iSEP  for the i-th sample is 
calculated by 

(1 )i i bcSEP h MSEC= + ×                        (16) 
where ih  is the leverage for the i-th sample and 

bcMSEC  is the bias corrected mean squared error of 
calibration. The Leverage value is calculated by 

1=x (X X) xT T
i i ih − . The bias-corrected bcMSEC  is 

calculated as: 
2

1

1 ˆ( )
2

N

bc i i c
i

MSEC y y bias
N n =

= − −
− − ∑  (17) 

2

1

1 ˆ
cN

c i i
c i

bias y y
N =

= −∑（ ）                           (18) 

The potential functions of the training samples 
for each class are averaged to obtain the class 
probability density function (PDF) 

1

1ˆ ˆ( ) ( )
CN

c i
c i

p y g y
N

ω
=

= ∑                              (19) 

where ˆ( )ig y  is probability density function of each 
calibration sample i  for classes iω  with the shape 
of a Gaussian curve, centred at ˆiy  and standard 
deviation iSEP . Parameters of probability density 
function are estimated by nonlinear least squares[5]. 

2ˆ ˆ1 ( )
21ˆ( )

2

i

i

y y
SEP

i
i

g y e
SEP π

−
−

=                     (20) 

Suppose that the prior probabilities 
( ) 1i iP N N ,i , Cω = =   and the conditional 

probabilistic densities ( )ip y |ω . For an unknown 
sample, the probability with prediction ˆuy  for the 
class iω  is given by the Bayes formula :  

ˆ( ) ( )
ˆ( )

ˆ( )
u i i

i u
u

p y P
P y

p y
×

=
ω ω

ω                    (21) 

Bayes formula shows that the prior probability 
( )ip ω  is converted into a posterior probability 

ˆ( )i up yω  by prediction ˆuy .  
5. RESULTS AND DISCUSSION 

5.1 Description Of Experimental System 
The experiments on the classification of the mill 

load operating statuses were accomplished on a 
laboratory scale lattice-type ball mill. The mill has 
a diameter of 460 mm, a length of 460 mm in 
length, and driven by a motor. The vibration signals 
are acquired by the accelerometer with sampling 
frequency 51,200Hz. The sensor is amounted on the 
external surface of the mill shell. It has maximum 
ball load of 80 kg, pulverizing capacity of 10 kg per 
hour and a rated revolution of 57 per minute. The 
ball mill was fed with the different steel balls, 
copper ore and water addition. The feeds were 
homogenized and each grinding last for one minute. 
The experimental data are recorded at the different 
loads. There are three different sizes of the steel 
balls, i.e. large, medium and small ball (diameter of 
30mm, 20mm and 15mm). The particle size and 
mass of the copper ores varied over a wide range 
from 1M to more than 8M and 10kg to 50kg, 
separately. The mass of the water addition varied 
from 2kg to 50kg.  

5.2 Kpca Feature Extraction And Coding 
Prediction Model 

In the study, three types of the operating statuses 
of ball mill load are considered. Class 1ω  denotes 
low load status, 2ω  normal status and 3ω  overload 
status. In order to verify the proposed method, 
experimental data included 51 low load, 48 normal 
load, 15 overload for training and 51 low load, 48 
normal load, 14 overload for testing. Vibration 
signals in the time domain are transformed into 
frequency spectrum by Fast Fourier Transform 
(FFT). Kernel type of KPCA model is RBF_kernel. 
According to the percent variances captured by 
KPCA model, 42 principal components are retained 
and the rest are dropped from the model.  

Prediction performance of ball mill load status 
coding model is compared and analyzed. Fifty runs 
were independently conducted and the average of 
the root-mean-square error of prediction (RMSE) 
and variance (R2) were calculated for each 
parameter. ELM model has 1 parameter (L), i.e. the 
number of hidden nodes. PLS-ELM model has 2 
parameters (L, h), including the number of hidden 
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nodes and the number of latent variables. ELM 
model based on KPCA (KPCA_ELM) has 3 
parameters (L, h, Par), including the number of 
hidden nodes, the number of principal components, 
and kernel parameter. PLS-ELM model based on 
KPCA (KPCA_PLS-ELM) has 4 parameters (L, h, 
PC, Par), including the number of hidden nodes, 
the number of latent variables, the number of 
principal components and kernel parameter. For 
ELM model and PLS-ELM model, activation 
function of hidden layer node use sigmoid function, 
the hidden node number is set 500，initial value of 
latent variables numbers of PLS-ELM model is set 
42.  

Performance comparison of ELM and PLS-ELM 
model based on KPCA feature extraction is 
illustrated in Table I. It can be observed that 
prediction performance of KPCA_PLS-ELM model 
is better than ELM model, PLS-ELM model and 
KPCA_ELM model. Therefore, KPCA_PLS-ELM 
model is used as ball mill load status coding model. 

 
Table I:  Performance Comparision Of Elm And Pls-Elm 

Model Based On Kpca Feature Extraction 

Prediction 
Model Model Parameters 

Training Testing 

RMSE R2 RMSE R2 

ELM 
（500） 0 1 0.3516 0.7992 

（5000） 0 1 0.2334 0.8924 

PLS-ELM 
（500, 42） 0.0007 1 0.2981 0.8569 

（5000, 42） 0 1 0.1691 0.9571 

  KPCA_ 
ELM 

（500, 42,500） 0 1 0.2165 0.9024 

（5000, 42,500） 0 1 0.2023 0.9146 

KPCA_PLS-
ELM 

（500, 42, 10,500
） 0.0036 1 0.1434 0.9576 

（5000, 42, 10,500
） 0.0035 1 0.1387 0.9607 

5.3 Multi- Classification Models 
In this section, the proposed direct multi-label 

classification and OAO multi-classification strategy 
are comparatively evaluated. Prior probabilities of 
the three classes are ( )1 0.4474P =ω , 

( )2 0.4211P =ω  and ( )3 0.1316P =ω , respectively. 
Figure 1 shows that the probability curves of direct 
multi-classification model based on KPCA_PLS-
ELM. It includes the probability density function, 
the probability density function multiplied by the 
prior probability and the posterior probability. 
Posterior probabilities of three classes are 
calculated for the unknown testing samples 
according to the Bayes formula. 

Enhanced prediction of output coding based on 
probabilistic KPCA_PLS-ELM model is as shown 
in Figure 2. It can be observed that the predictions 
of the samples for class 1ω  are around the coding 
integer value 1, class 2ω  around the integer 2, and 
class 3ω  around the integer 3. Probabilistic 
KPCA_PLS-ELM model improved reliability and 
generalization of the output coding prediction. 

 

 

 

 
Figure 1:  Prediction Curves Of Probabilistic PLS-ELM 

Model   (A) PDF ˆ( )u cp y ω ; (B) Production 
Function ˆ( ) ( )u c cp y P×ω ω ;   (C) Posterior 

Probabilities ˆ( )c uP yω  

Figure 3 shows direct multi-classification results 
for four testing samples.Figure 3(a) shows 
probability density function distribution of three 
classes for three testing samples, where three values 

(a) 

(b) 

(c) 
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in each bracket denote probability density function 
value of three sample points belonging to classes 

1ω 、 2ω  and 3ω , respectively. Figure 3(b) gives 
the posterior probability distribution curve of three 

samples, where percentage of three sample points 
belonging to three classes ( 1ω 、 2ω  and 3ω ) are 
marked on a side of line.  

 

 
 

Figure 2: Enhanced Prediction Of Probabilistic KPCA_PLS-ELM Model (A) Training Model;(B) Testing Model 
 
In order to evaluate the performance of multi-
classification models, direct multi-classification 
and OAO multi-classification are compared for the 
training and testing data. Detail results of the 
multi-classification are shown in Table II. It can be 
seen that (1) model accuracy using KPCA feature 

extraction are better than the model based on the 
full frequency spectrum; (2) classification 
accuracy based on PLS-ELM model outperforms 
ELM; (3) direct multi-classification model has 
higher accuracy than OAO multi-classification 
model based on P_KPCA_PLS-ELM.  

 

 
Figure 3: Direct Multi-Classification Results For Three Testing Samples Based On Probabilistic KPCA_PLS-ELM 

Model  

(A) Probability Density Function; (B) Posterior Probabilities 

(a) (b) 
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Table II: Performance Comparisons Of Multi-Class Classification Model 

Method Model Training accuracy 
Right assigned 
samples /Total 

samples 

Testing 
accuracy 

Right assigned 
samples /Total 

samples 

OAO Multi-
classification 

KPCA_ELM 100% 114/114 90.27% 102/113 

KPCA_PLS-ELM 94.74% 108/114 92.92% 105/113 

Probabilistic OAO 
Multi-classification 

P_KPCA_ELM 100% 114/114 95.57% 108/113 

P_ KPCA_PLS-ELM 98.25% 112/114 97.35% 110/113 

Direct Multi-
classification 

KPCA_ELM 100% 114/114 92.04% 104/113 

KPCA_PLS-ELM 100% 114/114 96.46% 109/113 

Probabilistic Direct 
Multi-classification 

P_ KPCA_ELM 100% 114/114 97.35% 110/113 

P_ KPCA_PLS-ELM 100% 114/114 100% 113/113 

 
6. CONCLUSION 

 
Based on shell vibration signal with the high 

sensitivity and less disturbance, a multi-
classification model of mill load status based on 
probabilistic PLS-ELM is proposed to identify the 
operating status of ball mill load. It is simple and 
easy to implement. The following conclusions are 
drawn from the investigations: (1) The multi-
classification accuracy using KPCA feature 
extraction are better than the model based on the 
full frequency spectrum; (2) The multi-
classification accuracy based on PLS-ELM model 
outperforms ELM; (3) The direct multi-
classification model has higher accuracy than OAO 
multi-classification model based on P_KPCA_PLS-
ELM; (4) The direct multi-classification model has 
less computational cost than OAO multi-
classification model.  
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