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ABSTRACT 
 

This paper is to price European options for assets with stochastic volatility in using fuzzy set theory. The 
main idea is to transform the probability distribution of stochastic volatility to its possibility distribution 
(from `volatility smile to volatility frown') and reduce the problem to a fuzzy stochastic process for 
underlying asset with volatility as a fuzzy number associated with initial stochastic volatility. We\  then  price 
the corresponding European options by introducing  the non-linear fuzzy PDE approach. 
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1 INTRODUCTION 
 

Local volatility can be viewed as the market's 
view of the future value of volatility when asset price 
is S  at time t . When we retrieve the local volatility 
surface from the prices of market traded instruments 
we are under the assumption that we have a 
distribution of option prices of all strikes and 
maturities. This is not realistic.  

The Black-Scholes model assumes that volatility 
of an asset return is constant. However, actual 
volatilities cannot be expected to be constants. The 
implied volatility smile is clear evidence of this. 
Volatilities do vary from time to time and appear to 
exhibit stochastic properties. In 1993, Heston [1] 
proposed a stochastic volatility model. The 
underlying asset tS  in the risk-neutral world and the 
variance follow  
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(1)  
where tr  is the risk-free interest rate at time t , 

0σ  and θ  are short-term and long-term volatilities, 
> 0k  is the mean reversion speed, > 0γ  is the 

volatility of the variance 2
tσ , 1

tW  and 2
tW  are two 

Wiener processes with correlation ρ . For 
simplicity, we consider = 0ρ . 

The advantage of this two-factor model is that it 
fits markets better than the Black-Scholes one-factor 
geometrical Brownian motion model, and it can 
account for the implied volatility smile. However, 
the model also has disadvantages:  

high complexity of both stochastic methods and 
PDE methods for pricing contingent claims;  

the presence of information incompleteness for 
the process of 2

tσ : there may not be enough data 
available to develop a probabilistic distribution for 

2
tσ , more specifically, to determine θ  and γ .  

Uncertainty can arise from information 
incompleteness as well as from randomness. 
Probability theory provides a quantitative tool for 
randomness while possibility theory provides a 
qualitative tool for incompleteness. Probability and 
possibility capture different facets of uncertainty. As 
stated by Dubois et al. [2], it is useful to transform a 
probability measure to a possibility measure when 
computing with possibilities is simpler than with 
probabilities, or when dealing with information 
incompleteness. Therefore, the objective of this 
paper is to transform 2

tσ  from its probabilistic 
representation to its possibility distribution. In other 
words, we will derive the possibility distribution of 

2
tσ  from its probability density function. The result 

will be 

            1=t
t t t

t

dS
r dt dW

S
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Journal of Theoretical and Applied Information Technology 
 30th November 2012. Vol. 45 No.2 

  © 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
509 

 

where σ% is a fuzzy number associated with the 
second equation in (1). 

In other words, we write the dynamics in a 
standard lognormal form, according to which the 
role of the volatility parameter σ  is clear, and, 
indeed, is given by the quadratic variation of the log 
price. However, in practice, estimating the volatility 
from log returns may not be as straightforward as the 
question assumes. We have in mind the situation 
where there are insufficient data to obtain a reliable 
estimate of the volatility. In such a setting, it will be 
natural to be able to assign confidence levels, or 
beliefs, to a range to possible values for the volatility 
- i.e. to model the volatility as a fuzzy number. 

We then apply the above fuzzy stochastic model 
to option pricing problems. The advantages of the 
new model (2) are   

• it captures the information contained by the 
Heston model;  

• it reduces the complexity to approximately a one 
factor model; 

• the PDE approach for derivatives pricing can be 
easily applied.  

This fuzzy price model is related to the concept of 
uncertain volatility model or model uncertainty in 
general, that has been extensively explored in both 
economics and finance. It is widely accepted that the 
assumption of constant volatility in financial models 
is incompatible with derivatives prices observed in 
the market. This problem has several principal 
solutions: 1) volatility can be made a deterministic 
function of time and the underlying asset price; 2) it 
can be made stochastic, introducing one additional 
source of randomness. To find this deterministic 
function (or `volatility surface') or random process, 
however, poses difficulties in the framework of 
arbitrage pricing theory. Strongly related to finding 
the right way to model volatility is the problem to 
measure the exposure of options portfolios to 
volatility risk. The main question here is: how does 
the model value of the portfolio change if the 
volatility assumptions turn out to be false? 

This problem can be approached by using the 
uncertain volatility model developed by Avellaneda 
et al. [3] as a starting point. Uncertain volatility 
models select a concrete volatility surface among a 
candidate set of volatility surfaces, and answer the 
sensitivity question by computing an upper bound 
for the value of the portfolio under any candidate 
volatility. A lower bound can be computed as well 
by inverting the position. This is achived by 

choosing the local volatility ( , )tS tσ  among two 
extremal values minσ  and maxσ  such that the value 
of the portfolio is maximized locally. 

Uncertain volatility scenarios may generalize this 
approach: given a model that exhibits uncertainty in 
some of its coefficients (the volatility, in particular), 
instantiate those uncertain coefficients such that 
some objective is fulfilled. This objective is called a 
scenario (see [4]). 

The original uncertain volatility model in 
Avellaneda et al. [3] is a worst-case scenario for the 
sell-side. By maximizing the portfolio value and 
changing accordingly, sellers are guaranteed 
coverage against adverse market behavior if the 
realized volatility belongs to the candidate set. 
Worst-case prices are nonlinear, due to 
diversification of volatility risk. Worst-case 
evaluation is based on a nonlinear HJB equation that 
generalizes Black-Scholes by adjusting the local 
volatility based on the local gamma. 

This paper is organized as follows. Section 2 
introduces the basics of fuzzy sets theory and the 
transformation from a probability distribution to its 
possibility distribution. With this transformation, we 
transform a stochastic volatility to a volatility 
described by a fuzzy number. Meanwhile, we 
transform the Heston model to a fuzzy stochastic 
model. Section 3 introduces the development of a 
PDE approach for option pricing based on the fuzzy 
stochastic process obtained in the last section. 
Section 4 presents case studies. Conclusions are 
drawn in Section 5.  

 

2 DEVELOPING POSSIBILITY 
REPRESENTATION FROM 
PROBABILITY REPRESENTATION  

 
In this paper, we are going to use the possibility 

measure [5] , [6] based on the fuzzy set theory [7].  

 
2.1  Fuzzy Sets 

Let X  be a universal set and A  be a subset of 
X . The fuzzy set A%  is defined by its membership 

function : [0,1]A Xµ →% . The value ( )A aµ %  can be 
interpreted as the membership degree of the point a  
in the set A% . We denote the α -cut  

= { : ( ) },AA x xα µ α≥%
%  

i.e., the level set which consists of points whose 
membership value no less than α . The α -cut of a 
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fuzzy set is a classical (crisp) set and it satisfies the 
property that  

1 1
< .n n n n

A Aα αα α + +
⇔ ⊂% %  

  
Figure  1: A Triangular Fuzzy Number And Its 

α -Cuts. 

   
A fuzzy number is defined to be a normal and 

convex fuzzy set with closed and bounded α -cut for 
any [0,1]α ∈ , where normal means that there exists 
x  such that ( ) = 1A xµ % ; and convex means that 

 
( ) ( )(1 ) min ( ), ( ) , [0,1].A A Ax y x yµ λ λ µ µ λ+ − ≥ ∀ ∈% % %

 

The simplest type of fuzzy number is a triangular 
fuzzy number which is often denoted by [ , , ]a b c , 
where [ , ]a c  is its support or 0-cut and b  is the point 
with full membership degree 1. A triangular fuzzy 
number and its α -cuts are illustrated in Figure 1. 
Other generic types of fuzzy numbers are trapezoidal 
and bell-shaped fuzzy numbers (see [8], [9], [10] 
etc). Adaptive fuzzy numbers have been introduced 
in [11]. 

The mathematical apparatus of the theory of fuzzy 
sets provides a natural basis for the theory of 
possibility. Zadeh [5], [6] introduced the possibility 
theory with fuzzy set as a basis by assigning the 
membership function the role of a possibility 
distribution function. A fuzzy variable is associated 
with a possibility distribution in much the same 
manner as a random variable is associated with a 
probability distribution. 

2.2  From Probability Density Function To 
Membership Function  

 
In general, a variable may be associated both with 

a possibility distribution and a probability 
distribution, with the connection between the two 

representations being the possibility/probability 
consistency principle [2] . Also, it is shown by 
Dubois, et al [2] that a possibility measure can be 
viewed as an upper probability function. However, 
some information is lost when transforming a 
probability representation to a possibility 
distribution simply because that we go from 
point-valued probabilities to interval-valued ones. A 
reasonable transformation from probability to 
possibility should keep as much information as 
possible and respect the preference preservation 
principle, i.e.,  

( ) ( ) ( ) ( ).x x p x p xπ π ′ ′≥ ⇔ ≥  

where p  is the associated probability density 
function and π  is the possibility function. In this 
context, we follow Zadeh [5], [6] and take the 
membership function µ  as the possibility function 
π . 

In this paper, we will use the transformation 
introduced by Dubois, Prade and Sandri [12] in 
1993. Although we refer the readers to [12] for 
details, we outline the method here. Suppose we 
have a unimodal continuous probability density 
function (pdf) p  with bounded support [ , ]a c , such 
that p  is increasing on [ , ]a b  and decreasing on 
[ , ]b c , where b  is the modal value of p . Define a 
function : [ , ] [ , ]f a b b c→  by  

( ) = { | ( ) ( )}.f x max y p y p x≥  

Then the possibility distribution µ  can be 
defined by  

( )
( ) = ( ( )) = ( ) ( ) .

x

f x
x f x p y dy p y dyµ µ

∞

−∞
+∫ ∫  (3) 

 If we denote the cumulative distribution function 
by  

( ) := ( ) = ( )
x

P x P X x p y dy
−∞

≤ ∫  

then by (3)  

( ) = ( ) 1 ( ( )).x P x P f xµ + −  

The above idea is illustrated in Figure 2. For a 
random variable X , with the probability density 
function shown as in Figure 2 (left), for any 

[ , ]x a b∈ , if 1 = ( )s P x  and 2 = 1 ( ( ))s P f x− , then 
the possibility function 

1 2( ) = ( ( )) = =x f x s sµ µ α + , as shown in Figure 2 
(right). As can be seen, the support of the 
membership function and the pdf are the same, and 
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points with higher probability (likelihood) have the 
higher possibility.  

 

    
 

               
 

Figure  2: Transformation From Probability (Up) To 
Possibility (Bottom). 

   
 The above transformation is for continuous pdfs. 

For discrete pdfs, see [12], [13]. 

2.3  Application To The Stochastic Volatility 
Model 

  
 Consider the Cox-Ingroll-Ross model, for 

2:=t tv σ ,  

= ( ) .t t t tdv k v dt v dWθ γ− +                   (4) 
 The probability density function of tv  at time t , 

conditional on its value at time 0, is  

( )2
( ) = 2

q

u
t qp v ce I u

u
ν ν ν− − ⎛ ⎞
⎜ ⎟
⎝ ⎠

                    

(5) 
 where  

2 ( )

( )
0

2

2= ,
(1 )

= ,
= ,

= 2 1,

kt

kt

t

kc
e

u cv e
cv

q k

γ

ν
θ
γ

−

−

−

−

                       (6) 

qI  is the modified Bessel function of the first kind of 
order q .  
 
 
 
 

Table  1: Model Parameters  
γ  θ    k    0v  

 0.3877   0.0354   4.3253  0.0174  
 

For the parameters given in Table 1, the 
probability density functions for tv  at = 0.5t  and 

= 1t  are shown in Figure 3.  

The probability density function of tv  can also be 
described in terms of the noncentral chi-square 
distribution (see [14], [15], [16] for example). 

 

    

   
Figure  3: Probability Density Of 2

tσ  At = 0.5t  Year 
(Up) And = 1t  Year (Bottom). 

  

We now apply the method (3) to develop the fuzzy 
distribution ( )tvµ . Let tv  be the modal value or 
maximum value of tv  then  

( ) = ( ) 1 ( ( )),
( ( )) = ( ),

t t t t t

t t

v P v P f v v v
f v v

µ
µ µ

+ − ≤
                

(7) 

where  

0
( ) = ( ) ,

v

t tP v p u du∫                                (8) 

and ( )p ⋅  is defined in (5). The fuzzy distributions 
for tv  with parameters given in TABLE 1 are shown 

in Figure 4. 
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Figure  4: Fuzzy Distributions For 2=t tv σ  (Up) And 

tσ  (Bottom) At = 1t  Year. 

3 FUZZY PDE APPROACH FOR PRICING 
EUROPEAN OPTIONS 

   
Once the fuzzy parameter tσ%  of the underlying 

asset is obtained, the option price at any time t  is 
expected to be a fuzzy number. However, how can 
the option price be determined? This work was 
addressed in [17] where we developed a non-linear 
PDE with fuzzy parameters for determining the 
fuzzy option prices. Compared to [17], the major 
contribution of this paper is that we develop the 
fuzzy volatility by transforming the stochastic 
volatility, while the main contribution of [17] is that 
we built a framework for option pricing with 
prescribed fuzzy parameters. For clarity, we briefly 
review the non-linear fuzzy PDE model below (for 
more details, see Appendix or [17]). 

Suppose we know the fuzzy parameter σ% . We 
denote the α -cut of tσ%  by  

= , .α α ασ σ σ− +⎡ ⎤⎣ ⎦                                    (9) 
Following the arguments in [17] (see the 

Appendix), the price intervals [ , ]V Vα α
− +  solve  

2
2 2

2

1 ( ) = 0,
2

V V V
S rS rV

t SS
α α α

ασ
± ± ±

± ±∂ ∂ ∂
⎡ ⎤+ Γ + −⎣ ⎦∂ ∂∂

    

(10) 

where 
2

2=
V
S

α∂
Γ

∂
 and  

0
( ) = .

> 0

if

if
α

α

σ
σ

σ
±

±

⎧ Γ ≤⎪Γ ⎨
Γ⎪⎩

m

               (11) 

 
Furthermore, in the paper [17] we have shown 

that, in the fuzzy environment, for a belief degree 
α , if an investor believes that the real volatility 
surely remains in between the corresponding α -cut 
for a short time, then for the investor who takes a 

short position, = ( , )t
V

S t
S
α
+∂

∆
∂

 provides the optimal 

strategy, in the sense that if the volatility σ  really 
remains in the α -level set ασ , then this investor 
almost surely has no risk of losing money. Similarly, 
if he takes a long position, his best hedging strategy 

is = ( , )t
V

S t
S
α
−∂

∆
∂

. 

Thus, once the fuzzy parameter tσ%  is determined 
with the method (3), the fuzzy option price can be 
solved via (10). Please note that, the major 
contribution of this paper lies in that we first transfer 
the stochastic volatility from the probability space 
into the possibility space, and then apply the fuzzy 
option pricing model [17] to obtain option price.  

4 CASE STUDY 
 
4.1  Vanilla Call 

 The parameters for Heston model are taken from 
[18] as shown in Table 1. This set of parameters are 
calibrated to fit the SPX. We first study a European 
vanilla call option: the risk free interest rate = 0.1r , 
strike price = $24.5K , maturity = 1T  year. We 
notice that for a vanilla call option price surface, it is 
always concave up which means that its second 
derivatives with respect to S , i.e., Γ  is 
nonnegative. Thus, for each α , ( ) = ασ σ± ±Γ , and 
we only need to solve two Black-Scholes equations 
in order to obtain the prices band [ , ]V Vα α

− + . The 
fuzzy option price for current stock price 0 = 30S  is 
shown below in Figure 5 (left). Also we have the 
corresponding dominating hedging strategies at time 
0 shown in Figure 5 (right). 
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Figure  5: Fuzzy Option Price (Up) And Delta Hedging 

Ratio (Bottom). 

   
The fuzzy option prices with respect to different 

S  at time 0 are shown in Figure 6.  

   
Figure  6: European Call Option Prices At Time 0. 

 
4.2  Digital Call Option 
 

For exotic options, we have no exact knowledge 
about the price's concavity. In this case we have to 
solve these two nonlinear PDEs in (10). The finite 
difference method is used, at each time time we have 
to use an iterative method to solve the nonlinear 
system. The detailed numerical methods are shown 
in [17]. We study a digital call option with the risk 
free interest rate = 0.1r , strike price = $24.5K , 
maturity = 1T  year. The fuzzy option prices with 
respect to different S  at time 0 are shown in Figure 
7.  

   
Figure  7: Digital Call Option Prices At Time 0. 

 

5 CONCLUSION  
 

We applied fuzzy set theory to European option 
pricing theory for underlying asset with stochastic 
volatility in Heston model. Our future research is 
associated with the application of fuzzy set theory to 
other derivatives pricing for underlying assets with 
various stochastic volatilities and performing the 
analysis of obtained results. 

 
ACKNOWLEDGEMENTS 
 

This work is supported by Foundation and 
Frontier Project of Henan Province 
(No.112300410064 ， No.122300413202), Henan 
Industrial Project Fund (No:113000532012). 
 

REFRENCES: 

[1] Heston, Steven L, A Closed-Form Solution for 
Options with Stochastic Volatility with 
Applications to Bond and Currency Options.  
Review of Financial Studies, Vol. 6, No. 2, 
1993, 327-43.  

[2] D. Dubois and H. Prade, Possibility theory, 
Plenum Press, New-York, 1988.  

[3] M. Avellaneda and A. Levy and A. Paras, 
Pricing and Hedging Derivative Securities in 
Markets with Uncertain Volatilities, Applied 
Mathematical Finance, Vol. 2, 1995, pp. 73-88.  

[4] R. Buff, Uncertain Volatility Models-Theory 
and Applications, Springer, Lecture Notes, 
2002.  

[5] L. A. Zadeh, Fuzzy sets as a basis for a theory 
of possibility, Fuzzy Sets System, Vol. 100, 
1999, pp.9-34.  

[6] Zadeh, L.A., Fuzzy sets as a basis for theory of 
possibility, Fuzzy Sets and Systems, Vol.1, 
1978, pp.3-28.  

[7]  L. A. Zadeh, Fuzzy sets, Inform. and Control, 
Vol. 8, 1965, pp. 338--353.  

[8]  K. Zhang and H. Li and G. Achari.  Application 



Journal of Theoretical and Applied Information Technology 
 30th November 2012. Vol. 45 No.2 

  © 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
514 

 

of Evidence Theory to Quantify Uncertainty in 
Contaminant Transport Modeling.  proceedings 
of The Challenge of Sustainability in the 
Geoenvironment Annual Congress of the 
Geo-Institute of ASCE Accepted August 2007, 
GeoCongress, 2008.  

[9] K. Zhang and H. Li and G. Achari.  
Development of Fuzzy-Stochastic Partial 
Differential Equations to Model Uncertainty in 
Groundwater Contaminant Transport.  
Submitted to Environmental Modeling and 
Software, July 2007.  

[10] Ross, T. J., Fuzzy logic with engineering 
application (2nd). John Wiley & Sons, Ltd. 
England, 2004.  

[11] K. Thiagarajaha and S. S. Appadoob and A. 
Thavaneswaran, Option valuation model with 
adaptive fuzzy numbers.  Computers & 
Mathematics with Applications, Vol. 53, 2007, 
pp. 831-841.  

[12] D. Dubois and H. Prade and S. Sandri, On 
possibility/probability transformations, 1993.  

[13] Dubois, D. and Prade, H.,  On 
possibility/probability transformations.  In 
proceeding of the Fourth Int. Fuzzy Systems 
Association Word Congress (IFSA'91) 
Brussels, Belgium, pp. 50-53, 1991.  

[14] Mark Broadie and Özgür Kaya.  Exact 
simulation of option greeks under stochastic 
volatility and jump diffusion models.  WSC '04: 
Proceedings of the 36th conference on Winter 
simulation, pp. 1607-1615, 2004, Winter 
Simulation Conference.  

[15] Mark Broadie and zgr Kaya, Exact Simulation 
of Stochastic Volatility and Other Affine Jump 
Diffusion Processes, Oper. Res., Vol. 54, No. 2, 
2006, pp.217-231.  

[16] J. C. Cox and J. E. Ingersoll and S. A. Ross, A 
Theory of the Term Structure of Interest Rates, 
Econometrica, Vol. 53, 1985, 385-407.  

[17] H. Li, A. Ware, K. Zhang and A. Swishchuk, 
Pricing and Hedging European Options with 
Fuzzy Parameters.  Submitted to the Journal of 
Computational and Applied Mathematics, 
January 2008.  

[18] J. Gatheral and N. N. Taleb, The Volatility 
Surface: A Practitioner's Guide, John Wiley & 
Sons Inc, 2006.  

[19] P. Wilmott and A. Oztukel, Uncertain 
Parameters, an Empirical Stochastic Volatility 
Model and Confidence Limits.  International 
Journal of Theoretical and Applied Finance, 
Vol. 1, 1998, pp. 175--189.  

 

APPENDIX:  NONLINEAR PDES FOR 
OPTION PRICING WITH FUZZY 
PARAMETERS 

 
We now assume that the parameter σ  is a fuzzy 

number. Given α , the α -cut is  

= [ , ].α α ασ σ σ− +  (12) 
For a fixed belief α , we have the save assumption 
as Avellaneda, et al. [3] that the 'true' volatility σ  is 
uncertain, but it is going to lie within its certainty 
band ασ . Following Avellaneda [3] and Wilmott 
[19], the option price will fall into a certainty band 
which is the α -cut of the option price in this 
context:  

= [ , ].V V Vα α α
− +%  

If we allow σ  at each time t  to take any values in 
ασ , and let the stock price follows the geometrical 

Brownian motion described by  

=dS rdt dW
S

σ+                                 (13) 

and ( , )V S t  be the corresponding option price, we 
can set up a hedged portfolio at each time t :  

.=with,=
S
VSV
∂
∂

∆∆−Π  

Actually we do not have knowledge of σ  beyond that it 
lies in ασ , and so we have to consider extrem prices: 
highest and lowest prices. 

Let us first think from the writer's point of view. The 
writer will ask the highest +

αV  because he/she wants no 
risk of losing money. It yields that  

.0, ασσ ∈≤Π−Π fordtrd  
But the writer will have an arbitrage opportunity if  

{ } 0.<dtrdmax Π−Π
∈ ασσ

 

So, the arbitrage-free highest price +
αV  corresponds to  

{ } 0,=dtrdmax Π−Π
∈ ασσ

 

{ } 0=.,. dtrdmaxei Π−Π
∈ ασσ

 

where { } .
2
1= 2

2
22

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

Π
++

∈∈
dt

S
VS

t
V

maxdmax αα

ασσασσ
σ  

If 0>Γ  then a maximum in Πd  will require +
ασσ = . 

If 0≤Γ  then a maximum in Πd  will require −
ασσ = . 

Similarly, the holder will bid the lowest price −
αV  which 

involves the same analysis but selecting values of 
parameters to yield  

{ } 0.=dtrdmin Π−Π
∈ ασσ

 

Then we have the nonlinear equations (10).  


