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ABSTRACT 
 

This paper presents a new method for estimating the rotor resistance of an induction motor. The rotor 
resistance changes significantly with temperature and frequency. This variation has a major influence on 
the field oriented control performance of an induction motor due to the deviation of slip frequency from the 
set value. In conventional MRAS, the adaptation is done using a PI-controller. The MRAS approach using 
reactive power as a functional candidate for rotor resistance estimation makes MRAS computationally 
simpler and easy to design. This paper proposes the role of neural learning algorithm for adaptation in a 
MRAS based rotor resistance estimator. The proposed scheme combines the advantages of reactive power 
technique and the capability of neural network to form a scheme named “Neural Learning-Reactive Power 
Model Reference (NL-RPMR) based rotor resistance estimator” for Induction Motor Drives. In the NL-
RPMR scheme, the error between neural network model and reference model is back propagated to adjust 
the weights of the neural network of the estimator. The performance of NL-RPMR based rotor resistance 
estimator is extensively simulated and compared with the conventional MRAS method. The promising 
results obtained are presented. 
 
Keywords: Induction Motor, MRAS, Rotor Resistance Estimator, Neural Network, Back Propagation 

Algorithm, Reactive Power.  
 
1. INTRODUCTION  

         During the past three decades, adjustable 
speed ac drive technology has gained lot of 
momentum. It is well recognized that ac motor 
drives account for more than 50% of all electrical 
energy consumed worldwide. Induction motor is 
very popular in drive applications due to its well 
known advantages of simple construction, 
ruggedness and low cost [1]. A major revolution in 
the area of induction motor based drives was the 
invention of field oriented or vector control in the 
late 1960’s [2]. The variable speed control method 
is basically classified into two types: Scalar based 
control and Vector based control [3]. In scalar 
control, only the magnitude and frequency of 

voltage, current and flux linkage variables are 
controlled and hence suitable for steady state 
conditions.  In vector control, the magnitude, 
frequency and instantaneous position of voltage, 
current and flux linkage vectors are controlled and 
are valid for both steady state and transient 
conditions. Thus, the vector control method is a 
better option than the scalar control to obtain the 
desired dynamic performance. High performance 
control requires an accurate estimate of the machine 
parameters at all operating points; it should be done 
continuously on-line to obtain a reliable estimate of 
machine variables [4]. The successful 
implementation of the indirect field oriented control 
require an accurate calculation of field angle and 
slip frequency. The errors in the model parameters 
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can cause incomplete decoupling between flux and 
torque. This results in a mismatch between the 
torque command and the motor torque in the steady 
state mode on the one hand, and an oscillatory 
response of the transient torque on the other. 
Detuning of the rotor parameters renders 
implementation of an indirect rotor flux oriented 
control scheme unsatisfactory, and dependent on 
temperature, frequency and the saturation level of 
the machine [13].  

       In Indirect Field Oriented control, the major 
problem is determining rotor resistance which is 
sensitive to temperature. The practical temperature 
excursion of the rotor is approximately 130OC 
above ambient temperature [5], [13]. This increases 
the rotor resistance by 50 percent over its ambient 
or nominal value. With variations in Rr, the 
calculated slip frequency is incorrect and the flux 
angle is no longer appropriate for field orientation. 
This results in instantaneous error in both flux and 
torque. Various schemes have been proposed for 
rotor resistance adaptation such as the Model 
Reference Adaptive Control technique, Extended 
Kalman filter and Spectral Analysis method [6-16]. 
Artificial neural network methods for the 
estimation of rotor resistance were also 
investigated. MRAS schemes offer simpler 
implementation and require less computational 
effort compared to other methods. MRAS observers 
are based on rotor flux and reactive power. In rotor 
flux based MRAS, the rotor flux error between 
reference and adjustable model is used by the 
adaptive mechanism (PI-controller) for rotor 
resistance estimation. Whereas, the reactive power 
based MRAS uses reactive power error instead of 
rotor flux. The selection of reactive power as a 
candidate for MRAS based rotor resistance 
estimator results in a simpler system model which 
is easier to design and implement and become 
advantageous on real time applications. Both 
MRAS schemes have used PI controller as a part of 
the adaptive mechanism for rotor resistance 
estimation. Recently, the use of Neural Networks 
(NNs) for identification and control of nonlinear 
dynamic systems in power electronics and drives 
have been proposed as they are capable of 
approximating wide range of nonlinear functions to 
a desired degree of accuracy [6]-[8].  

      In this paper, the capability of a Neural 
Learning for adaptive mechanism and advantages 
of Reactive Power Model Reference are combined 

to form a scheme named “Neural Learning – 
Reactive Power Model Reference (NL-RPMR) 
based rotor resistance estimator”. This is proposed 
for a Space Vector PWM Inverter fed induction 
motor drive system. In the proposed NL-RPMR 
based rotor resistance estimator, the reactive power 
error between reference model and neural network 
model is back propagated to adjust the weights of 
neural network model to estimate the rotor 
resistance.  

2. SCHEMATIC DIAGRAM OF SPACE 
VECTOR PWM INVERTER FED 
INDUCTION MOTOR DRIVE WITH 
ROTOR RESISTANCE ESTIMATOR 

 
The block diagram of vector controlled scheme 

is shown in Fig.1.The calculation of slip speed 
depends on the rotor resistance. The vector control 
presented here is indirect field oriented control 
(rotor flux oriented control). Fig.1 shows the 
overall block diagram of Space Vector PWM 
Inverter fed Induction Motor drive system using an 
NL-RPMR rotor resistance estimator. The system 
consists of a solid state Induction Motor drive 
system, rotor flux oriented control, along with flux 
and NL-RPMR rotor resistance estimator. Rotor 
flux oriented control consists of a PI speed 
controller, a current controller, and PWM 
generator. 
 
2.1 MRAS Based Rotor Resistance Estimation  
       The MRAS scheme shown in fig.2 consists of a 
reference model which determines the desired states 
and adaptive (adjustable) model which generates 
the estimated values of the states. The error 
between these states is fed to an adaptation 
mechanism to generate an estimated value of the 
rotor resistance which is used to adjust the adaptive 
model. This process continues till the error between 
two outputs tends to zero. 
 
2.2 Neural Learning Algorithm Based Rotor 

Resistance Estimation Using Reactive Power 
Technique  

      In conventional MRAS, the PI-controller is 
used for adaptation mechanism. In this paper neural 
network learning algorithm is proposed and 
employed for adaptation mechanism. The proposed 
neural learning algorithm is based on powerful 
steepest descent method. In this method, the 
weights of Neural Network are adjusted in steps to 
minimize performance index, mean squared error. 
The learning rate employed in the algorithm 
determines the step size. Larger value of learning 
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rate means faster learning of Neural Network. But, 
this would lead to oscillations in the output. To 
overcome this difficulty or to reduce oscillations in 
the output, a momentum term is added to smoothen 
the oscillations and accelerate the convergence. 
 
     In the proposed NL-RPMR (Fig.3), the 
reference model and neural network adjustable 
model computes instantaneous reactive power (Qref) 
and neural based estimated reactive power (Qnm). 
The reference model is independent of slip speed 
(ωsl) whereas the adjustable model depends on ωsl. 
The error signal (ε = Qref − Qnm) is fed to the 
adaptation mechanism block (adaptation 
mechanism is done using powerful steep descent 
neural network learning algorithm), which yields 
ωe. The Slip speed (ωsl) is computed from estimated 
ωe shown. The rotor resistance (Rr) is then 
computed from ωsl. The equations defining the 
induction motor reference model and adjustable 
model based on reactive power are given below. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.1 Vector Controlled IM Drives Showing The NL-
RPMR Rotor Resistance Estimator 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Block Diagram Of MRAS-RP Based Rotor 
Resistance Estimation                                                                   

 
The d and q axis stator voltages of an induction 
motor can be expressed on synchronously rotating 
(ωe) reference frame [17] as given in equations (1) 
and (2). 

m m
ds s ds s ds dr s e qs e qr

r r

L Ld d
V R i L i L i

dt L dt L
        

                                                              ... (1) 

m m
qs s qs s qs qr s e ds e dr

r r

L Ld d
V R i L i L i

dt L dt L
       

                                                             … (2) 

The Reactive Power equation for reference model is 
given as 

ref qs ds ds qsQ V i V i                              … (3)   

The neural network based estimated reactive power 
is given as  

   1 *nmQ w P                                       … (4)                   

Where, 1w e and

2 2 m
s ds qs qr qs dr ds

r

L
P L (i i ) ( i i )

L
                     …(5) 

The neural network model is represented by the 
equation (4), where w1 represents the weight of the 
network and P is the input to the neural network 
model. The standard Back-propagation learning 
rule is employed to train the network. In order to 
estimate Qnm, w1 needs to be updated, so as to 
minimize the energy function E which is given in 
equation (6). The energy function is minimized by 
using steepest descent method. The change in 
weight is given in (7) with the chosen learning rate 
( ). The weight is updated using momentum 
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constant ( ) and using (8). The slip speed (ωsl) can 
be calculated from w1 and rotor resistance (Rr) is 
then computed from the slip speed (ωsl). 

 21
2 ref nmE Q Q                                    … (6) 

  *1w k E P                                    … (7) 

       1 1 1 11 1w k w k w k w k        

                                                                         … (8) 

The Slip speed is given as 

1sl rw                                             … (9) 

The slip speed is given as 

 -m qr

sl
dr r

r dsR L i
L


                             … (10) 

The rotor resistance is given as 

-
s l d r r

r
m q rd s

LR L i



  

 

 

 

 

 

 

 
 
 

Fig.3 Block Diagram Of NL-RPMR Based Rotor 
Resistance Estimation 

 
3. SIMULATION RESULTS 
 

In order to verify the effectiveness and 
feasibility of estimating rotor resistance using 
MRAS-RP method and NL-RPMR method, a 
simulation model has been developed in 
MATLAB/SIMULINK platform. The space vector 
PWM based vector controlled drive is subjected to 

changes in rotor resistance and the tracking 
capability of both MRAS-RP and NL-RPMR 
method are compared. Simulations have been done 
for various changes in Rr for the operating 
condition of 415V/50Hz and rated load of 7.5Nm 
and the performance of Rotor Resistance Estimator 
has been analysed. 

 With 100% step change in Rotor 
Resistance  

 With 100% ramp change in Rotor 
Resistance 

  The rotor resistance of 6.085 is step change to 
12.17 (100% change in Rr) at 1sec. Fig.4 shows that 
the NL-RPMR based rotor resistance estimation for 
step change in rotor resistance. Fig.5 shows that the 
NL-RPMR based rotor resistance estimation for 
ramp change in rotor resistance. The rotor 
resistance is rising in ramp manner gradually from 
0.5sec to 1.7sec and reaches the value from 6.085 
to 12.17(100% change in Rr).   

Fig.4 Actual and Estimated Rotor Resistance for 100% 
step change using NL-RPMR 

Fig.5 Actual and Estimated Rotor Resistance for 100% 
Ramp change using NL-RPMR 

 
The table.1 shows that the error between actual 
rotor resistance and estimated rotor resistance and 
settling time for various changes in rotor resistance 
using MRAS-RP method  and table.2 shows the 
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performance of MRAS-RP based rotor resistance 
estimator for various voltages with rated load 
condition.  From the result obtained, it is observed 
that the error between the actual and estimated Rr is 
always within 1.1% and settling time is found to be 
approximately 0.05sec.The table.3 shows that the 
error between actual rotor resistance and estimated 
rotor resistance and settling time for various 
changes in rotor resistance using NL-RPMR 
method and table.4 shows the performance of NL-
RPMR for various voltages with rated load 
condition.  From the result obtained, it is observed 
that the error between the actual and estimated Rr is 
always within 0.2% and settling time is found to be 
approximately 0.02sec. The maximum estimation 
error and maximum settling time for MRAS-RP 
and NL-RPMR based rotor resistance estimator is 
discussed in table 5. 
Table.1 Estimator Error And Settling Time For Various 
Changes In Rotor Resistance Using MRAS – Reactive 

Power Method 

Table. 2 MRAS-RP Based Rotor Resistance Estimation 
For Various Voltages With Rated Load 

Table.3 Estimator Error And Settling Time For Various 
Changes In Rotor Resistance Using Neural Learning - 

Reactive Power MRAS Method (NL-RPMR) 

    
  Table.4 NL-RPMR Based Rotor Resistance Estimation 

For Various Voltages With Rated Load  

 
Table.5 Comparison Of Estimator Error And Settling 

Time Between MRAS-RP and NL-RPMR Based Methods 

 

 

         
 
 
 
 
          From the table.5, it is observed that the 
estimation error and settling time of NL-RPMR 
method is found to be less compared to MRAS-RP 
based method.  
 
 
 
 
 

Chang

e in Rr 

(%) 

Actual 

Rr(ohms) 

Estimated 

Rr(ohms) 

Settling 

Time(se

c) 

Error 

(%) 

10 6.694 6.774 0.05 1.181 

20 7.302 7.386 0.05 1.137 

30 7.910 7.998 0.04 1.100 

40 8.519 8.609 0.04 1.045 

50 9.127 9.221 0.04 1.019 

60 9.736 9.833 0.03 0.986 

70 10.34 10.44 0.03 0.957 

80 10.95 11.06 0.03 0.995 

90 11.56 11.67 0.03 0.943 

100 12.17 12.28 0.03 0.896 

S.no

. 

Volt
age      
(V) 

Actual 
Rr\ 

(Ohm
s) 

Estim
ated 
Rr 

(ohms
) 

Error 

(%) 

Settlin
g Time 
(sec) 

1 415 10.95 11.06 0.995 0.03 

2 300 10.95 11.06 0.995 0.03 

3 200 10.95 11.06 0.995 0.03 

4 100 10.95 11.06 0.995 0.03 

5 10 10.95 11.06 0.995 0.03 

Change 

in Rr 

(%) 

Actual 

Rr 

(ohms) 

Estimated 

Rr 

(ohms) 

Settling 

Time(sec) 

Error 

(%) 

10 6.694 6.71 0.02 0.238 

20 7.302 7.32 0.02 0.245 

30 7.910 7.93 0.02 0.252 

40 8.519 8.541 0.02 0.257 

50 9.127 9.151 0.02 0.262 

60 9.736 9.761 0.02 0.256 

70 10.34 10.37 0.02 0.289 

80 10.95 10.98 0.02 0.273 

90 11.56 11.59 0.02 0.259 

100 12.17 12.2 0.02 0.246 

S.no. Volta
ge       
(V) 

Actual 
Rr 

Ohms 

Estimate
d Rr 

ohms 

Error  
(%) 

Settling 
Time 
(sec) 

1 415 10.95 10.98 0.273 0.02 

2 300 10.95 10.98 0.273 0.02 

3 200 10.95 10.98 0.273 0.02 

4 100 10.95 10.98 0.273 0.02 

5 10 10.95 10.98 0.273 0.02 

Methods  Error 

(%) 

Settling Time 

(sec)  

MRAS-RP  1.1 0.05 

NL-RPMR 0.2 0.02 
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4. ANALYSIS OF VECTOR CONTROLLED 

INDUCTION MOTOR DRIVE 
PERFORMANCE WITH AND WITHOUT 
ROTOR RESISTANCE ESTIMATOR 

      
      The performance of vector controlled induction 
motor drives is analyzed without and with rotor 
resistance estimator for following operating 
condition. 

  Reference speed = 100 rad/sec 
  Reference rotor flux = 0.9wb 
  Load torque  =7.5 Nm 
  100% step change in rotor resistance 

is given at 1 second. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          (a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
           (b) 

 
Fig.6 Actual and Reference d-axis rotor flux for (a) 

Without Rr Estimator (b) With Rr Estimator 
 
 
 
 
 

          (a) 

                                             (b) 
Fig.7 Actual and Reference q-axis rotor flux for (a) 

Without Rr Estimator (b) With Rr Estimator 
 
 

 

(a) 
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(b) 
Fig.8 Actual and Reference Speed for (a) Without Rr 

Estimator (b) With Rr Estimator 
 

            Fig.6 shows the actual and reference flux 
without and with Neural Learning Algorithm based 
MRAS rotor resistance estimator using reactive 
power. From the result it is observed that without 
rotor resistance estimator, the actual rotor flux  
deviates from the reference flux for a step change in 
rotor resistance at 1sec. Whereas, with Neural 
Learning Algorithm based MRAS rotor resistance 
estimator, the actual rotor flux is tracking reference 
rotor flux. Fig.7 shows the q-axis rotor flux, 
without and with Neural Learning Algorithm based 
MRAS rotor resistance estimator using reactive 
power. From the result it is observed that with 
Neural Learning Algorithm based MRAS rotor 
resistance estimator, the q-axis rotor flux is zero 
indicating field orientation. Fig.8 shows the actual 
and reference speed for without and with Neural 
Learning Algorithm based MRAS rotor resistance 
estimator using reactive power. From the result it is 
observed that without rotor resistance estimator, the 
actual speed deviates from the reference speed 
(negative value) and takes a long time to track the 
reference speed for a step change in rotor resistance 
at 1sec. Whereas with Neural Learning Algorithm 
based MRAS rotor resistance estimator, the actual 
speed is tracking the reference rotor speed within a 
short period. Fig.9 shows the actual and reference 
torque without and with Neural Learning Algorithm 
based MRAS rotor resistance estimator using 
reactive power. From the result it is observed that 
without rotor resistance estimator, the controller is 
slightly failed to control the torque for a step 
change in rotor resistance at 1 sec. Whereas with 
Neural Learning Algorithm based MRAS rotor 
resistance estimator, the instantaneous torque 
control is achieved. Fig.10 shows the q-axis stator 
current without and with Neural Learning 

Algorithm based MRAS rotor resistance estimator 
using reactive power. 

(a) 

 
   (b) 

Fig.9 Electromagnetic Torque for (a) Without Rr 
Estimator (b) With Rr Estimator 

(a) 
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                                    (b) 
Fig.10  q-axis Stator Current for (a) Without Rr 

Estimator (b) With Rr Estimator         
 
5. CONCLUSION 
           This paper proposes a NL-RPMR based rotor 
resistance estimator which combines the advantages 
of reactive power technique and capability of 
Neural Network. The choice of reactive power as a 
functional candidate in MRAS based rotor 
resistance estimation makes the system model 
equations simpler and easier to design. The 
nonlinear mapping capability of Neural Network 
and the powerful learning algorithms is adopted for 
rotor resistance estimation. The MRAS-RP and NL-
RPMR based Rotor Resistance estimator is studied 
and designed for vector controlled induction motor 
drives. The performance of MRAS-RP and NL-
RPMR based Rotor Resistance Estimator is 
analyzed for various operating conditions. In the 
NL-RPMR, the adaptive mechanism is done using 
powerful steep descent neural network learning 
algorithm and works well for various voltages with 
rated load torque conditions.  The maximum error 
between actual and estimated rotor resistance for 
MRAS-RP and NL-RPMR method is found to be 
1.1% and 0.2% respectively. The maximum settling 
time for MRAS-RP and NL-RPMR estimators is 
found to be approximately 0.05sec and 0.02sec 
respectively. The NL-RPMR based Rotor 
Resistance estimator has lesser estimation error 
compared to estimation error in MRAS-RP and the 
settling time is found to be similar. Hence from the 
above analysis, it is concluded that the NL-RPMR 
based rotor resistance estimator is found to be 
suitable for vector controlled induction motor 
drives. This method has the following advantages: 

 
 No flux computation is required and hence 

free from integrator related problems. 

 The Reference Model is free from machine 
parameters. 

 Independent of stator resistance. 
 
6. APPENDIX 
 
Squirrel Cage Induction Motor Specifications:  
3-phase, 1.1kw, 415V, 2.7A, 50Hz, 4-pole, 7.5Nm, 
 Rs = 6.03Ω, Rr  = 6.085Ω, Lm  = 0.4893H, Ls = Lr = 
0.5192H,  J= 0.01178Kgm2   , B = 0.0027Kgm 
 
REFRENCES: 

 
 [1]  F.Blaschke, “The principle of field orientation 

as applied to the new transvector closed loop 
system for rotating field machines”, Siemens 
Review, Vol.34, pp.217-220, May 1972. 

[2]. R.Krishnan and S.Bharadwaj, “A Review of 
Parameter Sensitivity and Adaptation in 
Indirect Vector Controlled Induction Motor 
Drive System”, IEEE Transactions on Power 
Electronics, Vol.6, No.4, October 1991.  

[3]. Bimal K.Bose, Modern power electronics and 
ac drives, Pearson Education, India, 2003. 

[4]. P.Vas, “Vector Control of AC Machines”, 
Oxford Science Publications, 1990. 

[5]. R.Krishnan and F.C. Doran, “Study of 
parameter sensitivity in high performance 
inverter-fed induction motor drive systems”, 
IEEE Transactions on Industry 
Applications,Vol,IA-
23,no.4,July/Aug.1987,pp.623-635. 

[6]. K.Narendra and K.Part’msarathy, 
“Identification and control of dynamical 
system using neural network” IEEE Trans. 
Neural Network, vol.1, no.1, pp.4-27, 
Mar.1990. 

[7]. Karanayil M. Rahman M.F. and Grantham C. 
“Online Stator and Rotor Resistance  
Estimation Scheme Using Artificial Neural 
Networks for Vector Controlled Speed 
Sensorless Induction Motor Drive” IEEE 
Transactions on Industrial Electronics, vol. 54, 
no. 1, Feb 2007.  

[8].S.K.Mondal, J.O.P.Pinto and B.K. Bose, “A 
neural network based space vector PWM 
controller for a three voltage fed inviter 
induction motor drive,” IEEE 
Trance.Ind.Appl.vol.30.no.3.pp 660-669 May 
2002.   

 

 

 



Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
364 

 

[9]. M.Nomura, T.Ashikaga, M.Terashima and 
T.Nakamura, “ A high response induction 
motor control system with compensation for 
secondary resistance variation”, in Proc.IEEE 
PESC 1987,pp 46-51. 

[10].S.Wade, M.W.Dunnigan and B.W.Williams, 
“A new method of rotor resistance estimation 
for vector controlled induction machines”, 
IEEE Trans.Ind .Electron., vol.44,no.2,pp.247-
257, Apr.1997. 

[11]. T.Du, P.Vas and F.Tronach, “Design and 
application of extended observers for joint state 
and parameter estimation in high-performance 
AC drives”, Proc.Inst.Electr.Eng-Electr.Power 
Appl.,vol.142, no.2, pp.71-78, Mar.1995. 

[12]. D.Lorenz and D.B.Lawson, “ A simplified 
approach to continuous on-line tuning of field 
oriented induction motor drives”, IEEE 
Trans.Ind.Appl.,Vol.26,no.3,pp.420-424, 
May/June.1990. 

[13]. B.Karanayil, M.F.Rahman and C.Grantham, 
“On-line stator and rotor resistance estimation 
scheme using artificial neural networks for 
vector controlled speed sensor less induction 
motor drive,” IEEE 
Trans.Ind.Electronics,vol.54,no.1,pp.167-176, 
Feb.2007. 

[14]. L.Garces, “ Parameter adaptation for the speed 
controlled static ac drive with a squirrel-cage 
Induction motor”, IEEE 
Trans.Ind.Appl.,vol.IA-16,no.2,pp.173-
178,Mar./Apr.1980. 

 [15]. M.S.Nait Said and M.E.H Benbouzid, 
“Induction motors direct field oriented control 
with robust on-line tuning of rotor resistance”, 
IEEE Trans.Energy convers., vol.14, no.4, 
pp.1038-1042, Dec 1999. 

[16]. H.Bin, Q.Wenlong and L.Haifeng, “ A novel 
on-line rotor resistance estimation  method for 
vector controlled induction motor drive” in 
Proc.Conf.Rec.IEEE IPEMC  Conf., 2004, 
vol.2, pp.655-660. 

[17]. Suman Maiti, Chandan Chakraborty, Yoichi 
Hori and Minh C.Ta, “ Model Reference 
Adaptive Controller-based Rotor Resistance 
and Speed Estimation Techniques for Vector 
Controlled Induction Motor Drive Utilizing 
Reactive Power” in IEEE Transactions on 
Industrial Electronics, Vol.55, No.2, February 
2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
  

 


