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ABSTRACT 

 
A chaotic system owns complex dynamics though it is with deterministic expression in mathematics, and it 
has attractived numerous study and application in many fields of the world. But for a concrete application, it 
is usually with parameters uncertainty while it is implemented. In this paper synchronization of discrete-time 
chaotic systems with parameters and/or structure uncertainty is researched, in which the uncertainty is 
modelled by using least square support vector regression(LS-SVR) to eliminate syncronization error. A novel 
synchronization control law that guarantees closed-loop robust stability is proposed. Synchronizing of the 
well-known Hénon chaotic system and Lozi chaotic system, Burgers’ map and Holmes cubic map, are taken 
as illustrative examples. The chaotic systems in both examples are uncertain in parameters and structure. 
Experimental results demonstrate the effectiveness and feasiblility of the proposed synchronization method. 
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1 INTRODUCTION 
 

Synchronization  of chaotic dynamical systems 
has attracted an increasing attention [1-7] since the 
early work by Pecora and Carroll [8] on 
synchronizing of chaos. Many special issues on the 
control and synchronization of chaos have been 
published due to its possible application in various 
fields, such as application to control theory, secure 
communication, chemical reaction and encoding 
message [1, 2, 9, 10].  

Most of the exiting synchronization methods for 
chaotic systems are based on very strict condition 
that the parameters of the concerned systems are 
exactly known [5-7, 11, 12]. Due to the tolerance 
and time-variant property of electronic components, 
we know that two identical physical circuits with 
exact same parameters can never be implemented. 
As a consequence, it is important to investigate the 
robustness of the considered synchronization 
technique. In that case the synchronization is defined 
as practical synchronization [13, 14]. For real 
systems, parameters can’t be known exactly, so we 
can only estimate its approximate parameters. That 
is to say, only an approximate model can be used. 
Although the discrete-time chaotic mapping is an 
important family in chaos world, the current 
synchronization is mostly about continuous chaotic 

                                                           
 

systems [5-7, 11, 15-17], and the chaotic systems do 
not contain the disturbance [15, 17].  

To the best of the authors’ knowledge, 
synchronization of discrete chaotic systems has been 
seldom studied [18]. So, in this article, 
synchronization of discrete chaotic systems with 
uncertainty and disturbance is studied. It does not 
need to know the exact model that is a prerequisite 
for most of the existing methods. We only need to 
estimate the uncertainty, which is much more easy to 
obtain with respect to exact model [19-25]. A novel 
synchronization control algorithm is proposed and 
designed by using LS-SVR to model the uncertainty 
part, which guarantees that the system 
synchronization error is globally uniformly 
ultimately bounded as long as the modeling error is 
bounded, and which will make synchronization error 
approach zero in the condition that the approximate 
error between model and real chaotic system is 
sufficiently small. 

2 SYNCHRONIZATION OF UNCERTAIN 
DISCRETE CHAOTIC SYSTEMS USING 
LS-SVR FOR UNCERTAINTY 
COMPENSATION  

 
2.1 Least Square Support Vector Regression 

(LS-SVR) 
Least-squares support vector regression 

(LS-SVR) [26-29] proposed by Suykens is an 
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alternate formulation of SVR. Consider a model in 
the primal weight space of the following form: 

( ) ( )Tf x x bω ϕ= + , 

where x∈Rm, ϕ(⋅):Rm→Rd

 
is the mapping to the high 

dimensional and potentially infinite dimensional 
feature space, ω is weight vector, and b is bias term. 
Geven a training set of n points { } 1

, n
k k kx y

=
with 

input data xk∈Rm
 and output data yk∈R, ek is the 

deviate between the output data yk and the model 
prediction f(xk), i.e. ( )k k ke y f x= − . Hence we can 
formulate the following optimization problem in the 
weight space 

2

, , 1

1( , )
2 2min

n
T

p k
b e k

CJ e e
ω

ω ω ω
=

= + ∑ , 

. . ( ) , 1,...,T
k k ks t y x b e k nω ϕ= + + =  

where C is penalty parameter and ek is error variable. 

However, the primal problem is difficult to solve 
as ω is high dimensional. Therefore, let us proceed 
by constructing the Lagrangian and derive the dual 
problem. The Lagrangian is presented by 

1
( , , ; ) ( , ) ( )

n
T

p k k k k
k

L b e J e x b e yω α ω α ω ϕ
=

 = − + + − ∑
, 

where αk are Lagrange multipliers. The conditions 
for optimality 

1

1
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0 , 1,...,
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L
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L Ce k n
e
L x b e y k n

ω α ϕ
ω

α

α

ω ϕ
α

=

=

∂
= → =∂

∂
= → =∂

 ∂ = → = =
∂


∂ = → + + − = =∂

∑

∑
, 

can be written as the solution to the following set of 
linear equations after eliminating the ω and e 

 
00 T b

C I
     

=     Ω +     
- 1

g
yg α

, (1) 

where [ ]1 1[ ,..., ] , [1,...,1] , ,..., TT T
n ny y α α= = =y g α , 

and I is an identity matrix. The kernel trick is applied 
here as following 

( ) ( ) ( , ). , 1,...,T
kl k l k lx x K x x k l nϕ ϕΩ = = =  

Where ( , )k lK x x is the kernel function, the RBF 
kernel function is used in the paper because of the 
fact that RBF kernel has a strong approximation 
capacity, i.e. 2 2( , ) exp[ ( ) / (2 )]k l k lK x x x x σ= − − , 
σ is the width for RBF kernel. 

Then we can get α and b from (1). Therefore, the 
result of  LS-SVR model is 

1
( ) ( , )

n

k k
k

f X K x x bα
=

= +∑ . 

2.2 Approximating The Uncertainty Of Chaotic 
Systems Using LS-SVR 

Considering the following two dynamic systems: 

Driving system 

 ( ) [ ] 11 ( ), ( )x k f x k d kα+ = + . (2) 

Response system 

 ( ) [ ] 21 ( ), ( ) ( )y k h y k d k u kβ+ = + + , (3) 

where x,y∈Rn are the state vectors of the driving 
system and response system respectively; f and h are 
both n×1 bounded continuous functional matrices; 
d1 and d2 are both n×1 unknown bounded structural 
uncertainty; α∈Rp and β∈Rq are the unknown 
parameter vectors of the systems; u∈Rn is control 
input.  

Assume that α  and β are the rational 
pre-estimated value of α and β respectively. So the 
model error between the pre-estimated models and 
the real systems are as follows respectively: 

[ ] [ ] [ ]1( ), , ( ), + ( ) ( ),f x k f x k d k f x kα α α α∆ = − 
,   

 (4) 

[ ] 2( ), , ( ), + ( ) ( ),h y k h y k d k h y kβ β β β   ∆ = −   
  .   

 (5) 

Now, we use LS-SVR to approximate the 
uncertainty as shown above, and they are denoted as 

[ ]SVR ( ), ,f x k α α  and SVR ( ), ,h y k β β  
  

respectively. The approximate error are denoted as 
follows: 

[ ] [ ] [ ]SVR( ), , ( ), , ( ), ,ef x k f x k f x kα α α α α α= ∆ −   ,    
 (6) 

SVR( ), , ( ), , ( ), ,eh y k h y k h y kβ β β β β β     = ∆ −     
   .   

 (7) 

We denote 
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 [ ]( ) ( ), , ( ), ,e ek h y k f x kh β β α α = − 
  . (8) 

Because LS-SVR is used to learn the model error 
systems, good approximate ability can guarantee the 
fllowing result. 

 ( 1) ( ) , 1, 2,3, .k k kηη  γ+ − ≤ = 3  (9) 

in which,  is a suffiecient small number that is 
usually the approximation bound of 

( 1) ( )k kh h+ − , which is theoretically zero 
according to the functional approximation theory, 
see Ref. [30]. 

2.3 Design Of Synchronization Law 
Syncronization law can be induced as a theorem 

as follows: 

Theorem For the system (2) and (3), if the 
following synchronization control action u is used, 

[ ] [ ]SVR

SVR 1

( ) ( ), ( ), , ( ),

( ), , ( ),

u k f x k f x k h y k

h y k Bu k

α α α β

β β

 = + −  
 − + 

 



 

(10) 
1

1 1( ) ( 1) ( ) ( ) ( )u k u k CB A I Ce k−= − + − , (11) 

where, u1(k) is an auxiliary control action; A∈Rn×n is 
a matrix chosen by designer that satisfies 1A < ; 
B∈Rn×m is a direct input matrix; C∈Rm×n is chosen 
such that CB is nonsingular; I is identity matrix with 
proper dimension; and vector s(k)=Ce(k) is linear 
switching surface of sliding mode. 

Then, the error of the synchronization system (2)
and (3) is globally uniformly ultimately bounded. 

Proof The error of the synchronization system (2) 
and (3) is 

[ ] [ ]
[ ]

2 1

1

1

( 1) ( 1) ( 1)
( ), ( ) ( ), ( ) ( )

( ), , ( ), , ( )

( ) ( ),
e e

e k y k x k
h y k d k f x k d k u k

h x k f y k Bu k

k Bu k

β α

α α β β

h

+ = + − +

= + − − +

 = − + 
= +



 

(12) 

so 

1( ) ( 1) ( 1)e k k Bu kh= − + − , 

and 

 1( ) ( 1) ( 1)Ce k C k CBu kη= − + − . (13) 

For the convienience of analysis, we denote 
s(k)=Ce(k). 

Then u1(k-1) can be written as 

 

[ ]
[ ]

1
1

1

( 1) ( ) ( ) ( 1)

( ) ( ) ( 1) .

u k CB Ce k C k

CB s k C k

η

η

−

−

− = − −

= − −  
(14) 

By substituting formula (14) into formula (11), we 
will obtain 

 [ ]1
1( ) ( ) ( ) ( 1)u k CB As k C kη−= − − . (15) 

According to formula (12), (13) and (15), we can 
get 

 [ ]
1

( 1) ( 1)
( ) ( )
( ) ( ) ( 1) .

s k Ce k
C k CBu k
As k C k k
η

ηη

+ = +
= +

= + − −  

(16) 

It’s obviously that 

( 1) ( ) ( ) ( 1)

( ) .

s k A s k C k k

A s k C

ηη

γ

+ ≤ ⋅ + ⋅ − −

≤ ⋅ + ⋅
 

According to mathematical induction principle, 
we can obtain 

1
( 1) (1)

1

k
k A

s k A s C
A

γ
−

+ ≤ ⋅ + ⋅ ⋅
−

. 

Due to the assumption 1A <  in the Theorem, 
we get 

1lim ( )
1k

s k C
A

γ
→∞

≤ ⋅ ⋅
−

. 

So, according to formula (10), (11) and s(k)= 
Ce(k), synchronization control action u is 
convergent. According to (9), the synchronization 
error of the system (2) and (3) is globally uniformly 
ultimately bounded.  

The synchronization error of system (2) and (3) 
can infinietely approach zero as long as 

[ ]( ), ,ef x k α α  and ( ), ,eh y k β β  
  infinietely 

approach zero, which can be guaranteed by model 
error approximator [30]. 

3 ILLUSTRATIVE EXAMPLES 
 

Example 1 Synchronizing of Hénon chaotic 
system and Lozi chaotic system 

Driving system: Hénon chaotic system [31, 32] is 
described as 

[ ] 1( 1) ( ), ( )x k f x k d kα+ = + , 
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in which, 

1

2

( 1)
( 1)

( 1)
x k

x k
x k

+ 
+ =  + 

, 

[ ] 2
2

1 2 1 2

( )
( ),

( ) ( )
x k

f x k
x k x k

α
α α

 
=  + − 

, 

and 

11
1

12

( )
( )

( )
d k

d k
d k

 
=  

 
. 

Response system: Lozi chaotic system [32] is 
expressed as 

( ) [ ] 21 ( ), ( ) ( )y k h y k d k u kβ+ = + + . 

in which, 

1

2

( 1)
( 1)

( 1)
y k

y k
y k

+ 
+ =  + 

, 

[ ] 2

1 2 1 3 2

( )
( ),

( ) | ( ) |
y k

h y k
y k y k

β
β β β

 
=  + + 

, 

and 

21
2

22

( )
( )

( )
d k

d k
d k

 
=  

 
. 

In the experimental study, the real system 
parameters are α1=1.29 and α2=0.3 for Hénon 
chaotic system, β1=3, β2=−1.8 and β3=0.4 for Lozi 
chaotic system. Figure 1 shows the chaotic 
characteristic curves of xi and yi (i=1,2) with initial 
conditions x=[0,0]T and y=[0.4,0.4]T. These initial 
conditions will also be used in the other studies in 
the fllowing experiments for the sake of comparison. 
And in the following four figures, solid lines stand 
for xi(i=1,2) and dot lines stand for yi(i=1,2) in all 
sub-figures (a) and (b) of each figure. The 
synchronization errors e=y-x are shown in 
sub-figures (c) and (d) of Figure 3. 

Suppose the pre-estimated model parameters for 
synchronization controller design are iα =1.1αi

 
and 

iβ =0.9βi (i=1,2). And for simplicity but without 
loss generality, we suppose the external uncertainty 
to the driving system and to the response system are 
d1=[0,0]T and d2=0.01[2+sin(3k),2+cos(k/4)]T 
respectively, i.e. there isn’t any structural 
uncertainty act on the driving system, and the 
external disturbances on the response system are 
time-varing. Figure 2 shows the chaotic curves of xi  
and yi (i=1,2) in this case.  

By comparison of Figure 1 and Figure 2, the 
characteristic curves of response system (Lozi 
chaotic system) are different because the uncertainty 
exists. The synchronization results are illustrated in 
Figure 3 with the matrix A=0.5, B=[0,1]T and 
C=[c1,c2]=[0.5,1]. 

Remark 1 The synchronization tracking 
performance can be obtained with a wide range of 
the matrix A, B and C, i.e. the three matrixes are easy 
to set, which will be demonstrated in both Example 1 
and Example 2 by using the same value for the three 
matrices. 
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Figure 1 Chaotic curves of Example 1: a) x1, y1; b) x2, y2 
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Figure 2 Chaotic curves of Example 1 with uncertainty: a) 

x1, y1; b) x2, y2 
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Figure 3 Synchronization results of Example 1 with 

uncertainty: a) x1, y1; b) x2, y2; c) e1; d) e2 

Example 2 Synchronizing of Burgers’ map and 
Holmes cubic map 

Driving system: Burgers’ map [33] is written as 
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[ ] 1( 1) ( ), ( )x k f x k d kα+ = + . 

in which, 

1

2

( 1)
( 1)

( 1)
x k

x k
x k

+ 
+ =  + 

, 

[ ]
2

1 1 2

2 2 1 2
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( ) ( ) ( )
x k x k
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x k x k x k
α

α
α

 −
=  + 

, 

and 

11
1

12

( )
( )

( )
d k

d k
d k

 
=  

 
. 

Response system: Holmes cubic map [33] is 
described as 

( ) [ ] 21 ( ), ( ) ( ),y k h y k d k u kβ+ = + +  

in which, 

1

2

( 1)
( 1)

( 1)
y k

y k
y k

+ 
+ =  + 

, 

[ ] 2
3

1 1 2 2 2

( )
( ),

( ) ( ) ( )
y k

h y k
y k y k y k

β
β β

 
=  − + − 

, 

and 

21
2

22

( )
( )

( )
d k

d k
d k

 
=  

 
. 

In the experimental study, the real system 
parameters are α1=0.75 and α2=1.75 for Burgers’ 
map, β1=0.2 and β2=2.77 for Holmes cubic map. 
Figure 4 shows the chaotic curves of xi and yi (i=1,2) 
with initial conditions x=[−0.1,0.1]T and y=[1.6,0]T. 
These initial conditions will also be used in the other 
studies in the fllowing experiments for the sake of 
comparison. And in the following four figures, solid 
lines stand for xi(i=1,2) and dot lines stand for 
yi(i=1,2) in all sub-figures (a) and (b) of each figure. 
The synchronization errors e=y-x are shown in 
sub-figures (c) and (d) of Figure 6. 

Suppose the pre-estimated model parameters for 
synchronization controller design are iα =0.97αi 

and iβ =0.97βi (i=1,2). And for simplicity as well as 
for the sake of comparison but without loss 
generality, we suppose the external uncertainty to 
the driving system and the response system are 
d1=[0,0]T and d2=0.015[1+sin(3k),1+cos(k/4)]T 
respectively, i.e. there isn’t any structural 
uncertainty act on  the driving system  and the 
external disturbances on the response system are 

time-varing. Figure 5 shows the chaotic curves of xi  
and yi (i=1,2) in this case.  

By comparison of Figure 4 and Figure 5, the 
curves of response system (Holmes cubic map) are 
different because the uncertainty exists. The 
synchronization results are illustrated in Figure 6 
with the matrix A, B and C are the same as those in 
Example 1. 
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Figure 4 Chaotic curves of Example 2: a) x1, y1; b) x2, y2 
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Figure 5 Chaotic curves of Example 2 with uncertainty: a) 

x1, y1; b) x2, y2 
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Figure 6 Synchronization results of Example 2 with 

uncertainty : a) x1, y1; b) x2, y2; c) e1; d) e2 

 

4 CONCLUSIONS 
 

The synchronizations of chaotic systems with 
models uncertainty are studied for discrete-time 
chaotic systems. The approximate models were used 
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firstly for the design of synchronization controllers. 
The modeling uncertainty of chaotic dynamics is 
adaptively learned on line by LS-SVR. One of the 
many merits of the proposed synchronization 
method is that robust control performance can be 
obtained. The synchronization of Hénon chaotic 
system and Lozi chaotic system, and the 
synchronization of Burgers’ map and Holmes cubic 
map were illustrated as the examples, which 
demonstrated the synchronization performance of 
proposed method. 

ACKNOWLEDGEMENTS 

This work was project supported by the National 
Natural Science Foundation of China (Grant No. 
61203041) and by the Fundamental Research Funds 
for the Central Universities (Grant No.11MG49). 

REFRENCES: 

[1] H. Adloo and M. Roopaei. "Review article on 
adaptive synchronization of chaotic systems 
with unknown parameters", Nonlinear Dyn Vol. 
65, No. 1-2, 2011, pp. 141-159. 

[2] N. Noroozi, M. Roopaei, P. Karimaghaee, et al. 
"Simple adaptive variable structure control for 
unknown chaotic systems", Communications in 
Nonlinear Science and Numerical Simulation, 
Vol. 15, No. 3, 2010, pp. 707-727. 

[3] Z. Song, G. Dong and Q. Bi. "A new 
hyperchaotic system and its synchronization", 
Applied Mathematics and Computation, Vol. 
215, No. 9, 2010, pp. 3192-3200. 

[4] S. Boccaletti, J. Kurths, G. Osipov, et al. "The 
synchronization of chaotic systems", Phys Rep 
Vol. 366, No. 1-2, 2002, pp. 1-101. 

[5] L.L. Huang, R.P. Feng and M. Wang. 
"Synchronization of chaotic systems via 
non-linear control", Phys Lett A Vol. 320, No. 4, 
2004, pp. 271-275. 

[6] M.T. Yassen. "Chaos synchronization between 
two different chaotic systems using active 
control", Chaos, Solitons and Fractals, Vol. 23, 
No. 1, 2005, pp. 131-140. 

[7] J.H. Park. "Chaos synchronization between two 
different chaotic dynamical systems", Chaos, 
Solitons and Fractals, Vol. 27, No. 2, 2006, pp. 
549-554. 

[8] L.M. Pecora and T.L. Carroll. "Synchroni-zation 
in chaotic systems", Phys Rev Lett Vol. 64, No. 
8, 1990, pp. 821-824. 

[9] J. Li, J.L. Zhou, Y. Wang, et al. 
"Synchroni-zation of two 3-scroll hyperchaotic 

attractors using wavelet transform", Journal of 
Systems Engineering and Electronics, Vol. 17, 
No. 2, 2006, pp. 387-389. 

[10] M. Long, F. Peng, S.S. Qiu, et al. 
"Implement-ation of a new chaotic encryption 
system and synchronization", Journal of Systems 
Enginee-ring and Electronics, Vol. 17, No. 1, 
2006, pp. 43-47. 

[11] G. Wang, Z. Wang and G. Lu. "Chaotic 
synch-ronization with limited information", Int J 
Bifurcation Chaos Vol. 18, No. 10, 2008, pp. 
3137-3145. 

[12] A. Ucar, K.E. Lonngren and E.W. Bai. 
"Sync-hronization of the unified chaotic systems 
via active control", Chaos, Solitons and Fractals, 
Vol. 27, No. 5, 2006, pp. 1292-1297. 

[13] M. Sekieta and T. Kapitaniak. "Practical 
synchronization of chaos via nonlinear 
feed-back scheme", Int J Bifurcation Chaos Vol. 
6, No. 10, 1996, pp. 1901-1907. 

[14] A. Boulkroune and M. M’saad. "A practical 
projective synchronization approach for 
uncertain chaotic systems with dead-zone input", 
Communications in Nonlinear Science and 
Numerical Simulation, Vol. 16, No. 11, 2011, 
pp. 4487-4500. 

[15] J.H. Lin. "Particle Swarm Optimization for 
Adaptive Syncronization of Nonlinear 
Dyna-mics", Proceedings of the Systems, Man 
and Cybernetics, 2010 IEEE International 
Confe-rence on,IEEE Conference Publishing 
Services, October 10-13, 2010, pp. 1172-1177. 

[16] C. Xie and Y. Xu. "Adaptive hybrid function 
projective synchronization for two different 
chaotic system with uncertain parameters", 
Proceedings of the 2010 International 
Sympo-sium on Intelligent Information 
Technology and Security Informatics, IEEE 
Computer Society, April 2-4, 2010, pp. 12-16. 

[17] M.M. Al-sawalha and M.S.M. Noorani. 
"Ada-ptive Increasing-order Synchronization 
and Anti-synchronization of Chaotic Systems 
with Uncertain Parameters", Chin Phys Lett Vol. 
28, No. 11, 2011, pp. 110507.1-110507.3. 

[18] G. Wang. "Chaos synchronization of 
discrete-time dynamic systems with a limited 
capacity communication channel", Nonlinear 
Dyn Vol. 63, No. 1-2, 2011, pp. 277-283. 

[19] H. Kebriaei and M. Javad Yazdanpanah. "Robust 
adaptive synchronization of different uncertain 
chaotic systems subject to input nonlinearity", 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
341 

 

Communications in Nonlinear Science and 
Numerical Simulation, Vol. 15, No. 2, 2010, pp. 
430-441. 

[20] G.M. Mahmoud and E.E. Mahmoud. "Comp-lete 
synchronization of chaotic complex non-linear 
systems with uncertain parameters", Nonlinear 
Dyn Vol. 62, No. 4, 2010, pp. 875-882. 

[21] J.Y. Sang, J. Yang and L.J. Yue. "Complete 
Synchronization of Double-delayed Rossler 
Systems with Uncertain Parameters", Chin Phys 
B, Vol. 20, No. 8, 2011, pp. 080507.1-080507.5. 

[22] M.M. Al-sawalha and M.S.M. Noorani. "Chaos 
reduced-order anti-synchronization of chaotic 
systems with fully unknown parame-ters", 
Communications in Nonlinear Science and 
Numerical Simulation, Vol. 17, No. 4, 2012, pp. 
1908-1920. 

[23] H.G. Zhang, W. Huang, Z.L. Wang, et al. 
"Adaptive synchronization between two 
differ-ent chaotic systems with unknown 
parameters", Phys Lett A Vol. 350, No. 5-6, 
2006, pp. 363-366. 

[24] C.C. Yang. "One input control for exponential 
synchronization in generalized Lorenz systems 
with uncertain parameters", J Franklin Inst Vol. 
349, No. 1, 2012, pp. 349-365. 

[25] J. Zhen. "Linear generalized synchronization of 
chaotic systems with uncertain parameters", 
Journal of Systems Engineering and 
Electr-onics, Vol. 19, No. 4, 2008, pp. 779-784. 

[26] J.A.K. Suykens and J. Vandewalle. "Least 
squares support vector machine classifiers", 
Neural Processing Letters, Vol. 9, No. 3, 1999, 
pp. 293-300. 

[27] J.A.K. Suykens, J. Vandewalle and B. De Moor. 
"Optimal control by least squares support vector 
machines", Neural Networks, Vol. 14, No. 1, 
2001, pp. 23-35. 

[28] T. Wang, H. Wang and P. Wang. "Networked 
synchronization control method by least squares 
support vector machine", Proceedings of the 
Signal Processing Systems (ICSPS), 2010 2nd 
International Conference on, IEEE Conference 
Publishing Services, July 5-7, 2010, pp. 
215-218. 

[29] Q. Chen, X. Ren and J. Na. "Robust 
anti-synchronization of uncertain chaotic 
systems based on multiple-kernel least squares 
support vector machine modeling", Chaos, 
Solitons &amp; Fractals, Vol. 44, No. 12, 2011, 
pp. 1080-1088. 

[30] A. Kolmogorov. "On the representation of 
continuous functions of many variables by 
superposition of continuous functions of one 
variable and addition", Dokl Akad Nauk SSSR, 
Vol. 114, No. 1957, pp. 953-956. 

[31] Z.W. Zhu and H. Leung. "Adaptive 
identifi-cation of nonlinear systems with 
application to chaotic communications", IEEE 
Transactions on Circuits and Systems I: 
Fundamental Theory and Applications, Vol. 47, 
No. 7, 2000, pp. 1072-1080. 

[32] S.H. Chen and J.H. Lü. "Parameter 
identifi-cation and synchronization of chaotic 
systems based upon adaptive control", Phys Lett 
A Vol. 299, No. 4, 2002, pp. 353-358. 

[33] E. Castillo and J.M. Gutierrez. "Nonlinear time 
series modeling and prediction using functio-nal 
networks. Extracting information masked by 
chaos", Phys Lett A Vol. 244, No. 1-3, 1998, pp. 
71-84. 

 

http://www.jatit.org/

	1 Introduction
	2 SYNCHRONIZATION OF UNCERTAIN DISCRETE CHAOTIC SYSTEMS USING LS-SVR FOR UNCERTAINTY COMPENSATION
	2.1 Least Square Support Vector Regression (LS-SVR)
	2.2 Approximating The Uncertainty Of Chaotic Systems Using LS-SVR
	2.3 Design Of Synchronization Law

	3 ILLUSTRATIVE EXAMPLES
	4 CONCLUSIONS

