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ABSTRACT 

 
A novel nonlinear filter called model-enhanced Gaussian process square root cubature Kalman filter 
(MEGP-SRCKF) is proposed to estimate the state of nonlinear dynamic systems where their state-space 
models are unknown or insufficiently accurate. The algorithm integrates Gaussian process regression (GPR) 
into square root cubature Kalman filter (SRCKF). Given the training data, GPR model is used to learn and 
represent the residual of system after factoring the contributions of the parametric model. The combination of 
GPR and parametric models enhances the performance of either model alone. It improves the accuracy of the 
transition and measurement models. The resulting MEGP-SRCKF algorithm has several advantages over 
standard extended Kalman filter (EKF), nonaugmented unscented Kalman filter (UKF), augmented UKF, 
and SRCKF. Two cases are used to test these filters and the superiority of the proposed filter is demonstrated, 
where the MEGP-SRCKF can obtain the better results whether an accurate parametric state-space model is 
obtained. 

Keywords: Bayesian Filter, Cubature Rule, Gaussian Process Regression, Model-Enhanced, Parametric 
Model, State-Space model, Nonlinear Dynamic System  

 
 

1 INTRODUCTION 
 

Filtering in dynamical systems is frequently used 
in many areas from inertial guidance of aircrafts and 
spacecrafts to weather and climate prediction. One 
of the basic problems of filtering is to process noisy 
measurements to obtain estimates of all of the state 
variables. In the case where the transition and 
measurement models of dynamic systems depend on 
the past information and when we have the 
assumptions that both the models in the state-space 
are linear and that the noise terms are normally 
distributed, the standard linear recursive Kalman 
filter algorithm can be derived [1]. The Kalman filter 
is a well-known recursive state estimator for linear 
systems. However, in many cases interesting 
dynamic systems are not linear by nature, and the 
traditional Kalman filter cannot be applied in 
estimating the state of such these systems. In this 
kind of systems, both the models can be nonlinear or 
only one of them.  

Many nonlinear filtering methods, such as the 
extended Kalman filter (EKF) [2,3], the unscented 
Kalman filter (UKF) [4], the assumed density filter 
(ADF) [5], and the quadrature Kalman filter (QKF) 
[6,7], have been proposed for filtering in dynamical 
systems. Based on the first order Taylor series 
expansion of the transition and measurement models 

about the estimated state trajectory under the 
Gaussian assumption, the EKF may introduce large 
error and even diverge when the nonlinearities 
become severe. As shown in [5], in order to transmit 
the mean and covariance of state more accurately 
than the EKF, the UKF computes the carefully 
selected sigma-points through the nonlinear 
transform. However, the conventional UKF can be 
viewed as a second order EKF of special form and 
the unscented transform does not always preserve 
the first and second moments through the nonlinear 
transform [8]. Based on the Gauss-Hermite 
quadrature rules, the complexity of the QKF 
increases exponentially with the state-space 
dimension, that is, QKF suffers from the curse of 
dimensionality. More recently, by employing a 
third-degree spherical-radical cubature rule for those 
multi-dimensional integral to numerically calculate 
the mean and covariance of the states, an alternative 
estimation algorithm called cubature Kalman filter 
(CKF) has been proposed for general nonlinear 
systems [9]. The CKF uses a total of   cubature points 
with the same weight   to numerically compute 
Gaussian weighted integrals involved in the 
Bayesian filter. Under the additive Gaussian noise 
assumption, CKF can preserve the first and second 
moments more accurately than the UKF with the 
similar computational complexity. Meanwhile, for 
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numerical stability, the square-root format of CKF 
(SRCKF) is also developed. However, like the 
traditional filters, the performance of CKF relies on 
an accurate parametric transition and measurement 
models, which include the properly selected process 
and measurement noise statistics. For many 
applications, the accurate parametric models are 
difficult to obtain. Even though such parametric 
models are very efficient, they often ignore hard to 
model aspects of dynamic systems so that their 
predictive capabilities may be limited.  

To overcome the limitations of parametric 
models, we introduce non-parametric, Gaussian 
process regression (GPR) models to enhance the 
parametric transition and measurement models for 
dynamical systems. Meanwhile, GPR models can 
provide uncertainty estimates for their predictions so 
that they are seamlessly incorporated into Bayesian 
filters [10]. In this paper, we integrate GPR models 
into the SRCKF to enhance the parametric models. 
The combination of GPR and parametric models, 
which alleviates some of the problems with either 
model alone, can obtain higher prediction accuracy. 
The resulting filtering algorithm is thus referred to as 
model-enhanced Gaussian process square-root 
cubature Kalman filter (MEGP-SRCKF).  

The rest of this paper is organized as follows. 
Section 2.1 gives the general filtering framework of 
the Bayesian filter in the Gaussian domain and 
Section 2.2 derives the new cubature rule for 
Gaussian-weighted integrals in detail. GPR method 
is introduced briefly in Section 3. MEGP-SRCKF 
algorithm is derived and its implementation is 
described in Section 4. Section 5 demonstrates the 
advantages of MEGP-SRCKF over the other 
traditional filters via an example. Finally, some 
concluding remarks are given in Section 6. 
 
2 CUBATURE KALMAN FILTER 
 
2.1 Bayesian filter theory in the Gaussian 

Domain 
Consider the general state-space model with 

additive noise: 
Transition model: ,)( 11 −− += kkk wxfx            (1) 
Measurement model: ,)( kkk vxhz +=            (2) 

where xn
k R∈x  and zn

k R∈z  are the state and 
measurement of the system at discrete time k  
respectively; )(⋅f  and )(⋅h  are some known 
functions; ),0(~ 11 −− kk QNw  and ),0(~ kk RNv  
are the independent process and measurement 
Gaussian noise with zero means and covariances 

1−kQ  and kR  respectively. 

The Gaussian distribution has many distinctive 
mathematical properties and it approximates many 
physical random phenomena, so it is the most 
convenient and widely used density function 
assumption to approximate the Bayesian filter. We 
call the approximate Bayesian filter as Gaussian 
filter. Consider the discrete-time state-space model 
given by Eq. (1) and (2). For this model, due to the 
fact that Gaussian distribution is completely 
specified by its mean and covariance, the general 
filtering framework of the Gaussian filter is given as 
follows [6,11]:  
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From Eq. (3) to Eq. (7), it shows that the key of 
the Gaussian filter is how to compute 
multi-dimensional Gaussian weighted integrals 
whose integrands are all of the form “nonlinear × 
Gaussian density”.  

 
2.2 Cubature Rule For Gaussian-Weighted 

Integrals 
 
Consider a multi-dimensional Gaussian weighted 

integral of the form 

∫ −= n dI T
R

xxxxff )exp()()(            (8) 

where )(⋅f  is some arbitrary function. To compute 
Eq. (8), it is firstly converted into a spherical-radial 
integration form by the change of variables as 
follows: Let yx r=  with 1=yyT , so that 2rT =xx  
for  ),0[ ∞∈r . Then Eq. (8) can be rewritten as the 
radial integral  

∫

∫ ∫
∞ −

∞ −

−=

−=

0
21

0
21

)exp()(

)()exp()()(

drrrrS

drdrrrI

n

U
n

n

yyff σ
     (9) 

with the spherical integral 
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1)()()()()( ≡= ∫ yyyyf wdwrrS
nU

σ    (10) 

where { }1| =∈= yyy Tn
nU R  denotes the surface 

of the unit sphere and )(⋅σ  denotes the area element 
on nU . 

The spherical integral Eq. (9) and the radial 
integral Eq. (10) are numerically computed by the 
third-degree spherical cubature rule and the 
Gaussian quadrature rule, respectively. Hence, we 
have 
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where [ ]u  represents a complete fully symmetric set 
of points that can be obtained by permutation and 
changing the sign of the generator u  in all possible 
ways, [ ]iu  denote the th-i  point from the set [ ]u . 
For example, when 3=n  and ）（）（ 10,0,1 == Tu  
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Further, a general Gaussian weighted integral is 
approximated as follows:  
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where Σ  is the square-root of the covariance Σ , 
i.e., ΣΣΣ =

T
; { }niwii 2,,2,1),,( L=ξ  is the 

cubature-point set with [ ]ii n 1=ξ  and 
nwwi 2/1== .  

The CKF algorithm uses the cubature-point set 
{ }niwii 2,,2,1),,( L=ξ  to numerically compute the 
multi-dimensional Gaussian weighted integrals in 
Eq. (3)-Eq. (7). For numerical stability, the 
cubature-point set is also used to build the SRCKF, 
see [9] for more details.  

 
3 GAUSSIANP ROCESS REGRESSION 

 
A Gaussian process (GP) is a collection of random 

variables, any finite number of which have a joint 
Gaussian distribution in the statistics areas. It is 
often thought of as a “Gaussian distribution over 
functions” [12] in machine learning areas. It can also 
be thought of as the generalization of a Gaussian 

distribution over a finite vector space to a function 
space of infinite dimension. Similar to a Gaussian 
distribution, a GP is completely specified by a mean 
function and a positive definite covariance function. 
Suppose we have a training data 

},{},,1|),{( yx XNiyD ii === L  which is drawn 
from a noisy process: 

ε+= )( ii fy x  
where d

i R∈x  is an input vector of dimension d , 
R∈iy  is a corresponding scalar output and ε  is an 

independent, identically distributed Gaussian 
distribution with zero mean and variance 2

Nσ . For 
brevity, ][ 21 NX xxx L=  denotes a Nd ×  
matrix which aggregates the column vector inputs 
for all N  cases and ][ 21 Nyyy L=y  
aggregates the N  outputs. The key task of GPR is to 
generate an output prediction of a function 

RR adf :)(⋅  at a new arbitrary test input *x .  
A GP estimates posterior distribution over 

functions )(⋅f  from training data D . In terms of 
the training points, the posterior distribution is 
represented non-parametrically. A key idea 
underlying GPs is the requirement that the function 
values at different points are correlated, that is, the 
covariance between two function values, )( if x  and 

)( jf x , depends on the input values, ix  and jx . 
This dependency is specified via an arbitrary 
covariance function, or kernel ),( jik xx . The most 
widely used kernel function is the squared 
exponential (SE) kernel: 

))()(
2
1exp(),( 12

ji
T

jifjik xxxxxx −Λ−−= −σ  

where 2
fσ  is the signal variance, 

]),,,([ 22
2

2
1 dllldiag L=Λ  and il  is the length scale 

which reflect the relative smoothness along the 
different input dimensions.  

Given the training data D  and a new test input 
*x , we can obtain a Gaussian predictive distribution 

over the corresponding output *y  
),(GP:)),(GP),,(GP(~ **** DDDy xxx Σµ =N  

with mean and variance 
ykxµ

12
** ][),(GP −+= NN
T IKD σ            (11) 

*
12

**** ][),(),(GP kkxxxΣ
−+−= NN

T IKkD σ  (12) 
where TXKXK ),(),( *** xxk ==  is the 1×N  
covariance matrix between the inputs X  and the test 
point *x  such that ),()1,( ** iki xxk = , 

Ni ,,2,1 L= , ),( ** xxk  the variance of the test point 
*x , and I  the nn×  identity matrix. 
The parameters of the kernel function and the 

output noise are aggregated to },,{ 22
Nf σσΛ=θ , 

called the hyperparameters. They are typically 
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determined by maximizing the log likelihood of the 
training outputs, that is  

).,|(logmaxargˆ θXyθ
θ

p=  

After determining the optimal hyperparameters, 
we can compute the predicted output ),(GP * Dxµ  
and its variance ),(GP * DxΣ  corresponding to the 
test point *x  using Eq. (11) and Eq. (12). 

Most GP models are defined for modeling only a 
single output variable. An independent model for 
each output dimension is used to represent the 
vectorial outputs generally involve in the transition 
and measurement models. The resulting process and 
measurement noise covariances are diagonal 
matrices, since the output dimensions are now 
independent of each other.  

 
4 MEGP-SRCKF 

 
Since purely non-parametric GPR model is 

data-driven, it lacks interpretability for the system. 
The another drawback of the model is that when the 
new test point is far away from the training data, the 
corresponding output will quickly tend toward zero, 
as shown in Figure 1. It results high requirement for 
the training data. Parametric model is use to attempt 
to represent a particular phenomenon. However, to 
build these models, substantial domain expertise is 
required. It results that these accurate parametric 
models are difficult to obtain, which are always very 
complicated and are often simplified to represent the 
actual systems.  
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Figure 1: Gaussian Process Regression For A 

One-Dimensional Linear Regression Problem, 
ttttt wxxxy +++= )1/(252/ 2 , With )1,0(~ Ntw  I.I.D. Noise.  

The Blue Line Denotes The Noise-Free 
Measurements. The Red Dashed Denotes The 

Output Of Trained GPR Model Using The Training 
Data (Green Circle), Which Are Collected In Both 
Areas [-20, 0] And [5, 15]. The Gray Region 
Denotes The 95% Confidence Region For 
Regression Measurements. Note That Both The 
Error Of Regression Measurement And Its 
Uncertainty (The Vertical Width Of The Gray 
Region) Become Larger Beyond The Training 
Areas. 

 
The combinated model of GPR and parametric 

models can alleviate some of the problems with 
either model alone. Since the GPR model is used to 
represent the aspect of the dynamic system that is 
still not modeled by the parametric model, the 
accuracy of the combinated model for the actual 
system is improved. Meanwhile, due to the 
parametric model can capture most of the physical 
process underlying the dynamic system, the 
generality of the combinated model is improved 
beyond the training data. The combinated model is 
called Model-enhanced GP (MEGP) model. 

The GPR-model branch of MEGP model is used 
to represent the residual output after factoring the 
contribution of the parametric model. If 

)( 1−= kk xfx  and )( kk xhz =  are the parametric 
state-space models for the dynamic system, then the 
MEGP model can be written as 

),(GP)( 11
ff

µ xxfx Dkkk −− +=  

),(GP)( hh
µ xxhz Dkkk +=  

where ),(GP 1
ff x Dk−  and ),(GP hh x Dk  are the 

GPR-model branches of MEGP models for the 
transition and measurement models, respectively. 
The training outputs for the two MEGP models are 

)( 1−−=∆ kkk xfxx  
).( 1−−=∆ kkk xhzz  

Their corresponding training data are 
),,( 0 XXf ∆=D  

),( ZXh ∆=D  
where ],,,[ 1100 −= NxxxX L , ],,,[ 21 NxxxX L= , 

],,,[ 21 NxxxX ∆∆∆=∆ L , 
],,,[ 21 NzzzZ ∆∆∆=∆ L . 

Now the MEGP models can be incorporated into 
the SRCKF algorithm. Details of the resulting 
filtering algorithm are presented in Appendix A. 

 
5 APPLICATIONS 

 
To illustrate some of the advantages of 

MEGP-SRCKF over other filters, a model called 
Univariate Nonstationary Growth Model (UNGM) 
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is considered in this paper. This model is highly 
nonlinear and bimodal that is really challenging for 
traditional filtering techniques. The dynamic state 
space model for UNGM can be written as 

,))1(2.1cos(8
1

25
2
1

12
1

1
1 −

−

−
− +−+

+
+= k

k

k
kk wk

x
xxx (13) 

,,,2,1,
20
1 2 Kkvxy kkk L=+=         (14) 

where ),0(~ 2
1 wkw σN−  and ),0(~ 2

vkv σN . The 
cosine term in the state transition model represents 
the effect of time-varying noise.  

First, we assume that the accurate parametric 
model is obtained as Eq. (13) and Eq. (14). EKF, 
nonaugmented UKF, augmented UKF [13], and 
SRCKF are also tested in this case. In figure 2 we 
have plotted the mean square errors (MSEs) of each 
tested methods of 50 Monte Carlo runs, of which the 
mean and standard deviation is present in figure 3.  
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Figure 2: MSEs of different methods in 50 Monte Carlo runs 
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Figure 3: The Means (Left) And Standard Deviations 

(Right) Of Mses Of Different Methods In 50 Monte Carlo 
Runs 

 
Since the bimodality of UNGM in general can not 

be applied well using Gaussian approximations, 
EKF don’t work well in this case. The 

MEGP-SRCKF can obtain similar results to the 
augmented UKF and the SRCKF. They give clearly 
better performance from the nonaugmented UKF. In 
the case that we can obtain appropriate parametric 
models, the MEGP-SRCKF can obtain similar 
performance to its corresponding parametric filter. 

We further assume that an insufficiently accurate 
state-space model is obtained as follows: 
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Before filtering, two groups data are assumed to 
obtain for training the GPR-model branch of MEGP 
models for the transition and measurement models, 
respectively. We also test the above filters in this 
case. Similarly, in Figure 4 we have plotted the 
MSEs of each tested methods of 50 Monte Carlo 
runs, of which the mean and standard deviation is 
present in Figure 5.  
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Figure 4: Mses Of Different Methods In 50 Monte Carlo 

Runs 
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Figure 5: The Means (Left) And Standard Deviations 

(Right) Of Mses Of Different Methods In 50 Monte Carlo 
Runs 
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As shown in Figure 4 and 5, we can see that the 
MEGP-SRCKF is effective to estimate the state in 
this case, whereas standard EKF, nonaugmented 
UKF, augmented UKF, and SRCKF are disabled. 
Compare the results of the above four figures, it also 
shows that MEGP-SRCKF can obtain the similar 
results whether the accurate parametric state-space 
model can be obtained. Therefore, the 
MEGP-SRCKF does not require an accurate, 
parametric model of the nonlinear dynamic system.  

 
6 CONCLUSIONS 

 
An alternative estimation algorithm called CKF 

has been proposed recently for nonlinear dynamic 
systems. It can preserve the first and second 
moments accurately with low computation. 
However, its performance relies on the accurate 
state-space models as same as the traditional filters, 
for instance EKF and UKF. In this paper, a novel 
filter algorithm called MEGP-SRCKF is presented 
to estimate the state of nonlinear dynamic systems 
where their transition or measurement or both 
models are unknown or insufficiently accurate. It 
integrated a combination model of GPR and 
parametric models into the SRCKF, where the 
state-space model is replaced by the combination 
model. The GPR-model branch of the combination 
model is used to learn and represent the residual 
aspects of the system that are not captured by the 
parametric model. The novel algorithm alleviates the 
disadvantages associated with the traditional filters, 
and its performance is tested via two examples. 

 
Appendix A: Table 1 Megp-Srckf Algorithm 

Before Filtering 
1) Build the training data for the transition 
MEGP model and train this model:  

).,(GP~ 1
ff xx Dkk −∆  

2) Build the training data for the measurement 
MEGP model and train this model: 

).,(GP~ hh xz Dkk∆  
3) Evaluate the initial cubature points 
( mi ,,2,1 L= , xnm 2= ) 

.]1[ ixi n=ξ  
Initialization 

1) Initialization of the state 0|0x  and the 
square-root factor of the predicted error 
covariance 0|0S  such that TSSP 0|00|00|0 = . 
Time Update 
1) Evaluate the cubature points of the current 
state ( mi ,,2,1 L= ) 

1|11|11|1, ˆ −−−−−− += kkikkkki SX xξ . 
2) Evaluate the cubature points of the predicted 
state ( mi ,,2,1 L= ) 
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4) Estimate the square-root factor of the 
predicted error covariance 
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and 1, −kSQ  denotes a square-root factor of 

),ˆ(GP 1|11
ff

Σ x Dkkk −−− =Q  such that 
T

kkk SS 1,1,1 −−− = QQQ . 
Measurement Update 
1) Evaluate the cubature points of the update 
state( mi ,,2,1 L= ) 

1|1|1|, ˆ −−− += kkikkkki SX xξ . 
2) Evaluate the cubature points of the predicted 
measurement ( mi ,,2,1 L= ) 
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3) Estimate the predicted measurement 
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4) Estimate the square-root factor of the 
innovation covariance matrix 

[ ]( )kkkkk SS ,1|1|, R−− = ZTriazz  
where the weighted, centered matrix 

[
]1|1|,

1|1|,21|1|,11|

ˆ

ˆˆ1

−−

−−−−−

−

−−=

kkkkm

kkkkkkkkkk

Z

ZZ
m

z

zz

L

Z
 

and kS ,R  denotes a square-root factor of 

),ˆ(GP 1|
hh

Σ x Dkkk −=R  such that T
kkk SS ,, RRR = . 

5) Estimate the cross-covariance matrix 
T

kkkkkkP 1|1|1|, −−− = ZXxz  
where the weighted, centered matrix 

[
]1|1|,

1|1|,21|1|,11|

ˆ

ˆˆ1

−−

−−−−−

−

−−=

kkkkm

kkkkkkkkkk

X

XX
m

x

xx

L

X
. 

6) Estimate the Kalman gain of CKF 
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1|,1|,1|, /)/( −−−= kk
T

kkkkk SSPW zzzzxz . 
7) On the receipt of a new measurement kz , 
estimate the updated state 

)ˆ(ˆˆ 1|1|| −− −+= kkkkkkkk W zzxx . 
8) Estimate the square-root factor of the update 
error covariance matrix 

[ ]( )kkkkkkkkk SWWS ,1|1|| R−−= Z-XTria . 
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