
Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

342

AUTOMATIC DOCUMENT GENERATION STRATEGY FOR
GRAPHIC-ORIENTED MODELING AND AUTOMATIC CODE

GENERATION PLATFORM

1 CHUNMAO JIANG, 2 XIANGHU WU, 2 MINGCHENG QU,3JUN YAO
1School of Computer Science Technology and Information Engineering, Harbin Normal University, Harbin,

Heilongjiang 150025, China
2School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001

3Baoqing meteorological bureau, Heilongjiang 161025, China

ABSTRACT

With the growing of maturity for the graphical model-driven development environment, software
development has been made out of the shackles of a lot of manual coding and not easily code reusing,
meanwhile a higher document management standard is required in software development process. To meet
this requirement this paper presents a structured Word document automatic generation technology which
makes full use of XML Dom and VBA technologies, and takes XML data storage files as input. The paper
elaborates tag defining rules of structured Word document template, and the algorithms of XML data nodes
query, information extraction and replacement of Word document tags. The model has been applied in a
practical engineering project, and effectively solves the problems of strenuousness, repetition, inefficiency
and easily mistakes occurring as compiling structured Word documents only by hand.

Keywords: Word, Automatic Generation, XML, VBA, Tag

1 INTRODUCTION

Currently computers have been widely used in the
office affairs. Word documents have become
increasingly important in the daily office affairs,
which provide a good foundation for the
standardization of business processes. However, as a
variety of structured Word documents appear in all
kinds of industries,

especially in the software development industry,
in various stages of software development, staff need
to spend a lot of energy to compile a variety of
structured documents, such as requirements
specifications, outline design specification, detailed
design specifications, test analysis report, data
summary analysis documents, technical reports, etc.

A common problem is that compiling various
documents by hand will not only lead to heavy
workload, duplication, inefficiency, but also prone to
mistakes. So in this paper a feasible technology of
Word document automatic generation is proposed. It
can be used to effectively meet the requirements of
design and automatic generation for all kinds of
standardized document, meanwhile it can also adapt
to the requirements of procedures and
standardization for modern office [1].

For this problem, many researchers have put
forward some solutions. Literature [2] presents a
solution for data analysis document, it emphasizes
on data extraction, multiple math formulas
computing and data analysis, but it can only process
rtf document and does not relate to rich formatting
operation of Word document. Literature [3] based on
Microsoft SQL Server 2000 database and
Browser/Server mode presents platform architecture
for automatically generating a Word document
template. But this paper mainly focuses on automatic
document template generation, and presents little
detail about how to generate actual application
documents. Literature [4] proposed a solution based
on Word 2000 for automatic document generation,
but its data source is based on database, so this limits
its application scope.

From the above summary we can see that, the
automatic document generation technology for data
analysis document and the one based on database
can not be suitable for a wide application field.
Nowadays XML is used in many application fields,
it has standardization, flexible format, supporting a
wide range, easily reading and writing, and many
other advantages. It has become an important
language for data storage and exchange and a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

343

powerful tool of the structured document
information processing.

Take Telelogic Rhapsody, a model-driven
development environment, based on UML2.0
standard graphical language, for example. It is
mainly used in embedded software development,
and it is able to track the full life cycle of the
software development, and to provide intuitive
views for requirement capturing and a variety of
requirements definition and description methods. It
has a executables real-time framework which can be
used to verify the graphic model and to generate
executable codes. Meanwhile all the modeling
information is saved in XML file. So based on XML
and Word, this paper proposes a flexible, simple, and
widely suitable automatic Word document
generation technology[6-7].

The technology proposed in this paper can be used
to extract data information from XML file, it has a
strong versatility, by it pictures, tables, and nest-loop
contents can be inserted easily. Moreover, it can
guarantee the rich format requirements of Word
document. The technology has been used in an
actual project, the examples we used below are a part
of it.

2 PROBLEMS AND SOLUTIONS

The overall objectives of the project-“integrated
development platform for embedded software based
on graphical modeling and automatic code
generation” are: allowing the user to package mature
part in previous system into a reusable component
with a good description, graphically modeling based
on high-level abstractions (components, tasks,
states, etc.), automatically converting abstract model
into executable code, and verifying the application
code in a virtual machine (software simulation of
embedded board). In order to achieve these
objectives, in addition to these basic functions of
modeling, automatic code generation, virtual
machine, the platform should also contain some
other general-purpose software development
management functions, such as project management,
version management, document management and so
on. So a complete integrated development
environment can be formed, which can be used to
support all the activities in software life cycle, such
as analysis, design, coding, debugging, testing and
document compiling. During modeling process, all
the information of system model is saved into a
XML file, including model, view, various data and
so on. So if we want to compile design document
(outline design, detailed design), then we can get
most data from XML file by computer

programming, furthermore we can generate
structured design document of application system
automatically.

Structured Word document indicates that a
document is composed of three parts, i.e. variable
data (including text, pictures, tables, etc.),
infrequently changeable data (such as document title
at all levels, etc.), and format data (such as font, size,
etc.). A key problem is how to minimize repetitive
operation, and focus on how to extract variable data,
how to combine with infrequently changeable data,
and to maintain the document format effectively[5].

The overall framework of structured Word
document automatic generating solution is shown in
Figure [1] below.

For infrequently variable content and format data,
we can use program to insert them into document,
but this will cause the program have to execute some
non-essential operations. So we put forward another
strategy-editing structured Word document template
in accordance with certain standards, so infrequently
variable content and format data can be saved in it,
and also this will make user easily to modify the
template at any time without worrying about the
program.

Based on XML DOM technology and XML
tag-mapping file, the program can traverse XML
data file and extract useful data effectively, here
XML tag-mapping file can be used to position data
node rapidly and accelerate traverse[6]. After certain
data is extracted, we use VBA, Word Macro
Operation and COM technologies to position and
insert data (extracted previously) into document
template.

XMLData file

XML tag-
mapping file

Compiling
document
template

Tag defination
Document with

word only

Data
information

extractedXML DOM
technology

VBA

Completed
application
document

Insert picturesSystem
modeling

g
en

er
a
ti

o
n

Fig1. The Overall Solutions Structure Of Auto-Generated

Documents
3 STRATEGY AND ALGORITHM

3.1 Strategy Description

Structured Word document automatic generation
strategy can be divided into:

Defining Labels

Editing XML tag-mapping file

Editing structured Word document template

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

344

Implementing Word document automatic
generation algorithm

Figure[2] shows the WORD document
automatically generated sequence diagram. User is
responsible for selecting the document type to
determine the document format and according to the
XML data file to define node labels, then edit
the XML tags mapping file to complete the mapping
definition between Word label and XML
data node ; as shown in Figure [2], the document
types may include requirements specifications,
outline design specification, detailed design
specifications and test analysis reports;
Word document template which meets the
application document format requirements contains
node labels used to replace constantly changing data
in document; XML data file is the data input of the
generated WORD application document; program is
the master program which is responsible for the
automatic generation of documents, in the first
it reads the document template label, then look for
the corresponding node path in the XML tags
mapping file in order to quickly extract the XML
data to complete the template tag replacement, at
last it will generate Word document requested by the
user[9].

The sequence diagram of the proposed strategy is
shown in figure 2.Figure[2] shows the WORD
document automatically generated sequence
diagram. User is the operator of Document template
for the development ; document types may include
requirements specifications, outline design
specification, detailed design specifications and test
analysis reports; prototype Word document is a
example of the document for the user ; XML data
format is a collection of format acquired after the
summary of the contents of XML data source file ,
including XML tags and attributes of each
document; XML label mapping documentation
XML data file nodes paths and defined labels within
the template structured Word document the
correspond; Word document template is the
document template that formed after the prototype
WORD document is replaced by the label ; XML
data file is the data input of the generated WORD
application document ; program is the master
program which is responsible for the automatic
generation of documents[10].

User Document
Type

XML Mapping File XML Data
File

Word Document
Template

Program

1: Select Type

3: Get Node information

2: Return Type Format

4: Return Node information

5: Edit Template Based on 2 and 3

6: Return Template

7: Edit Mapping File Based on 4 and 6

8: Call Program to Generate Document

9: Read Rags

10: Get node Path

11: Return Path

12: Extract Data

13: Replace Tags with Data

14: Return Final Application Document

Fig.2. Word Document Automatically Generated

Sequence Diagram

3.1.1 WORD document Label define

The purpose of defining the document tag is to
replace, repeat the plain text(with format), pictures,
tables of Word template and so on. Accord to the

According to the function of tags, they can be
divided into two categories: loop labels and element
labels.

(1) Loop tags: they indicate that the data element
(inside the loop tags) will have multiple result-sets,
and they all have the same structures and style. Loop
tag is defined as:

<loop N>nodeName content </loop N>

Where ‘N’ represents nest level and starts from 0,
0 represents the outmost loop, N is incremented by 1,
as nest level increases by 1. nodeName represents
the unique node name which lies in XML
tay-mapping file. Content Represents the fixed
words inside loop body.

(2)Element tags: It represents an attribute of a
specific data node in XML data file. Element tag is
defined as:

<nodeName @ attribute>

nodeName represents specific node in XML data
file, attribute represents certain attributes of the
specific node. In addition to image data, the rest of
text and tabular data both can use this form.

For pictures only its full path information can be
stored in XML data file, so after insert pictures into
specific position of document template, we must

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

345

delete picture tag information. So picture tag is
defined as:

<Pic><nodeName @ path></Pic>

During document generation, first the tag <
nodeName @ path> will be replaced by picture path,
after all the text data have been processed, then
search tag: <Pic></Pic>, extract picture path
information and insert picture.

3.1.2 Edit the XML tags Map files and WORD
document template

The main function of XML tag-mapping file is to
build a effective mapping between Word document
tag and node of XML data file. So the program can
quickly achieve path information which is related to
the node in XML data file, so the traverse
performance can be promoted greatly.

An example of XML tag-mapping file is shown
below: <Event-parameter-list> eventlist/event
/parameterlist </Event-parameter-list>

The editing of Word document template is mainly
based on collection of nodes, node name, attributes
which are stored in XML data file, and the
information content, tag collection which are
required to be displayed in Word document, to
complete fixed content and format, variable content,
format and corresponding editing of tags. The
specific rules for edit Word document templates
are[7]:

(1) All the tags (except loop tag) must lie in the
body of loop tag. All the loop tags have the markes
of loop level, and the mark value of the outermost
loop is 0, its value is increased by one as nest level
increases.

(2) The table can be nested by tables, but all labels
in the same table level must belong to the same loop
level, i.e., these data nodes’ path determined by
labels should be same.

(3) The picture tags must contain element tags,
and the content of element tag is the path of picture.

(4) Each element tag can only belong to one
unique loop level, so the program can only read
element tag content that belong to the current loop
level until the level is processed.

(5) All the loop tags must be finished with ‘enter’
and ‘tab’ keys, but the element tags do not need so.

(6) Any loop and element tags must have unique
corresponding nodes in XML mapping file, so the
strings behind loop tag, or the string behind label '@'
of element must be unique.

3.1.3 WORD document generation process

Here we use Microsoft VBA technology to
implement our system. The basic idea of VBA is to
capsulate the macro command of Word, and use the
capsulated VBA command to extract and substitute
the tags defined in Word template.

The automatic generation process of WORD
document is shown in figure [3], the specific
implementation steps are explained as follows:

(1) Initialization

Open structured Word document template;

Create blank temporary Word document ;

Create information storage queue.

(2) Search tags

Using document search function of VBA to find
element tags in the body of loop tag for Word
template. If find element tags, then according to the
corresponding tags of XML tag-mapping file, find
the node path of corresponding data source. If not
find element tags, then go to step (4).

Taking the node path which is got from XML
tag-mapping file as input, to search XML data file
based on breadth-first search strategy, and using
DOM technology to extract the information of all the
data nodes with the same level and type into
information queue, meanwhile record the sum of
data nodes.

(3) Replace the tags

Locate information insertion point in the
document template, copy the corresponding contents
of the document template to a temporary Word
document, here the copy number is the same with
data nodes;

Locate information insertion point int the
temporary Word document, output the contents of
the information queue, complete the filling process
for the document, meanwhile delete loop and
element tags.

Copy the contents of the temporary Word
document back to Word document templates, and
clear the temporary Word document for later use;

Go back to step (2) to process other tags.

(4) Insertion

After text filling is completed, then traverse
document template to find if exist pictures needed to
be inserted, if so insert them.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

(5) Save document as

After the document filling is completed, then
execute ‘Save document as’ operation, close Word
document template and temporary document.

Begin

Initialization

Search tags in Word document template

Exist?

Search node path in XML mapping file

Breadth-first search, read the information

Locate insertion point in Word template, fill content

Insert picture

Save document as

End

N

Y

Fig.3 Structured Word Document Generation Process

3.2 Algorithm
From the process of automatic document

generation, the main algorithm can be divided into
four parts: (1) program initialization, (2) search and
replace tag, (3) content insert, (4) save document as.
The second part is the most important process

In the first part: first we build two DOM objects
mp_xml and data_xml to traverse and search XML
files; second we build a Word application object, so
the program can operate and control the access and
content of Word document in background mode;
third we build a queue to store XML data
information, and use characteristics of FIFO to fill
Word template.

The second part is the core of the program, we use
breadth-first and recursive algorithms to search and
replace tags. Breadth-first algorithm is used to
traverse the nodes of XML data file in the same level
with the same attributes. Recursive algorithm is used
to perform traversal for the nodes with same
properties, but different levels, in this case content
related to recursive node in document template only
need to be edited one time, then the template can be
shared between nodes in different levels by
definition of recursive tag while ensuring the
correctness of hierarchy[8].

For automatic document generation, because in
the process of search and replacement the program
must take the tag of '<loop N> nodeName content
</loop N>' as the basic, so the program must search
the tag ‘<loop N>’ in Word template first, then get
the name of data node, next by search the XML
mapping file to find the path in XML data file for
data node. Then traverse this node based on
breadth-first to obtain the sum of nodes with the
same level and attribute. If the sum is zero, then clear
the corresponding content of word template and
queue and continue to process the next level loop. If
the sum is not zero, then in turn read the sum of the
node attributes and lower loop, and push the
information into queue. Next according to the sum of
nodes, attributes and lower loop, the corresponding
Word template content is copied the same times,
then fill the data in queue into Word template and
clear queue, at last continue next level loop[9].

The algorithm is described as follows:
Algorith 3-1: FindTag and ReplaceTag

Input : Data in XML File

Output : Word Document

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Part2: Dim N = 0 As Integer;

 While (findTag (“<loop N>”) = true)

 Select the nodeName after <loop N>;

 Get the nodeName path from XML tag-mapping file;

Find comparatively-path of nodeName based on
parentnode

 Set nodes = SelectNodes (nodeName
comparatively-path); //XML Dom method

If nodes.Length == 0 then //there isn’t node named of
nodeName

Clear the content between <loop N> and </loop N>;

Clear Queue_nodePath and Queue_nodeValue;

 Else

 attributeCounts = 0; next_loopNum = 0;

 While (findnodeTag (“<nodeName@”))

 attributeCounts += 1;

 If Counts != 0 then

While findTag (”<loop N+1>”) in range from <loop N> to
</loop N>

 next_loopNum +=1;

 For i = 1 to counts

 Loop_findAttribute (”<nodeName@attribute>”);

 Select the range from <loop N> to </loop N> then
Cut;

 Paste nodes.Length times to the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

TempWordDocument;

 For each node in nodes

 For each attribute in node.Attributes

For i = 1 to attributeCounts

If attriName(i) = attribute.Name then

 attriValue(i) = attribute.Text;

 For i = 1 to next_loopNum

 Call Queue_nodePath.insert(node);

 Call Queue_nodeValue.insert(nodeName path);

 For i = 1 to attributeCounts

 replaceTag;

Clear Queue_nodePath and Queue_nodeValue;

Select the content of TempWordDocument then Paste to
WordTemplate;

 N += 1;

 //End while

In the second part it is needed to process loop tag,
furthermore it is mainly to process loop level ‘N’.
For document template, every tag (corresponding to
the specific data nodes in XML data file) will have a
corresponding specific loop level. But the loop level
of recursive node can’t be certain when user edit the
template because the XML data files are not same, so
we must extract the recursive content from
document template to form an independent template
file, and mark the different loop level of the nodes
with different number label. So when the program
read a recursive tag, the current level must be
recorded, then update the current loop level number
of the template to guarantee document hierarchy be
right[10].

In the third and fourth parts, the main function is
to insert pictures and save document by VBA
technologies.

Fig.4 Task State Model

4 MODEL APPLICATION VERIFICATION

To effectively illustrate the proposed model and
the feasibility of the algorithms, we apply this model
to the actual project.

The project is mainly for embedded software to
model by state chart and flowchart, then convert
model to structured high-level language code
automatically, and all the information of the model is
saved into a XML file. As shown in figure 4, we
build a state chart and generate its corresponding
XML data file to check the effectiveness of the
algorithm proposed. The XML file is shown in
figure 5.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

Fig.5 Xml Data File

According to the node information in the XML
file, we first establish a document template for state
chart, including picture tags, recursive state tags.

<loop 0>Task

The detail information of Task<Task@name>：

<loop 1>StateImage

<Pic><StateImage@path></Pic>

</loop 1>

<loop 1>HeadFileList

File Include List：

Head File
Location

Head File
Name

Type

<loop 2>HeadFile

<HeadFile@de
fine>

<HeadFile@dec
lare>

<HeadFile@t
ype>

</loop 2>

</loop 1>

<loop 1>State

State Information：

State Name：<State@name> State ID：<State@id>

<loop 2>RecursiveState

</loop 2>

</loop 1>

</loop 0>

After the establishment of a structured Word
document template, the next step you need to edit
XML tag-mapping file as follows:

<?xml version="1.0" encoding="GBK"?>

<path>

 <Root>/root</Root>

 <TaskList>tasklist</ TaskList >

 <Task>tasklist/task</ Task >

 <StateImage>tasklist/task/stateimage</ StateImage >

 <HeadFileList>tasklist/task/includelist</ HeadFileList >

 <HeadFile>tasklist/task/includelist/include</ HeadFile >

 <State>tasklist/task/state</State>

 <RecursiveState>tasklist/task/state/state</ RecursiveState
>

</path>

When all tags are edited, we can press ‘document
generation’ button to automatically generate Word
document, as shown in [6] below.

Fig.6 Task State Diagram Information Generated By

The Document

Recursive State
Node

State Node

Diagram of State

Header file List
Nodes

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 15th November 2012. Vol. 45 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

349

5 CONCLUSION

The proposed structured Word document
generation technology has been applied in actual
projects which not only effectively solve some
problems of heavy workload, duplication,
inefficiency raised by manually compiling
document. Furthermore the proposed technology is
based on XML, so it effectively solves the problem
of depending traditional databases. Meanwhile XML
has already been used widely in information storage
and exchange. The application in actual project
shows that the technology proposed can satisfy the
requirements of the flexible style design and
automatic generation for structured Word document.

ACKNOWLEDGMENT

This work is supported by the study fund of
Heilongjiang natural science funds F201139. Harbin
Technological Innovation Talent Research Special
Foundation Project. 2012RFQXG097. Chunmao
Jiang , associate professor ，main research include
mobile peer to peer, cloud computing, embedded
operating system, etc.

REFRENCES:

[1] Robert H. Gregory. Document Processing.
Proceedings of the Eastern Computer
Conference.

[2] Qu Mingcheng, Liao Minghong, Wu Xianghu,
Liu Zhiqiang, “Construction of an automatic
generation model and its application”, Computer
Integrated Manufacturing Systems, Vol.14,
No.7, 2008, pp.1297-1305.

[3] Ge Fen, Wu Ning, “A Platform for Automatically
Producing Word Document Based on Mutiple
Techniques”, Journal of University of Electronic
Science and Technology of China, Vol. 36, No. 4,
2007, pp.263-266 .

[4] Zhang Weixiang, Wu Xin, Liu Wenhong, „A
Research on and Realization of Output of
Structured Documents”, Journal of Spacecraft
TT&C Technology, Vol.26, No.12, 2007,
pp.91-94.

[5] Helen Balinsky, Anthony Wiley, Michael
Rhodes, Alfie Abdul-Rahman. Automated
Repurposing of Implicitly Structured
Documents. DocEng’08, September 16-19,
2008, Sao Paulo, Brazil.

[6] Wang Hongzhi, Li Jianzhong, Luo Jizhou,
“Efficient Aggregation Algorithms on XML

Stream”, Journal of Software, Vol.19, No.8,
2008, pp. 2032−2042.

[7] J. Lumley, R. Gimson, and O. Rees, “A
framework for structure, layout & function in
documents”, In DocEng’05: Proceedings of the
2005 ACM symposium on Document
engineering, pp.32–41, New York, NY, USA,
2005. ACM.

[8] D. M. Levy, “Document reuse and document
systems”, Electronic Publishing, Vol.6, No. 4,
1993, pp.339–348.

[9] J. F. Terris, “Re-use, re-purpose, re-package”, In
Proceedings of XML Europe 2001, IDEAlliance,
Dec 2001.

[10] B. Vatant, Re-using technical documents beyond
their original context, In Proceedings of XML
Europe 2002, IDEAlliance, May 2002.

http://www.jatit.org/

	1 Introduction
	2 PROBLEMS AND SOLUTIONS
	3 STRATEGY AND ALGORITHM
	3.1 Strategy Description
	3.2 Algorithm

	4 Model application verification
	5 Conclusion

