
Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
257 

 

CONVERTING CONCEPTUAL MODEL XUML TO XML 
SCHEMA 

 

XUEMIN ZHANG 
School of  Computer and Information Science, Hubei Engineering  University , Xiaogan 432000, Hubei, 

China 

 
ABSTRACT 

 
As XML has become the standard for representing structured and semi-structured data on the Web, the 
methods for designing XML schemas is becoming more and more important. At present, a new XML 
conceptual model - XUML has already been put forward, but lacks the method of converting XML 
conceptual model to XML logical model . In this paper, an approach is proposed which a conceptual model 
XUML is converted to the XML Schema. Finally, a specific application example is illustrated, which 
proves the method the effectiveness and practicality. 

Keywords: XML, XUML, XML Schema 
 
1. INTRODUCTION  
 

As a universal format, XML ( eXtensible Markup 
Language ) realizes data representation and 
exchange. Many organizations use XML as data 
storage format, some published and document 
processing industries also choose XML documents, 
most of the database system also has support for 
XML database. But there isn’t a proper mechanism 
to generate or describe XML conceptual model. At 
present some XML conceptual model has proposed 
in domestic and foreign, such as Semantic 
Network[1], AOM[2], ORA-SS[3], X-Entity[4] and 
C-XML[5], to support XML these models extend 
semantic network or ER model. Reference [6] 
defines a number of specialized Profile, extending 
UML1.x to support WXS. Compared to XML mode 
in logic level, these conceptual models can capture 
more semantic and constraint which improve XML 
schema design, but still not enough to support the 
XML conceptual modeling. The reference [7] 
improves reference [6], puts forward a new 
conceptual model –XUML which succeeded the 
strongpoint of foregoing models, enhanced in 
several important ways, but how to convert XML 
conceptual model to XML logic model has been not 
studied. 

The XML logical model generally uses XML 
Schema. This paper presents a kind of method of 
converting XUML to XML Schema aimed at 
XUML concept model put forward in reference [7], 
which can achieve conversion from the XML 
conceptual model to XML logic model. 

 

2. XUML MODEL TO XML SCHEMA 
MAPPING RULES 

 
The representation method of mapping rule is 

described in detail in reference [8]. 

2.1 Attribute Mapping Rules 
1) General attribute mapping 
The attribute maps the element; an attribute name 

is as an element name; attribute type is as the 
element type. 

Transformation AttributeToElement (XUML，
WXS) 

{source  
attr：XUML:: Attribute； 
     target  
elt：WXS::Element； 
 mapping 
   attr.name <～> elt.name； 
   attr.type <～> elt.type； 
   attr. multiplicity.lower <～> elt.minOccurs； 
   attr. multiplicity.upper <～> elt.maxOccurs； 
} 
2) The <<attribute>> attribute mapping 
The attribute maps the attribute in the XML 

Schema; XUML attribute name maps the name of 
the Schema attribute; types for the XUML attribute 
map the Schema attribute types; other mark value 
maps behavior attribute and attribute value of the 
attribute. 

2.2 Class Mapping Rules 
1) Class <<element>> mapping rules 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
258 

 

This class maps global element declaration; the 
class name is as element name or element type 
name, and as complex type; processing the class 
attribute according to the attribute mapping rules. 

2) Class <<complexType>> mapping rules 
The <<complexType>> class has two kinds of 

cases: the subclass in a no generalization relation 
(denoted as << class 1 complexType>>) and the 
subclass in generalization relation (denoted as class 
2 <<complexType>>). 

(1) Class 1<<complexType>> mapping rules  
This class maps complex type definitions; the 

class name as the complex type name; model group 
convert according to the modelGroup value of 
marker value in class; attribute map is same as 
stated 2.1.  

(2) Class 2<<complexType>> mapping: 
This class maps derived complex type 

definitions, complex type as basic types converted 
from super class, <<extension>> generalization 
corresponding extended derivative, <<restriction>> 
generalization corresponding constraints derived; 
attribute map is same as stated 2.1.  

3) Class <<choice>> mapping 
This class maps the choice model group, 

embedded into the model group associated class; 
attribute map is same as stated 2.1. 

4) Class <<sequence>> mapping 
This class maps the sequence model group, 

embedded into the associated class into choice 
model group, the processing properties. 

5) Class <<simpleType>> mapping 
The <<simpleType>> class has three cases: the 

mark value is {ristrict} ( denoted as class 
1<<simpleType>>), the mark value is {list} ( 
denoted as class 2<<simpleType>>) and the mark 
valuee is {union} (denoted as class 
3<<simpleType>>). 

(1) Class 1<<simpleType>> mapping: 
This class maps simple type; the class name is as 

the name of simple type; marker values 
{base=value} as a base class of simple type; other 
marker values will be converted to facet of simple 
type definition. 

(2) Class 2<<simpleType>> mapping: 
This class maps simple type of list method; the 

class name is the name of simple type; the value of 
marker values {itemType=value} is itemType of 
simple type. 

(3) Class 3<<simpleType>> mapping: 
This class maps simple type of union method; the 

class name as a simple type name; the value of 
marker values {memberTypes=value} is as 
memberTypes of the simple type. 

6) Class <<enumeration>> mapping 

This class maps enumeration type in simple type 
definition; the class name as a simple type name; 
marker values {base=value} as a base class of 
simple type; enumeration value maps corresponding 
to the value of the enumeration facet. 

2.3 Linkage Mapping Rules 
1) Generalized aggregation mapping 
Generalized aggregation connects the whole class 

and component class (1 or more ), when  mapped to 
the XML Schema, the whole class as a parent 
element, component class as child element nested in 
one. 

2) Relationship mapping 
Relationship mapping is mainly embodied in key 

and keyref definition. There are two kinds of 
relationship mapping. 

(1) The internal relationship. There are two kinds 
of definitions of key and keyref: 

①local definitions of key and keyref within the 
relationship range 

The scope of internal relationship in the range the 
most recent common ancestor of two relationship 
class, local definition is the corresponding element 
definition in the common ancestor. On the field of 
definition, key corresponds to the main attribute of 
target class, while keyref corresponding to new 
attributes of source class. New attributes is same to 
the main attributes of target class or is named the 
role name of source end. 

②  Global definition of key and keyref in the 
system scope  

The system scope, namely the root element, key 
and keyref are defined under the root element. On 
the field of definition, as the global definitions will 
be upgraded the system scope, key have to use 
composite primary key, namely the key is 
composted by all ancestors and its own main 
attributes under identifier class. Similarly, the 
keyref also uses joint attributes with respect to key. 

Compared above two kinds of definition: local 
definition does not need to add the ancestor's main 
attributes as a composite (primary/foreign) key, but 
must identify scope; while global definition is 
although easy to identify scope, but add the main 
attributes of levels of the ancestor class as a 
composite (primary/foreign) key, for the level of 
the model is deep, composite (primary/foreign) key 
will become very large. 

(2) Internal relationship across range  
On the definition scope, the scope must be 

promoted to be a higher level across the scope. On 
the definition field, the composite property 
definition will be used. Target element key will 
combine main attributes across the scope and its 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
259 

 

own main properties. Source class element keyref 
should also apply composite attributes with 
corresponding to the key. 

3) Generalization mapping rules 
Generalization relationship is mainly used to 

reflect the derived definition from complex type, it 
is divided into two generalizations: <<extension>> 
and <<restriction>> generalization. At the time of 
conversion, subclass derives based super class; 
derivation method depends on the kinds of 
generalization. The mapping rules see class 
<<complexType>> mapping rules for more 
information. 

2.4 Related Constraint Mapping Rules 
1) Prime attribute mapping 
In XUML prime attributes identify a line under, 

representing the attributes value is only and not 
empty. In XML Schema there are two ways to 
describe the prime attribute. 

(1) Defining the type as ID attribute can describe 
the prim attribute 

When the attributes use  ID type, then its 
corresponding reference attributes should define as 
IDREF (S) type. 

(2) Define primary attribute through the key 
constraint mechanism. 

Key not only can be applied to the attribute, also 
applied to the elements. Key can set the composite 
attributes; and key can clear its range of action. The 
reference attributes which corresponds to key 
define as keyref. The detailed definition sees 
relation mapping. 

2) Attributes multiple mappings 
The XUML property multiplicities, represents a 

total closure numerical range. Converted to XML 
Schema, lower bound of range maps the minOccurs 
value of the element, upper bound of the range 
mapping to maxOccurs value of the element, as 
illustrated in attribute mapping. 

3) Relation cardinal numbers mapping 
In general aggregation and the relationship, two 

relation ends may have cardinal numbers. When 
convert general aggregation, the cardinal number of 
component class end will be mapped to the 
minOccurs and maxOccurs values of corresponding 
elements. 

4) Relationship’s navigation mapping 
Mapping Relationship’s navigation to XML 

Schema mainly embody contains position and 
reference direction among the elements. Contains 
position and reference direction has been described 
in detail in generalized aggregation and 
relationship. 

 

3. ALGORITHM FROM XUML MODEL TO 
XML SCHEMA 

3.1 Processing Prior To Conversion 
1) Keep the name uniqueness 
In order to avoid name conflicts of element, 

attribute or type in subsequent conversion work, it 
would be better uniquely defines all class names in 
XUML model before conversion.  

2) Note component class order 
Components class in generalized aggregation will 

be converted into of global class. If the model 
group of global class elements is sequence, the 
order of sub-element adds notes before convert 
artificially according to demand. 

3) Add mark class 
In XUML model, the class expressing theme can 

appear multiple times, but because the XUML base 
number of identifier class is only to be one, so the 
class cannot be a mark class. In order to keep the 
semantic and conform to XUML syntax, a mark 
must be added on the class, and form the class to 
generalized aggregation relationship. 

3.2 Algorithm From XUML To XML Schema 
XUML model have element content and element 

type, general idea of conversion XUML to XML 
Schema is: first converting element type, generating 
a element type document, named SharedData.xsd; 
and then converting element content, generating the 
corresponding element content document, the 
document  includes a element types document, 
finally get the whole XML Schema document. 
Conversion process diagram from XUML to XML 
Schema is shown in figure 1. 
                                                 

include 

convert 

convert 
element  
content  

XUML 
model 

element  
type 

element content  
Schema document 

element type 
Schema document 
 

XML 
Schema 

 
Figure 1:  Conversion Process Diagram From XUML 

To XML Schema 

 
XML Schema embodying the core essence is: 

nesting elements and types reuse. The XUML 
element content part main embody the mutual 
connection between the various XUML classes. 
these connection primarily are the various relations 
within generalized aggregation and components. 
The XUML element type part is mainly composed 
of various class types, such as: <<simpleType>> 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
260 

 

class, <<enumeration>> class, <<complexType>> 
class, etc. <<complexType>> class may exist 
related generalization links between them. Element 
type part is for certain the simple or complex types 
to use many times in element content, of course, the 
element type part can also be reused by other 
business component, even further become an 
application domain vocabulary. 

Algorithm of converting XUML to XML Schema 
is as follows: 

Step 1: converting element type part: 
1) Firstly, for each class in the element type, 

judge its classification: 
(1) If it was class <<simpleType>>, according to 

the class <<simpleType>> mapping rule 
conversion; 

(2)If it was class <<enumeration>>, according to 
the class <<enumeration>> mapping rule 
conversion; 

(3) If it was class <<complexType>>, according 
to the class <<complexType>> mapping rule 
conversion. 

2) Lastly named document as SharedData.xsd. 
Step2: Converting element content, the generated 

Schema document called element content 
document, named by the identifier class. From 
identifier class start conversion level by level, the 
following describe the conversation process through 
a recursive algorithm: 

1) To create the mark C corresponds to root 
element E, type E is complex type CT; 

2) To define recursively globally complex type 
CT: 

(1) If C does not reference type of the element 
type, the C’s attributes according to the attribute 
mapping rules to generate CT’s sub-elements; 

(2) If association A in C exists, and as the source 
class in association, a new attribute in C must be 
added.  

i. if A is internal association in the range, the 
number of new attribute is 1; 

ii. If A is internal association across a range, the 
number of new attribute is multiple. 

In two cases, additional attributes are generated a 
child element in accordance with the (1)  

(3) If C has multiple independent binary 
generalized aggregation, converting to the internal 
association of scope, processing according to the 
(2); 

(4) If C only one generalized aggregation, 
wherein the component class: 

i. If it was class <<choice>> or class 
<<sequence>>, according to class <<choice>> 

mapping or class <<sequence>> mapping rule to 
convert; 

ii. If it was class <<complexType>>, it can be 
regarded as the root of subtree, processing as (1); 

(5)If C refers types of element type, CT will 
extend the derived definition, sub-elements of 
extension according to (2), (3) to generate. 

3) name document as identifier class 
Step 3: In element content, the relation between 

classes primarily through key and keyref to present. 
Because relation has multiple conditions, so the 
definition of key and keyref is not the same. Here 
separate generation algorithm for key and keyref 
are given: 

For each class in element content: 
(1) If it has main attribute, but has no relation, 

according to the mapping rules of main attribute to 
define key in the system scope; 

(2) If it has no relation, for each relation to 
generate the corresponding key and keyref: 

i. If the range is internal relation, processing 
according to mapping rule of internal relation; 

ii. if internal association across a range, then 
processing according to mapping rules across a 
range of internal association. 

Step 4: key and keyref generated on Step 3 must 
put in element content of document generated by 
Step 2, and elements content document must 
include SharedData.xsd document generated on 
Step 1. 

Through the above 4 step conversion, a XUML 
model can be generated a XML Schema document. 

 

4. APPLICATION EXAMPLES 
 

An extended XUML model is shown in Figure 2. 
XML Schema document generated by the above 

algorithm as follows. 
SharedData.xsd document generated from 

element type is as follows: 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 

xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 

Class<<complexType>> of element type is 
converted to  complex type "PaperType", such as:  

 <xs:complexType name="PaperType"> 
  <xs:sequence> 
   <xs:element 

name="Title" type="xs:string"/> 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
261 

 

element content

element type

*

0..1
0..1

principal

0..*

0..1
support

0..*

0..1
support

* *

*

<<reference>>

<<reference>>

0..1
dean

0..*

0..1

*

1..1

1..1

0..1

*

0..1
spouse

0..*

<<element>>
University

<<attribute>>Title : String

<<complexType>>
College

<<attribute>>CollegeID
Tilte

: String
: String

<<complexType>>
Graduate

<<attribute>>GraduateID
Name
RegisterDate

: String
: String
: Date

<<complexType>>
Teacher

<<attribute>>TeacherID
Name
Major
Title
QualifyDate

: String
: String
: String
: String
: Date

<<complexType>>
Project

<<Attribute>>ProjectID
Title
Fund

: String
: String
: Integer

<<complexType>>
PaperofGraduate

<<complexType>>
PaperofTeacher

<<simpleType>>
CellularphoneType

{length=11} : 

<<choice>>
Contact

Telephone
Cellularphone
Email

: String[1...2]
: CellularphoneType[0...1]
: String

<<complexType>>
PaperType

<<attribute>>PaperID
Title

: String
: String

 
 

Figure 2:   An Extended XUML Model 

 
 

 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
262 

 

<xs:element name="publishDate" type="xs:date"/> 
  </xs:sequence> 
  <xs:attribute name="PaperID" 

type="xs:string" use="required"/> 
 </xs:complexType> 
class<<simpleType>>> of element type convert 

to simple type "CellularphoneType", as follows: 
 <xs:simpleType 

name="CellularphoneType"> 
  <xs:restriction base="xs:string"> 
   <xs:length value="11"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 
Element content generated to University.xsd 

document is as follows： 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema 

xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 

Element content generates document must 
include SharedData.xsd, as follows: 

 <xs:include 
schemaLocation="SharedData.xsd"/> 

   <!-- iderfier class convert to a global element 
with complexType --> 

 <xs:element name="University" 
type="University"/> 

 <xs:complexType name="University"> 
  <xs:sequence> 
   <xs:element 

name="College"type="College" 
maxOccurs="unbounded"> 

  The key "Teacherkey" and keyref 
"Teacherkeyref", "Projectkeyref" of local scope 
defined is as follows:  

    <xs:key 
name="Teacherkey"> 

    
 <xs:selector xpath="Teacher"/> 

    
 <xs:field xpath="@TeacherID"/> 

    </xs:key> 
    <xs:key 

name="Projectkey"> 
    

 <xs:selector xpath="Project"/> 
    

 <xs:field xpath="@ProjectID"/> 
    </xs:key> 
    <xs:keyref 

name="Teacherkeyref" refer="Teacherkey"> 
    

 <xs:selector xpath="Teacher"/> 

<xs:field xpath="SpouseID"/> 
    </xs:keyref> 
    <xs:keyref 

name="Projectkeyref" refer="Teacherkey"> 
    

 <xs:selector xpath="Project"/> 
    

 <xs:field xpath="PrincipalID"/> 
    </xs:keyref> 
    <xs:keyref 

name="Collegekeyref" refer="Teacherkey"> 
    

 <xs:selector xpath="."/> 
    

 <xs:field xpath="DeanID"/> 
    </xs:keyref> 
    <xs:keyref 

name="PaperofTeacherkeyref" refer="Projectkey"> 
    

 <xs:selector 
xpath="Teacher/PaperofTeacher"/> 

    
 <xs:field xpath="ProjectID"/> 

 </xs:keyref> 
  <xs:keyref 

name="PaperofGraduatekeyref" 
refer="Projectkey"> 

 <xs:selector 
xpath="Teacher/Graduate/PaperofTeacher"/><xs:fi
eld xpath="ProjectID"/> 

 </xs:keyref> 
 </xs:element> 
  </xs:sequence> 
       <xs:attribute name="Title" type="xs:string" 

use="required"/> 
 </xs:complexType> 
Each class <<complexType>> converts to 

complex type definition, such as complexType 
"College",  "Project", "Teacher", "Graduate" etc.. 

 <xs:complexType name="College"> 
  <xs:sequence> 
   <xs:element 

name="Title" type="xs:string"/> 
   <xs:element 

name="DeanID" type="xs:string" minOccurs="0"/> 
   <xs:element 

name="Project" type="Project" 
maxOccurs="unbounded"/> 

   <xs:element 
name="Teacher" type="Teacher" 
maxOccurs="unbounded"/> 

  </xs:sequence> 
  <xs:attribute name="CollegeID" 

type="xs:string" use="required"/> 
 </xs:complexType> 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
263 

 

 <xs:complexType name="Project"> 
  <xs:sequence> 
   <xs:element 

name="Title" type="xs:string"/> 
   <xs:element 

name="Fund" type="xs:integer"/> 
   <xs:element 

name="PrincipalID" type="xs:string" 
minOccurs="0"/> 

  </xs:sequence> 
  <xs:attribute name="ProjectID" 

type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Teacher"> 
  <xs:sequence> 
   <xs:element 

name="Name" type="xs:string"/> 
   <xs:element 

name="Title" type="xs:string"/> 
   <xs:element 

name="Major" type="xs:string"/> 
   <xs:element 

name="QualityDate" type="xs:date"/> 
   <xs:element 

name="SpouseID" type="xs:string" 
minOccurs="0"/> 

                 <xs:element 
name="PaperofTeacher" type="NewPaperType"  

maxOccurs="unbounded"/> 
   <xs:element 

name="Graduate" type="Graduate" minOccurs="0"  
maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="TeacherID" 

type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="Graduate"> 
  <xs:sequence> 
   <xs:element 

name="Name" type="xs:string"/> 
   <xs:element 

name="RegisterDate" type="xs:date"/> 
Here shows choice module group nested in 

sequence module group. 
<xs:choice> 
         <xs:element 

name="Telephone" 
type="xs:string"maxOccurs="2"/> 

         <xs:element 
name="Cellularphone" type="CellularphoneType"  

minOccurs="0"/> 
         <xs:element 

name="Email" type="xs:string"/> 
   </xs:choice> 

   <xs:element 
name="PaperofGraduate" type="NewPaperType"  

minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="GraduateID" 

type="xs:string" use="required"/> 
 </xs:complexType> 
The following is definition of complex types 

"NewPaperType" derived refer to the type of 
element type "PaperType" section. 

 <xs:complexType name=" 
NewPaperType"> 

 <xs:complexContent> 
   <xs:extension 

base="PaperType"> 
 <xs:sequence> 
    

 <xs:element  name="ProjectID" 
type="xs:string"  

minOccurs="0"/> 
 </xs:sequence> 
   </xs:extension> 
 </xs:complexContent> 
 </xs:complexType> 
</xs:schema> 

5. CONCLUSION 

Based on the concept of XML model – XUML, 
this paper defines the mapping rules from extended 
XUML to Schema, puts forward a kind of 
algorithm from XUML to XML Schema, the 
algorithm can effectively realize the conversion of 
XUML to XML Schema. The next step of research 
is processing XMI document corresponding to 
XUML provided by XML Schema Infoset Modle 
API based the Eclipse platform to generate XML 
Schema document. 

ACKNOWLEDGEMENTS 

This work is supported by grants from the 
Chinese National Natural Science Foundation (No. 
60873193) and Natural Science Foundation of 
Hubei Province of China (No.2011CDC029), Key 
project in Hubei Provincial Department of 
Education (No.D20122606), Humanities and social 
sciences research youth foundation of Ministry of 
Education of China(No.12YJC630006). 

 
 
 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
264 

 

REFRENCES: 
 

[1] Ling Feng, Elizabeth Chang, Tharam S. Dillon, 
“A Semantic Network-Based Design 
Methodology for XML Documents”, ACM 
Transactions on Information Systems, Vol. 20, 
No. 4, 2002, pp. 390-421. 

[2] Daum Blin, Asset Oriented Modeling(AOM). 
http://www.aomodeling.org, 2005. 

[3] Gillian Dobbie, Wu Xiaoying, Tok Wang Ling, 
ORA-SS: An Object-Relationship-Attribute 
Model for Semistructured Data, [Technical 
Report TR21/00]. National University of 
Sigapore, 2000. 

[4] Bernadette Farias Lósio, Ana Carolina Salgado, 
Luciano do Rêgo GalvĐo. “Conceptual 
Modeling of XML Schemas”, Proceedings of 
WIDM03, 2003, pp. 102-105. 

[5] David W. Embley, Stephen W. Liddle, Reema 
A1-Kamha ,”Enterprise Modeling with 
Conceptual XML”, Proceedings of  ER 2004 , 
pp.150-158. 

[6]  Carlson Din,  Modeling XML applications 
with UML, Wesley Press ,2001. 

[7]  Hongxing Liu,Yansheng Lu ,Ming Chen, An 
XML Conceptual Model:XUML, Computer 
Science, Vol. 34, No. 1, 2007, pp.88-91. 

[8] Anneke Kleppe, Jos Warmer,Wim Bast, 
Parsing of MDA, People's Posts & Telecom 
Press, 2004. 

 

http://www.jatit.org/

	XUEMIN ZHANG
	ACKNOWLEDGEMENTS

