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ABSTRACT 
 

Reliable measurements of ball mill load parameters and reorganization of the operating statuses are the key 
factors for saving energy and optimization control. Empirical mode decomposition (EMD) and partial least 
squares (PLS) are used to analyze shell vibration signal and monitor mill load parameters of ball mill. The 
shell vibration signal is decomposed into several intrinsic mode functions (IMFs) adaptively. The power 
spectral density (PSD) of each IMF is analyzed under different grinding conditions. A new index is defined 
to measure the relative change of each IMF to original signal, which is also used to select more 
informational IMFs. The ensemble PLS method is used to build soft-sensor models based on frequency 
spectrum of the selected IMFs. Experimental results show that ensemble soft-sensor model based on EMD 
and PLS can extract effective features of shell vibration signal and monitor mill load effectively.  

Keywords: Parameters Estimation, Vibration Signal Analysis, Empirical Mode Decomposition; Partial 
Least Squares, Ensemble Modeling  

 
1. INTRODUCTION  
 

Ball mill load is the most important information 
in the mineral processing, which is also one of the 
key factors for the implement of the optimization 
and control of the grinding process. The parameters 
and condition of the ball mill load are closely 
related to grinding process operating efficiency, 
product quality and energy consumption. However, 
communication mechanism of wet ball mill is still 
far from understood [1]. It is difficult to online 
measure the mill load for poor conditions inside 
ball mills because of a series of complex impact 
and grinding among steel balls and materials, steel 
balls and lining [2].  

Mill load parameters inside ball mill including 
material to ball volume ratio (MBVR), pulp density 
(PD) and charge volume ratio (CVR) have direct 
relationship with the grinding production ratio [3]. 
Zeng et al. constructed the partial least square 
(PLS) and principle component regression (PCR) 
models between PD and characteristic frequency 
sub-bands based on the spectrum of axis vibration 
and acoustical signals of the ball mill [4]. However, 
the axis vibration signal is dispersed and disturbed 

by the transfer system of ball mill, and the acoustic 
signal has acoustical crosstalk with adjacent mill. 
Shell vibration signal is more sensitive than the 
acoustical signal and has fewer disturbances [5]. 
The studies of the shell vibration for a semi-
autogenous (SAG) mill show that shell vibration is 
indicator of pulp density and viscosity [6]. 
Recently, tang et al. make a detail experimental 
research on a laboratory scale ball mill [7], which 
shows that the mill load parameters have stronge 
relationship with the shell vibration frequency 
spectrum. A genetic algorithm-partial least square 
(GA-PLS) based modeling method has been 
proposed. However, it is difficult to explain the 
physical meaning of the selected sub-bands and is 
time-consuming due to the random initialization of 
GA. A principal component analysis-support vector 
machines (PCA-SVM) approach was proposed in 
[8] to modeling these mill load parameters. 
However, principal components don’t take into 
account the correlation between inputs and outputs 
[9]. Combined with the mechanical analysis of the 
shell vibration production, PLS and adaptive 
weighting fusion algorithm [10] based on ensemble 
modeling method is proposed. However, the 
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partition of the frequency bands is manual, and 
some sub-models have higher predication accuracy 
than the ensemble model.  

In fact, the mill shell is impacted by a variety of 
impact forces with different amplitudes and 
frequencies. It is essential to split the shell vibration 
signal into different sub-signals which maybe 
caused by different vibration resources and contain 
different information on mill operation. Empirical 
mode decomposition (EMD) was proposed by 
Huang [11], which is a self-adaptive method based 
on partial characteristic of the signal. It essentially 
allows the decomposition of the time-domain 
original signals into some intrinsic mode functions 
(IMFs), and provides a time-frequency distribution. 
This method has been widely used in fault 
diagnosis [12]. By analyzing each IMF component 
that involves the local characteristic of the signal, 
the characteristic information of the original signal 
could be extracted more accurately and effectively. 
Thus, the EMD and power spectral density (PSD) 
methods were used to analyze the shell vibration 
signal by using PCA and PLS algorithm 
respectively [13]. However, it was weak on analysis 
of shell vibration and prediction performance of 
models for mill load parameters. How to analyze 
the IMFs and how to improve the modeling 
accuracy is still an open issue.  

Therefore, EMD and ensemble PLS based 
modeling technology is proposed. At first, the 
original shell vibration signal is decomposed into a 

number of intrinsic mode functions (IMFs) 
adaptively using EMD technology. Then, the power 
spectral density (PSD) of each IMF is analyzed in 
detail under different grinding conditions and a new 
index is defined to select more informational IMFs. 
Finally, the ensemble PLS method is used to 
construct soft-sensor models based on frequency 
spectrum. Experiments are done on a laboratory 
ball mill to validate this approach. 

This paper is organized as follows: Section 2 
presents the materials and method using in this 
paper, section 3 focuses on the experiment results 
and discussion, section 4 gives the conclusions 

 
2. MATERIALS AND METHOD  
 
2.1 Experimental  Descriptions 

The experiments were performed on a 
laboratory scale ball mill (XMQL-420×450) which 
is a continuous grinding grid ball mill. The mill, 
driven by a three-phase 2.12kW motor, has a 
maximum ball load of 80kg, a designed pulverizing 
capacity of 10kg per hour, a rated speed of 57 
revolution per minute and volume of 60 L of drums 
. The copper ore, which is used as material to be 
pulverized, is crushed to about less than 6 mm 
before used. The diameters of the steel balls are 30 
mm, 20 mm and 15 mm with the ball radius ratio of 
3:4:3, respectively. The shell vibration signals of 
the mill operated under four grinding conditions, as 
illustrated in Table 1, as shown in [7]. 

Table 1: Experimental Detail Of Four Grinding Conditions 

 Grinding 
conditions 

running 
time (s) 

Times 
(n) 

Mill load (kg) 
Increase 

steps (kg) ball 
mineral water Big Medium Small All 

balls 

1 Ball 
60 15 0 0 10~80 10~80 0 0 5 
60 3 0 20~80 0 20~80 0 0 30 
60 2 22~50 0 0 22~50 0 0 28 

2 Ball-Mineral 120 5 20 10 10 40 10~40 0 10 
120 3 6~18 8~24 6~18 20~60 10 0 6,8,6 

3 ball-Water 30 6 6 8 6 20 0 5~50 5,10 

4 
Ball-

Mineral-
Water 

60 6 12 16 12 40 10 5~40 5,10 
60 7 12 16 12 40 20 2~20 3,2,5 
60 9 12 16 12 40 22~50 10 2,5 
60 6 12 16 12 40 10~20 2 2 
60 6 6~9 8~16 6~12 20~37 4 5 3,4,3 

2.2 Methods 
The mechanical grinding process of ball mill 

produces strong vibration and acoustic signals, 
which are stable and periodic over a given time 

interval. The vibration acceleration signals of the 
mill shell are sensitive to the impact force of mill 
load to mill liners. If we analyze the shell vibration 
signal in one rotation of ball mill, the original shell 
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vibration signals can be decomposed to different 
sub-signals. Every sub-signal is an IMF of the 
EMD decomposition. Every IMF maybe caused by 
different reasons and contains different 
information. Studies show that the relative 
amplitudes of the vibration frequency spectrum 
contain information directly relate to the operating 
parameters of grinding process. Then, the 
frequency spectrum of the IMF can embody the 

information more evidently. Comparing to the 
spectrum of the IMFs and the original signals, we 
can understand the grinding mechanism and the 
composition of the shell vibration signal more 
deeply.  

A method combining EMD, FFT, PLS and 
ensemble modeling technologies is proposed to 
analyze the shell vibration signal and monitor the 
parameters of mill load, as shown in Fig.1. 
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Figure 1: EMD And PLS Based Modeling Approach 

In Fig.1, x represents the original shell 
vibration signal; jc represents the thj IMF, where 

1, ,j J=  , J  is the number of the IMFs; 

jz represents the frequency spectrum of the 

thj IMF; jγ  is the relative change coefficients of 

the thj IMFs to the original signal; 
seljz represents 

the frequency spectrum of the thselj IMF for 
construct ensemble PLS model, where 

1, ,sel selj J=  , selJ  is the number selected IMFs; 

iy  represents the parameters of mill load, where 
1,2,3i =  represents mineral to ball volume ration, 

pulp density and charge volume ratio respectively. 
 
2.2.1. Empirical mode decomposition based 

signal adaptive decomposition  
The EMD technology can directly analyze the 

original signal according to the interior time scale 
of data. Therefore, EMD can decompose a non-
linear and non-stationary data into a sequence of 
amplitude-modulation/frequency-modulation 
components. However, it is based upon three 
assumptions [14]: (1) The signal has at least two 
extreme (maximum and minimum); (2) The 
characteristic time scale is defined by the time 
lapse between successive alternations of local 

maxima and minima of the signal; (3) If the signal 
has no extreme but contains inflection points, then 
it can be differentiated once or more times to 
reveal the extreme.  

The amplitude-modulation / frequency-
modulation components are called as IMFs that 
must satisfy the following two conditions [15]: (1) 
In the whole data set, the number of extreme and 
the number of zero-crossings must either be equal 
or differ at most by one; and (2) At any point, the 
mean of the envelope defined by local maxima and 
the envelope defined by local minima are zero. 

The procedure of EMD method is a sifting 
process iteratively. The decomposition of shell 
vibration signal is as follows: 

Step1: Assume that ( )x t  is the original signal. 
Find out the entire extreme of the signal. 

Step2: Connect all the local maxima and minimum 
by a cubic spline as the upper and lower envelope 
respectively. The upper and lower envelopes 
should cover all the data between them. 

Step3: Calculate the mean value of the upper and 
low envelope value. It is designated as 1m , the 
difference between the original signal ( )x t  and 1m  
are the first component 1h . 

http://www.jatit.org/
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1 1( )h x t m= −                                    (1) 
Step4: Check whether 1h satisfy the IMF criteria or 
not. Ideally, if 1h  is an IMF, then 1h is the first 
component of ( )x t . 

Step5: If not, the above procedure Step1)-Step 3) 
repeat. Here 1h  is treated as the original signal, 
then 

11 1 11h h m= −                                          (2) 
where 11m is the mean of upper and low envelope 
value of 1h . This process can be repeated up to k  
times, until 1kh becomes an IMF, that is 

1 1( 1) 1k k kh h m−= − .                                  (3) 
After each sifting processing, it is necessary to 

check whether the number of zero crossings equals 
to the number of extreme. The finally of 
component is made as the first IMF, and then it is 
designated as 

1 1kc h= .                                      (4) 
where 1c  should contain the finest scale or the 
shortest period component of the signal. 

Step6: Next, separate 1c  from the original ( )x t , 
which could get: 

1 1( )r x t c= − .                                      (5) 
Here 1r  is treated as the original data, and by 
repeating the above processes, the second IMF 
component 2c  of ( )x t  could be obtained. Thus 
repeat the process above j  times, then jth -IMFs 
of signal ( )x t  could be obtained. 

As soon as jr  becomes a monotonic function, 
the decomposition process can be stopped and 
there is no more IMFs can be extracted from the 
signal. Following the process above, the equation 
below is gained: 

1
( )

n

j n
j

x t c r
=

= +∑ .                                (6) 

Thus, the signal ( )x t  is decomposed into n -
IMFs，which include different frequency bands 
ranging from high to low and a residue nr  which 
can be either the mean trend or a constant. 

2.2.2 Time/frequency transform 
Although the IMFs of the shell vibration are 

obtained, the interested signals for the grinding 
status cannot be extracted evidently. The 

frequency spectrum has direct relationship with the 
operating parameters inside ball mill. After 
decomposition the original data into several IMFs, 
the classic Welch's method is used to obtain the 
PSD of each IMF respectively. The data length to 
obtained PSD should be one revolution of the ball 
mill. Moreover, the finial PSD should be averaged 
by several revolutions to overcome the fluctuation 
of the operating conditions.  

Denote the frequency spectrum of jc  as jz , 
where j  indicates the jth -IMF. The relationship 
between jz  and mill load parameters would be 
analyzed in detail for interpretation the vibration 
signal more deeply. 

2.2.3 Partial Least Squares based frequency 
spectrum analysis 

Partial least squares (PLS) is a multivariate 
projection method, which can capture the maximal 
covariance between the input variables and output 
variables using the latent variables by 
decomposing the input and output variables 
simultaneously [16]. Assume predictor variables 

n pZ ×∈ℜ and response variables n qY ×∈ℜ  are 
normalized as ( )0 01 02 0 p n p

E E E E
×

=  and 

( )0 01 02 0q n q
F F F F

×
=   respectively. Let 1t  

be the first latent score vector of 0E , 1 0 1t = E w , 
and 1w  be the first axis of the 0E , | 1| w ||= 1 . Let 

1u  be the first latent score vector of 0F , 1 0 1u = F c , 
and 1c  be the first axis of the 0F , | 1| c ||= 1 .  

We want to maximize the covariance between 
1 0 1t = E w  and 1 0 1u = F c , thus have the following 

optimization problem: 

0 1 0 1
T T

1 1 1 1

Max < E w ,F c >

s.t. w w = 1,c c = 1
                      (7) 

By solving (7) with the Lagrange approach, 
T T T T

1 0 0 1 1 1 1 2 1 1s = w E F c - l (w w - 1) - l (c c - 1)     (8) 

where 1λ  and 2 0λ ≥ . At last, we obtain that 

1w and 1c are the maximum eigenvector of matrix 
T T
0 0 0 0E F F E  and T T

0 0 0 0F E E F . So, after 1t and 1u is 
obtained. We have T

0 1 1 1E = t p + E , T 0
0 1 1 1F = u q + F  

and T
0 1 1 1F = t b + F . In which, 

T
0 1

1 2
1

E t
p =

|| t ||
,

T
0 1

1 2
1

F u
q =

|| u ||
,

T
0 1

1 2
1

F t
b =

|| t ||
,and 1E , 0

1F  
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and 1F  are the residual matrices. Then we replace 

0E and 0F with 1E and 1F  to obtain the second 
latent score vectors 2t and 2u . Using the same 
method, we get all the latent score vectors 
until h hE = F = 0 .  

Therefore, the PLS decomposes the data 
matrices Z and Y into a low dimensional space 
with h  latent variables, which can be show as 
follows: 

TZ = TP + E                                           (9) 
TY = UQ + F                                          (10) 

where 1 2 hT = [t ,t ,...,t ] and 1 2 hU = [u ,u ,...,u ]  are 
score matrice; 1 2 hP = [p , p ,..., p ]  and 

1 2 hQ = [q ,q ,...,q ]  are loading matrices 
respectively. E  and F  are the modeling residual 
of Z  and Y . These two equations can be written 
as a multiple regression model: 

Y = ZB+G            (11) 

where matrix B  contains the PLS regression 
coefficients and can be calculated as follows: 

T T T -1 TB = Z U(T ZZ U) T Y              (12) 
In order to show the relative change coefficients 

of the IMFs to the original signal, a new index is 
defined as following: 

IMFj
IMF

orig

c
c

γ =                            (13) 

where 
IMFjc  and origc  represents the frequency 

spectral correlate coefficients of the thj IMF and 
original signal. If the value of 

IMFjγ  is larger than 
one, which shows it contains more information 
than the original signals. Then we can select IMFs 
with higher 

IMFjγ  to construct models for 
monitoring mill load parameters. 

2.2.4 Ensemble PLS based mill load parameters 
modeling 

It is possible to monitor mill load parameters 
according to the selected IMFs. Due to robust to 
high dimensional, collinear, and noise in data set, 
PLS is used to build soft sensor models of mill 
load parameters. Ensemble methods have received 
special attentions because it can improve accuracy 
of the predictor and achieve better stability through 
building a set of individual models, with the goal 

of reducing the expected error of the model [17]. 
To build an ensemble, a set of diverse ensemble 
components and combination mechanism of their 
predictions are needed to obtain the final ensemble 
model. Ensemble PLS (EPLS) approach is 
proposed to model near-infrared complex spectral 
data [18]. This approach involves three steps: (1) 
Training a pool of PLS sub-models individually; 
(2) Selecting some PLS sub-models; and (3) 
combining the selected PLS sub-models to get the 
final predictions of mill load parameters.  

We construct sub-models of mill load 
parameters with frequency spectrum of different 
IMFs, and then use adaptive weight fusion to 
weight these sub-models. The estimate value of 
ensemble PLS models can be calculated by:  

sel

1

ˆ ˆ
J

i ij ij
j

y w y
=

= ∑                          (14) 

where 1,2,3i =  represent material to ball volume 
ratio, pulp density and charge volume ratio 
respectively; selJ  is the numbers of the selected 
sub-models; ˆiy and ˆijy are the estimate value of 
the ensemble PLS model and the jth sub-model for 
the thi mill load parameter ; 

sel

1
1

J

ij
j

w
=

=∑ , 0 1ijw≤ ≤ , ijw is the weight coefficients 

of the thj sub-model for the thi  mill load 
parameter. It is calculated based on [15]: 

2
2

1

11 ( )
( )

selJ

ij ij
j ij

w σ
σ=

 
=   

 
∑                   (15) 

where ijσ is the standard variance of the estimate 

value ˆ{ }( 1,2, , )l
ijy l n=  . 

3. RESULTS AND DISCUSSION 
 
3.1 Empirical Mode Decomposition Of Shell 

Vibration Signal  
 
3.1.1 Intrinsic mode functions under extreme 

grinding conditions  
Power spectrum of each IMF of shell vibration 

signals is calculated by using classics Welch 
power spectrum estimation methods. The 
time/frequency domain curves of the IMFs under 
different grinding conditions are shown in Fig.2. 
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(A) Time/Frequency Domain Curves Of The Imfs Under Zero Load Condition 

 
(B) Time/Frequency Domain Curves Of The Imfs Under Ball Load Condition 

 
(C) Time/Frequency Domain Curves Of The Imfs Under Ball And Water Load (Water Grinding) Condition 

 
(D) Time/Frequency Domain Curves Of The Imfs Under Ball And Mineral Load (Dry Grinding) Condition 

 
(E) Time/Frequency Domain Curves Of The Imfs Under Ball, Mineral And Water Load (Wet Grinding) Condition 

Figure 2 Time/Frequency Domain Curves Of The Imfs Under Different Grinding Conditions 
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The load in Fig .2 are: ball load 40kg, mineral 
load 30kg  and water load 10kg. The experiments 
are performed with the different grinding 
conditions such as: (a) zero load; (b) ball load; (c) 
ball and water load; (d) ball and mineral load; (e) 
ball, water and mineral load. Fig .2 shows the shell 
vibration signals under different grinding 
conditions can be decomposed to lots of IMFs with 
different time-domain and frequency-domain 
features. The following results are shown: 

(1) The rotation of the ball mill is one of the 
sources of the mill shell vibration for this 
laboratory-scale ball mill. On zero load grinding 
condition, the 13th IMF is a periodical signal with 
the highest amplitude, whose frequency is the 
rotating frequency of the ball mill shell. Thus, the 
13th IMF is caused by the rotating of the mill 
shell. This shows that there is a mass equivalent 
with this experimental ball mill itself. Moreover, 
the frequency spectrum of the 13th IMF is 122 
times the 3rd IMF’s.  

Remark: In order to display the other IMFs' 
spectrum, the up limit of the “z axis” in Figure 2(a) 
is limited at 0.0001. The similar operations are 
done in other figures except Figure 2(b). Thus, we 
cannot plot the 13th IMF totally. On the only ball 
load condition as shown in Figure 2(b), the shell 
vibration is so strong that the rotation periodical 
signal cannot be seen clearly.     .   

(2) The different characters of the water, the 
mineral and the pulp affect the impaction of balls 
to liners by various energy dissipation 
mechanisms, which decide the different shapes of 
the IMFs in time domain and frequency domain. 
The maximum amplitudes of the time-domain 
IMFs are 2, 40, 20, 2 and 10 for (a), (b), (c), (d) 
and (e) of Figure 2 respectively. With only ball 
load condition, no any damping medium exists; the 
balls impact the mill shell directly and strongly. 
Thus, the biggest amplitude is obtained, and the 
vibration frequency is mainly medium and high 
frequency bands. With the adding of the water in 
Figure 2(c), water and mineral in Fig .1 (e), and 
the mineral in Fig 1.(d), the mainly vibration 
source become the rotation of the mill shell. That 
is to say, the impactions of the balls to the mill 
liners are damped. The difference of grinding 
mechanism for dry milling and wet milling can 
also be shown in the frequency spectrum of these 
IMFs. 

(3) Different IMfs contain different information. 
It is possible to select some useful IMFs to 
construct more effective soft sensor models. 
However, the details explanation of the IMFs 

should be done by integrating the finite element 
analysis of ball mill shell vibration system and 
more experiments. 

3.1.2 Intrinsic mode functions under the wet 
grinding conditions 

In practice, the motion of the steel ball is a 
three-phase hybrid movement, whose trajectory 
includes circular path, parabolic path and attracting 
path. Therefore, the mill shell is impacted by a 
variety of impact forces. In the wet ball mill of the 
grinding process, the motion of the balls is affected 
by the mill load parameters. For example, material 
to ball volume ratio, pulp density and viscosity 
affect the buoyancy and viscous effect to balls, and 
the coating thickness of the balls, and charge 
volume ratio affects the motion time of the balls in 
the pulp. Discrete element analysis based on the 
single steel ball shows that the friction coefficient 
between the steel ball and mill liner decides the 
“shoulder” zone of the ball leaving the mill liner 
and the “toe” zone of the ball dropping; the 
rebound coefficient between the balls and mill 
liner decides the rebound velocity [19]. Actually, 
both the two coefficient are affected by the mill 
load parameters. There are a large number of balls 
in the mill. These balls are layered, and balls in 
different layers are thrown down at the same time 
with different impact forces. The radius of the 
balls are different, thus the impact forces are also 
different. The hardness, particle distribution of the 
ore also affects the impact force. Under different 
pulp viscosity, the buoyancy and viscous effect to 
the balls are different. On some grinding 
conditions, the impact forces are difficult to a 
description. Thus, these impact forces with 
different sources and frequencies overlay each 
other . Therefore, the shell vibration signal can 
reflect the mill load parameters more accurately. 

Based on the above analysis, we give the power 
spectral density (PSD) of different IMFs under 
different grinding conditions. The waterfall of the 
first six IMFs with only water, mineral and ball 
load change are analyzed and discussed in here. 
 
3.1.2.1 Water-only load change  

The mill was operated with the ball load at 40kg 
and mineral load at 10kg, but the water load was 
increased from 5kg to 40kg, the pulp density was 
decreased from 66.7% to 20%, and the charge 
volume ratio was increased from 20.1% to 79.1%. 
The PSD waterfalls the first six IMFs are shown in 
Figure 3. 
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(A) Waterfall Of The 1st  IMF      (B) Waterfall Of The 2nd IMF      (C) Waterfall Of The 3rd IMF 

 
(D) Waterfall Of The 4th IMF;    (E) Waterfall Of The 5th IMF;     F) Waterfall Of The 6th IMF 

Figure 3: PSD Waterfalls Of The Former Six Imfs With Water Load Increase 

Initially, water is so little that pulp density is 
high. The amplitudes of the former six IMFs 
increase gradually with the increase of the water 
load. Initially, there is so little water and the pulp 
density is the largest. Then, with the increase of 
the water, pulp density and viscosity decreases, 
and the coating thickness of the balls also 
decreases, so the cushion function of the pulp 
decreases, thus enforces the impact between balls 
to mill shell. This is same as the previous 
conclusion [11]. The band width of the 1st IMF is 
mainly 4,000~12,000Hz, which maybe caused by 
the impact among balls. The band width of the 2nd 
and 3rd IMFs is mainly 2,000~6,000Hz, which 
may be caused by the impact of balls to liners. The 
4th, 5th and 6th may correlate with the natural 
vibration frequency of the shell vibration system. 
These conclusions are only based on the quality 
judgment. However, all these results show that the 
original vibration signals can be decomposed to 
different parts, and each part is changed with the 
increase of the water load. It is useful to select 
some IMFs to construct more effective models.  
3.1.2.2 Mineral-only load change 

The mill was operated with the ball load at 40kg 
and water load at 10kg, but the mineral load was 
increased from 22kg to 50kg, and pulp density was 
increased from 68.8% to 83.3%, and charge 
volume ratio was increased from 34.6% to 45.0%. 
The PSD waterfalls of the former six IMFs are 
shown in Figure 4. 
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(A) Waterfall Of The 1st IMF;      (B) Waterfall Of The 2nd IMF;     (C) Waterfall Of The 3rd IMF 

 
(D) Waterfall Of The 4th IMF;     (E) Waterfall Of The 5th IMF;      (F) Waterfall Of The 6th IMF 

Figure 4: PSD Waterfalls Of The Former Six Imfs With Mineral Load Increase 

Fig.4 shows that the ranges of the band width of 
different are same as Fig.3. Fig.4 (d), Fig.4 (e), and 
Fig.4 (f) show that with the increase of the mineral 
load, the amplitudes decrease rapidly with mineral 
load increasing from 22kg to 30kg, but slowly 
from 30kg to 50kg. Note that when the mineral 
load is 30kg, the corresponding pulp density is 
75%. This is because the coating thickness of the 
balls does not increase evidently with the increase 
of pulp density when the density is higher than 
75%, which makes the cushion functionality 
between balls to mill liners and balls to balls do 
not improve any more, and the impact to mill shell 

does not change. This is same as the previous 
conclusion [11]. However, Fig.4 (a), Fig.4 (b) and 
Fig.4 (c) don’t embody this fact. Thus, more 
experiments and simulations should be done to 
solve this problem. 
3.1.2.3 Ball-only load change 

The mill was operated with the mineral load at 
4kg and water load at 5kg, but the ball load was 
increased from 20kg to 37kg, and charge volume 
ratio was increased from 14.2% to 18.6%, and the 
medium charge ratio was increased from 10.1% to 
18.6%. The PSD waterfalls of the former six IMFs 
are shown in Figure 5. 

 
(A) Waterfall Of The 1st IMF;      (B) Waterfall Of The 2nd IMF;      (C) Waterfall Of The 3rd IMF 

 
(D) Waterfall Of The 4th IMF;     (E) Waterfall Of The 5th IMF;    (F) Waterfall Of The 6th IMF 

Figure 5: PSD Waterfalls Of The Former Six Imfs With Ball Load Increase 
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Fig.5 shows with the increase of the ball loads, 
the amplitudes of the every IMF at different 
frequency bands increase evidently. The changes 
of the load are embodied in every IMFs. Thus, the 
ball load information is contained in every IMFs. 
The reason is described in [11], which are omitted 
here. 

However, in practice, the ball load changes less 
in the running of the grinding process in short time 
period. Thus, the monitor of the mill load 
parameters is very important. The analysis among 
the different IMFs and mill load parameters are 
done in the next sub-section. 

3.2 Feature Analysis Of Intrinsic Mode 
Functions 

Because PLS algorithm captures the maximal 
covariance between the input and output data using 
less latent variables, it is used to analysis the 
relationship between mill load parameters and 
frequency spectrum of IMF. The percent variances 
captured by the 1st latent variable (LV) are shown 
in Table. 2. Frequency spectral correlate 
coefficients and relative change coefficients of the 
former seven IMFs are shown in Table .3. 

Table 2: Percent variance captured by the 1st latent variable (LV) of PLS Algorithm 

 Original 1st 
IMF 

2nd 
IMF 

3rd 
IMF 

4th 
IMF 

5th 
IMF 

6th 
IMF 

7th 
IMF 

Frequency spectrum 92.35 80.15 78.82 71.15 51.86 69.95 70.08 60.81 
Material to ball volume ratio 10.69 15.49 23.07 16.98 22.01 9.36 7.64 9.37 

Frequency spectrum 92.50 81.18 82.05 76.89 61.66 78.06 72.79 61.75 
Pulp density 45.14 50.66 56.46 37.67 16.77 27.87 32.72 47.87 

Frequency spectrum 92.46 80.43 82.59 77.93 57.47 79.36 74.64 66.04 
Charge volume ratio 41.12 46.72 41.98 28.87 21.51 25.63 29.18 31.96 

 
Table 3: Relative change coefficients of the IMFs to the original signal 

  Original 1st  
IMF 

2nd 
IMF 

3rd 
 IMF 

4th  
IMF 

5th  
IMF 

6th  
IMF 

7th  
IMF 

Material to 
ball volume 

ratio 

Frequency spectral 
correlate 

coefficients 
0.1157 0.1933 0.2926 0.2386 0.4244 0.1338 0.1090 0.1540 

IMFjγ  ----- 1.67 2.52 2.06 3.66 1.15 0.94 1.33 

Pulp density 

Frequency spectral 
correlate 

coefficients 
0.4880 0.6240 0.6881 0.4899 0.2720 0.3570 0.4495 0.7752 

IMFjγ  ---- 1.27 1.41 1.00 0.55 0.73 0.92 1.58 

Charge 
volume ratio 

Frequency spectral 
correlate 

coefficients 
0.4446 0.5808 0.5082 0.3704 0.3742 0.3229 0.3909 0.4839 

IMFjγ  ---- 1.30 1.14 0.83 0.84 0.72 0.87 1.08 
 

Table.3 shows that (1) Different mill load 
parameters relate to different IMFs, for example, 
material to ball volume ratio relates to 2nd, 3rd 
and 4th, pulp density relates to 1st , 2nd , 3rd and 
7th IMF, charge volume ratio relates to 1st , 2nd , 
6th and 7th IMF; (2) After decompose the original 
vibration signal, more interesting information can 
be found in IMFs, for example, most of the values 
of relative change coefficients are larger than 1; 
(3) The most important IMFs are 1st, 2nd and 7th, 
whose frequency ranges are mainly 
4,000~6,000Hz, 2,000~4,000Hz and 100~2000Hz 
respectively. Compare with the former research 

results [11], it is shows that 1st, 2nd and 7th IMF 
are caused by the secondary impaction, main 
impaction, and nature mode of the shell 
mechanical structure (consisting of mill load and 
mill shell) itself. However, all these analysis are 
based on the laboratory-scales ball mill with 
limited samples. More experiments and simulation 
will be done to validate the conclusions further. It 
has the potential advantages to measure the mill 
load parameters continuously to achieve better mill 
operation. 
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3.3 Mill Load Parameters Monitoring Based On 
Ensemble PLS  

There are thirteen training samples to build soft 
sensor model of mill load parameters. Thirteen 
independent samples are used to test the soft 
sensor models. If the input data of the soft sensor 
model come from the original vibration signal, 

single IMF and several IMFs, the soft sensor 
model are named as ORI-PLS, IMF-PLS, IMF-
EPLS model, respectively. The number of latent 
variables was determined with the leave-one-out 
across validation method. The real and estimate 
value curves of mill load parameters are shown in 
Figure 6.  

 
Figure 6: Prediction Results Of Different Approaches 

The root mean square relative error (RMSSE) of 
different mill load parameters’ models are shown 
in Table 4. In Table 4, the “ORI” presents the 
original vibration signal, whose length is four 

rotating period of ball mill; “RCS” represents 
relative change coefficients, which is defend in 
(13). With different “RCC” threshold, we select 
different IMFs to construct ensemble PLS models. 

Table 4: Prediction accuracy and modeling parameters of different modeling approach 

 
Predictor 

Threshold: 
RCC 

material to ball volume 
ratio pulp density charge volume ratio 

RMSSE 
(Average) (IMFs) 

latent 
variables 

RMSSE 
(IMFs) 
latent 

variables 
RMSSE 

(IMFs) 
latent 

variables 
RMSSE 

ORI-PLS ORI(100:12000) 5 0.7552 4 0.8548 2 0.2885 0.6328 

IMF-PLS 

IMF1(2000:12000) 2 0.6280 10 0.3338 2 0.2862 0.4160 
IMF2(1000:8500) 1 0.6503 3 0.3104 3 0.2309 0.3972 
IMF3(500:5500) 2 0.6344 11 0.6833 1 0.3420 0.5532 
IMF4(100:4000) 1 0.6250 1 0.4504 2 0.3483 0.4745 
IMF5(100:3000) 6 1.5251 9 0.4614 1 0.3608 0.7824 
IMF6(10:2000) 1 0.5227 1 0.4103 1 0.3106 0.6218 
IMF7(10:1000) 1 0.4584 2 0.3330 1 0.3593 0.3835 

IMF-
EPLS 

RCC =0.5 (1,2,3,4,5,6,7) 0.5151 (1,2,3,4,5,6,7) 0.2907 (1,2,3,4,5,6,7) 0.3184 0.3747 
RCC =1.0 (1,2,3,4,5,7) 0.5454 (1,2,3,7) 0.3699 (1,2,7) 0.2946 0.4033 
RCC =1.1 (1,2,3,4,5,7) 0.5454 (1,2,7) 0.3074 (1,2) 0.2527 0.3685 
RCC =1.2 (1,2,3,4,7) 0.5351 (1,2,7) 0.3074 (1) 0.2862 0.3790 
RCC =1.3 (1,2,3,4,7) 0.5351 (2,7) 0.3056 1 0.2862 0.3756 
RCC =1.4 (1,2,3,4) 0.6189 (2,7) 0.3056 --- --- --- 
RCC =1.5 (1,2,3,4) 0.6189 (7) 0.3330 --- --- --- 

 
The results show that ensemble PLS model with 

‘RCC =1.1” has the best average prediction 
accuracy. However, the best models for material to 
ball volume ratio, pulp density and charge volume 
ratio are IMF7-PLS, IMF-EPLS with “RCC =0.5” 
and IMF2-PLS. These mapping relationships 

between mill load parameters and IMFs are 
difference. It is very necessary to set different 
threshold. Compare with the relative change 
coefficients values in Table.3, it is shows IMFs 
with the biggest relative change coefficients has 
not the best prediction accuracy. The main reason 
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is that the calculation of relative change 
coefficients is based on the first latent variables 
and the model is constructed with limited sample 
in abnormal condition. Moreover, only linear 
regression mode can be constructed using PLS 
algorithm. Thus, more suitable criterion and 
modeling algorithm should be researched to 
improve the prediction performance.  

Modeling results show that IMF2 contain more 
information of pulp density and charge volume 
ratio. Fig.3, Fig.4 and Fig.5 show that the mainly 
frequency range of IMF2 is 2,000Hz to 6,000Hz, 
which mainly caused by the impaction of the mill 
load. For material to ball volume ratio, the 
prediction results are poorly. Studies show the 
shell acoustical signal has strong relationship with 
material to ball volume ratio. Thus, more signals 
should be fused in the future research. Further 
research will also address how to extract useful 
features from different IMFs to construct more 
powerful nonlinear soft sensor models. 
 
4. CONCLUSIONS 
 

The shell vibration signal of a laboratory scale 
ball mill is analyzed based on the EMD and PLS 
technologies. The ensemble PLS algorithm is used 
to construct mill load parameters and frequency 
spectrum of IMFs. The relationships between 
frequency spectrum of IMF and mill load 
parameters are described quantitatively by a new 
defined index. The following conclusions are 
drawn from the investigations: (1) Shell vibration 
signal can be decomposed into several sub-signals 
caused by different forces; (2) Cushion function of 
the water, mineral and pulp can be embodied in the 
time and frequency domain curves of different 
IMFs; (3) Some IMFs have more rich information 
on mill load parameters than original signals, and 
different mill load parameters are correlated with 
different IMFs; (4) Mill load parameters can be 
measured using EMD and EPLS based modeling 
approach.  

However, the present research is based on 
laboratory ball mill. The physical interpretation of 
different IMFs cannot be explained clearly. More 
theoretically research and mill shell vibration 
simulation based on finite element analysis will be 
addressed. How to construct more effective soft 
sensor models based on EMD, feature extraction 
and selection method, and how to build effective 
nonlinear models are worth further study. More 
experiments will be done in the industry scale mill.   
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