
Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
99 

 

PUBLISH/SUBSCRIBE NETWORK INFRASTRUCTURE  
BASED ON WEB SERVICE NOTIFICATION 

 
RUISHENG SHI, YANG ZHANG, BO CHENG, JUNLIANG CHEN 

State Key laboratory of Networking and Switching Technology, Beijing University of Posts & 

Telecommunications, Beijing 100876, China 
 

ABSTRACT 
 

To accommodate real-time dynamic large scale service composition requirements, Event-Driven Service 
Oriented Architecture (EDSOA) is introduced to solve the shortcomings of Service Oriented Architecture 
(SOA). Our EDSOA service execution platform is built on Web Service Notification based distributed 
topic-based publish/subscribe infrastructure services. This paper presents our innovations at system level on 
the design of publish/subscribe infrastructure service. Several service systems are developed based on this 
platform. The platform provides great flexibility and many advanced features for service development and 
deployment. Through project practices, the platform was proved to simplify the development work of service 
system significantly. 

Keywords:  Topic-Based Publish/Subscribe, Distributed Event-Based System, Service Computing, Web 
Service Notification, Routing 

 
 

1 INTRODUCTION 
 

With the rapid development of large scale 
distributed network services and mobile internet 
computing, the distributed publish/subscribe 
systems as a well known mode of Event Driven 
Architecture (EDA) attracted great attentions and 
in-depth research and application in academia [1-3] 
and industry [4-6].  

 Service Oriented Architecture (SOA) has been 
widely applied in the past decade. SOA is becoming 
the dominant architecture to build large scale 
network services [7] and business process [8]. The 
BPEL (Business Process Execution Language) as 
Web Service composition standards has been widely 
deployed in the enterprise information system. It has 
been the de facto standard for service orchestration. 

SOA and EDA as two kinds of important 
distributed service architecture have been evolved 
independently in the past years. The most salient 
difference between EDA and SOA is how to 
compose service process with business components. 
SOA is based on passive request/response mode, 
while EDA exhibits the active event notification. 
SOA is based on explicit invocation mode, and EDA 
is based on implicit invocation mode. In implicit 
invocation mode, web services need to register its 
concerned event type to multiple event producers. 
When the event happens, these event producers will 
inform registered Web service, and trigger the 

corresponding event handling logic to complete the 
invocation. 

How to take the advantages from these two kinds 
of architecture has become a hot research topic in 
recent years. Juric et al [9] proposed to extend BPEL 
to support the EDA structure. The business 
component works as event producers and/or event 
consumers. These components complete service 
orchestration of business process through interactive 
cooperation between producers and consumers. 
BPEL language is the standard to develop composite 
services. In traditional design, BPEL engine usually 
employs centralized architecture. Scalability is 
addressed by replicating the engine. When a 
business process needs to be scaled to meet heavier 
processing needs, the BPEL engine’s clustering 
algorithm automatically distributes processing 
across multiple engines. Li et al [10-12] introduce 
the distributed content-based publish/subscribe 
agency network architecture.  A large flow is 
decomposed as many fine grain activities and the 
centralized business process are mapped to control 
flow expressed by publish/subscribe semantics. This 
approach removes the scalability bottleneck of a 
centralized orchestration engine and exhibits 
significant performance improvements. 

OASIS (Organization for the Advancement of 
Structured Information Standards) has issued Web 
Service Notification (WS-Notification, WSN) 
specification, which defines a set of standardized 
communication models of publish/subscribe system 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
100 

 

based on Web Service [13-16]. However, WSN only 
defines the basic event notification model. Based on 
WSN standard, researchers has proposed various 
extensions and practical design solutions. Quiroz et 
al proposed notice agency services based on 
Distributed Hash Table (DHT) thus using DHT to 
realize subscription management and notification 
delivery [17]. Labey et al expanded WSN standard 
to support complex events and ECA (Event 
Condition Action), and manage the life cycle of 
ECA rules [18]. Gu et al proposed the design and 
realization of WSN based on cloud queue model 
[19]. 

 

Se
rv
ic
e 
Ee
xe

 

Session Management

Load balancer

Business Process Engine
(BPEL SE)

Normalized Message Router

Event Delivery Engine
(WS-Notification Network)

Event Priority Engine

Semantic Component

Database interface

 
 

Figure 1: Service Execution Environment 

 
In the past years, the Service Execution Platform 

developed by Network Service Infrastructure 
Research Center of BUPT (Beijing University of 
Posts and Telecommunications) has completed the 
evolution from the traditional SOA architecture to 
EDSOA (Event Driven SOA) architecture.  

WSN and JBI build the bridge to Web Service 
world dominated by SOA. Publish/Subscribe 
network is the foundation to support large scale 
distributed EDA. Figure 1 shows Service execution 
environment, which includes BPEL Service Engine, 
Normalized Message Router based on JBI (Java 
Business Integration) specification, 
publish/subscribe overlay network based on 
WS-Notification, and a series of infrastructure 
services such as session management, load balance, 
event priority determination engine, semantic 
component, database interface, and so on.  

This paper systemically explore the design issues 
and solutions in-depth on topic-based 
publish/subscribe network aiming at real-time 
dynamic service composition environment. This 
paper presents overlay construction based on cluster 
structure, broker software stack architecture, fault 
tolerance design and priority-aware low latency 
routing scheme. Our best practices incorporate the 
traditional wisdom on distributed publish/subscribe 

design with innovative design. We would like to 
share our best practices of these system level 
technical innovations to research community in this 
paper. 

 

2 PUBLISH/SUBSCRIBE PARADIGM AND 
WEB SERVICE NOTIFICATION  

 
In this section, we have a brief introduction on 

publish/subscribe paradigm and Web Service 
Notification specifications. 

2.1 Publish/Subscribe Paradigm 

The publish/subscribe system has been widely 
applied in distributed computing environment. It 
makes the application program easy to achieve loose 
coupling system structure. In a word, the system 
includes three kinds of decoupling of in space, time 
and control flows [20]. 
 

Notification ServicePublisher Subscriber

Subscriber

Subscriber

publish

notify

notify

notify

 

 Figure 2:  Decouple in Space 
 
As shown in the Figure 2, the interacting parties 

do not need to know each other. The publishers 
publish events through an event service and the 
subscribers get these events indirectly through the 
event service. The publishers do not usually hold 
references to the subscribers; neither do they know 
how many of these subscribers are participating in 
the interaction. Similarly, subscribers do not usually 
hold references to publishers; neither do they know 
how many of these publishers are participating in the 
interaction. 

 

Notification 
servicePublisher Subscriber

Notification 
servicePublisher Subscribernotify

publish

 

Figure 3: Decouple in Time 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
101 

 

As shown in the Figure 3, the interacting parties 
do not need to be actively online at the same time. In 
particular, the publisher might publish some events 
while the subscriber is disconnected, and conversely, 
the subscriber might get notified about the 
occurrence of some event while the original 
publisher of the event is disconnected. 

 

Notification 
service

Publisher
Subscriber

publish notify

 
 

Figure 4: Decouple in Flow 
 
Publishers are not blocked and need not waiting 

while producing events. Subscribers can 
asynchronously get notifications of the occurrence 
of an event while performing some concurrent 
activities as shown in Figure 4. For example, 
subscribers do not need to "pull" event 
synchronously. In short, the production and 
consumption of messages do not happen in the main 
control flow of the publishers or subscribers. 

 
2.2   Web Service Notification 

WSN specification includes three standard 
documents: WS-Base Notification [14], 
WS-Brokered Notification [15] and WS-Topics 
[l6].WS-Base Notification standard defines the Web 
Services interfaces and Web standard message 
exchanges format for interactions between 
producers and consumers. This is the base document 
on which the other WSN specification documents 
depend. If only point-to-point publish/subscribe 
notification is required, reading the document and 
Web service white paper is enough. WS-Brokered 
Notification describes the operational requirements 
expected by service providers and requestors that 
participate in brokered notifications, and defines the 
Web Services interfaces for notification brokers and 
the corresponding message format. WS-Topics 
defines the data format for storage of corresponding 
theme document, and a mechanism to organize and 
categorize themes.  

WSN standard pointed out a kind of point to point 
message exchange mode in the WS-Base 
Notification standard document as shown in Figure 
5. 

WSN standard pointed out the message 
forwarding mode based on the broker in the 
WS-Brokered Notification specification as shown in 
Figure 6. In this architecture, broker is in charge of 
interactions between event producers and event 
consumers. 

 

Consumer 1 Producer 1

Producer 2

Consumer M Producer N

…
…

…
…Consumer 2

 
 

Figure 5: WS-BaseNotification 
 

Consumer 1 Producer 1

Producer 2

Consumer M Producer N

…
…

…
…

BrokerConsumer 2

 
 

Figure 6: WS-Brokered Notification 
3 SYSTEM ARCHITECTURE 

 
This chapter describes the distributed 

publish/subscribe system architecture in the service 
execution platform from several aspects. It includes 
publish/subscribe model, distributed WSN overlay 
network scheme, overlay network topology, service 
infrastructure software architecture. 

 
3.1   Publish/Subscribe Model 

Publish/subscribe paradigm can be classified into 
topic-based model, content-based model, type-based 
model and so on. 

Due to the rapid development of large scale 
geographically distributed network service, 
topic-based publish/subscribe mode has been 
recognized and widely used by the academia [2-3, 
21] and industry [4-6] as its simplicity and high 
efficiency.  

WSN specification also follows the topic-based 
publish/subscribe model. The topic-based 
publish/subscribe system abstractly maps individual 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
102 

 

topic to distinct communication channels. The topic 
names contained in the metadata for the system are 
usually specified as an initialization parameter of the 
system. As almost all systems provide hierarchical 
organization model, one significant advantage of 
topic-based publish/subscribe systems is that the 
applications can organize topics in accordance with 
corresponding customized strategies. A subscription 
to a node in the hierarchy system implicitly 
subscribes all the subtopics of that node. The topics 
are divided into more than one topics, subscriber 
appoints interested sub topics, thus avoiding 
receiving uninterested events. Each topic is 
identified by unique name, and provides interfaces 
for publish and subscribe operations. 

 
3.2   Distributed Web Service Notifications 

For small scale applications, the centralized 
broker architecture can be applicable. For large scale 
applications, system scalability becomes the 
concerns of many research works. In the distributed 
broker architecture, the broker is an overlay network 
composed by a set of broker nodes. Subscription 
information management and events/notification 
message routing are completed through the 
cooperation of broker nodes.  

The roles of broker node are classified as access 
node and routing node as shown in Figure 7. Access 
node is responsible for client access, which 
represents the whole overlay network composed of 
broker nodes for the client and is also known as 
client home broker node. Routing node is 
responsible for message routing. A node can act as 
access node and routing node simultaneously. 

 

 
 

Figure 7: An Exemplary Publish/Subscribe Overlay 
Network 

 
A client can be a publisher and/or a subscriber in 

the system. 
 

3.3 Overlay Network Topology And Cluster   
Partition 

Considering system scalability and management 
efficiency, broker nodes that participate in 
publish/subscribe overlay network are organized as 
two layers structure as shown in Figure 8. 

 

 
Figure 8: Overlay Topology of Publish/Subscribe 

System 
 
First, brokers in publish/subscribe overlay 

network shall be divided into clusters. The strategy 
of cluster partition shall consider geographical 
distribution, for example, the broker nodes located 
in the same data center or located in the same Local 
Area Network (LAN) are preferred to be clustered 
together. It is not reasonable to make two nodes far 
away into one cluster. If the cluster is located in the 
LAN supporting IP multicast, it is possible to exploit 
the ability of IP multicast to achieve 
bandwidth-saving. If the cluster does not support IP 
multicast, the message distribution will be 
conducted by routing algorithm strategy according 
to the cluster configuration.  

Subscription information management, event 
distribution and topology management can be 
managed in two levels separately.  

Management node is responsible for topology 
maintenance and management of system metadata. 
To ensure the high availability of management node, 
the master/slave mode is adopted. 

Each broker node must belong to some cluster and 
is assigned an identification which is unique in the 
cluster. Each cluster has a unique cluster name to 
distinguish from other clusters. The cluster name and 
node ID can identify one broker node uniquely. Each 
cluster must select one broker as the cluster head to 
communicate with other cluster and management 
nodes.  The cluster works as gateway between 
clusters.  

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
103 

 

Each node needs to register to the management 
node and obtain the certificate authority before 
joining the overlay network. After that, management 
node decides which cluster it belongs to according to 
the request information (such as IP address) and 
returns the cluster head information to the request 
node, and the request node joins the cluster by 
communication with cluster head. At the same time, 
management node will allocate a backup node for 
the request node out of cluster. 

Routing in overlay network can be classified into 
intra-cluster routing and inter-clusters routing. 
Inter-clusters routing is equal to routing between the 
cluster heads. For routing within a cluster, each 
cluster can define the message routing strategy in the 
cluster. This mechanism provides flexibility to 
achieve the autonomy within cluster. 

This hierarchical network architecture effectively 
reduces the scale of the routing problem and 
alleviates the workloads of the system management 
nodes. The system scalability is improved 
dramatically. 

 
3.4    Software Architecture 

System consists of the client-side software 
development kit (SDK) and server-side 
publish/subscribe infrastructure services as shown in 
Figure 9. 
 

Clients

Servers

Broker Node

Client Library

Registar

Notifier

Broker 
Node

Subscription
Table

Event
Pool

Notifications

Client

Client Library

Client

 
 

Figure 9: Software Architecture 
 

The client SDK provides publish/subscribe 
interfaces for applications and hides the complexity 
of the server-side communication protocol. For 
example, when the original access node fails, the 
application service request is routed to the new 
access node through interaction with the 
management node. This mechanism guarantees 
uninterrupted service for applications. 

The components at server-side include 
management node and broker nodes. Management 
node is responsible for client access, cluster 
partition, node join/leave and topology management. 
Besides the three basic function of topology 

management, subscribe management and 
notification message routing as shown in Figure 10,  
broker node also need consider many advanced 
features such as system high availability, service 
dynamic migration, high utilization of system 
resources, efficient events delivery mechanism 
based on data prioritization, and topics aggregation 
based on semantics. 

 

WSN

Topology Management

Subscription Management

Message Routing

Client WSN-PS Proxy Node

WSN-Pub/Sub Proxy Node

Internal Interfaces

 
 

Figure 10: Function Modules in Proxy Node 

 
Subscription management module in broker node 

maintains three flavors of subscription tables: client 
subscription table named cTable, broker 
subscription table named bTable, cluster 
subscription table named gTable. After received the 
subscription requests from client, broker node 
update the subscription requests into its cTable 
firstly. If this subscription has not been registered 
from other clients, the broker node recognizes this 
subscription as new subscriptions and broadcast this 
subscription request within the cluster by its own ID. 
The broker nodes in the cluster will update bTable 
after received this broadcast subscription message. 
Cluster head shall forward the request to other 
cluster head nodes by its cluster ID if this 
subscription request has not been registered from 
other broker nodes in this cluster. All other cluster 
head nodes will update its gTable while received this 
intra-cluster subscription requests.  

Message routing module in broker node uses the 
routing algorithm module to calculate Routing table 
according to the subscribe table. Notification 
message forwarding module called Notifier in 
Figure 9 is responsible for forwarding message 
according to the routing table. If the client is not 
online, message shall be stored in event pool. The 
message will be pushed to the client once the client 
joined the overlay network. 

 
 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
104 

 

4 ANALYSIS ON TECHNICAL ISSUES 
 
This section addressed the core design issues in 

large scale publish/subscribe infrastructure services 
from following aspects. The main aspects include 
high availability and fault tolerance design, 
cloud-based active push services, routing efficiency 
with data prioritization, scalable event priority 
determination engine. 

 
4.1 High Availability And Fault Tolerance 

Design Of Broker Nodes 

From the perspective of client applications, the 
whole publish/subscribe overlay network is a virtual 
entity i.e. the broker entity in 
WS-BrokeredNotification specification. For the 
upper application, subscribe and publish operations 
are expected to be reliable. The failure of any broke 
node shall not cause loss of application information 
(subscription information, event notification 
message) and interruption of services. The failure of 
broker node can be divided into several types. 

(1) Failure of access node.  Within a cluster each 
access node will be configured with N (N default is 
2) backup nodes. The client SDK library can detect 
failure of access node and guarantee continuous 
service by negotiations with server side processes. 
The client SDK will send requests management node 
to assign one backup node to take over current 
service. Management node will forward client 
requests to cluster head node within the cluster and 
cluster head node selects one access node from 
backup nodes to manage the current service. 

(2) Failure of cluster head.  In order to ensure the 
high availability of cluster head node, when cluster 
head node fails, the rest of the cluster nodes will 
choose new representative according to the election 
algorithm. 

(3) Failure of whole cluster.  The failure of 
network or infrastructure issues might result in the 
whole cluster unavailable. For example, power 
supply issue, fire disaster, etc. might result in the 
outage of whole datacenter. The clients of the outage 
cluster will be taken over by the backup nodes 
through negotiations with management node 
according to system configuration. 

 (4) Failure of backup nodes.  Backup nodes are 
classified into internal cluster backup node and 
external cluster backup node. When an internal 
cluster backup node fails, the cluster head is 
responsible for assigning a new backup node in its 
cluster to take over the responsibility from the failure 
backup node. The new backup data can obtain 
previous data from original node and other backup 
nodes. When the external cluster backup node fails, 

the cluster head of the failed node need coordinate 
with management node find the successor of the 
failed node. In case of the outage of whole cluster, 
the management node need reassign the 
responsibilities of all failed backup nodes to new 
successors. 

The applications are unaware of the message 
negotiation and routing process, which are 
completed by the client SDK. This mechanism can 
greatly simplify the development of applications and 
guarantee high availability of publish/subscribe 
infrastructure service to applications. 

 
4.2 High Availability Design On Management 

Node 

From section 4.1 we can see that the management 
node play a critical role in system. The high 
availability of management node is guaranteed by 
master/slave backup architecture. When master node 
is crashed, slave node will take over its 
responsibilities.  

First of all, set a number of redundant backup 
management node and its priority, and add heartbeat 
detection function between those management 
nodes. Once the master management node detection 
fails, slave management node detects the timeout of 
master management node heartbeat response 
message, and becomes master management node 
after reporting to management system. Then a new 
redundancy backup is selected from other slave 
management nodes and synchronizes information 
backup, waiting for the manual recovery of the 
original master management node before joining the 
slave management node queue. 

Management node needs to save cluster 
information (all cluster information) which can be 
obtained from the root node. When the root node 
joins, management node will write root node 
information into files, and if the master management 
node collapses, then the slave management node is 
started to read the master node information from the 
file, recovering the cluster information of slave 
management node. 

Management node updates information including 
basic configuration update and system topology 
information recovery, and the update strategies 
include regular topology information update and 
synchronous redundancy management node backup. 

 
4.3    Integration Of Server Push And Client 

Pull 

If there is no event notification service, the 
application needs to provide its own notification 
mechanism. A widely used method is that the client 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
105 

 

program timely inquires the server and notifies the 
application when finding changes. This method is 
simple, but it is clearly not an efficient approach in 
term of resource utilization since there may be no 
event happens in most of the time. Furthermore, this 
approach cannot guarantee notifications to be 
delivered timely since its timeliness depends on 
query (polling) interval time. If a large number of 
clients are using this mechanism, the server will be 
under great pressure. 

The push mechanism can significantly improve 
the real-time notification, and significantly reduce 
the server’s pressure, thus reducing the waste of 
resources. 

The client may be offline for a long time and can 
obtain notification message from PullPoint of access 
nodes when connecting the network again. Because 
single node’s cache resource is limited, so cache 
resources can be distributed according to time and 
the importance of cache message. Overdue massage 
will be deleted from the cache. The massage life 
cycle in the cache is different according to the 
importance of message, which is customized by 
application program. The publish/subscribe network 
service can provide billing data of cache resource 
usage to support cloud service model to pay for the 
resources usage. For example, the resource usage 
can be measured with storage space multiplied time. 

 
4.4 Multiple Prioritized Queues And Scalable 

Priority Determination Engine 

As many types of applications can share one basic 
service network, various kinds of data often are 
transferred in one publish/subscribe overlay 
network. These applications and data have different 
requirements about timeliness on data delivery. In 
general, the data can be classified into delay 
sensitive data and delay insensitive data. Application 
can be also categorized as (soft) real-time 
application and non real-time application. Data is 
useful if and only if it is delivered before deadline 
[22-24]. This performance aspect can be measured 
by Events Delivery On-time Rate (EDOR).  

Through data prioritization, the employment of 
multiple prioritized queue technology in broker 
nodes can significantly improve the measurement of 
EDOR. 

When many applications are executed in one 
service execution environment, a global priority 
determination strategy on events is necessary. 
Otherwise, if an application can set priority 
identification independently, each application may 
abuse its priority rights.  For example, the non-real- 
time application may mark its low priority events 
with high priority label in order to obtain better 

resources. Obviously, the abuse of priority may 
result in the failure of date prioritization mechanism. 

In practice, there are many challenges for the 
design of a global Priority Determination Engine 
(PDE). The PDE is required to provide fast speed, 
high scalability in terms of the scale of rule database 
and events throughput metrics. In the distributed 
environment, how to design a high (events) 
throughput, low delay priority decision engine, 
becomes a very challenging problem [25]. 

Once broker node receives one event message, the 
broker need label the event with priority flag by 
interaction with PDE service. The time costs of 
event priority determination can be divided into two 
parts. First part is the network communication delay 
between broker node and PDE service. Second part 
is the execution time of rule matching algorithm for 
each event message. 

The Bloom filter (BF) data structure is employed 
to store the summary of priority rule instances and 
enable fast online query speed with   time 
complexity. The query on BF-based in memory rule 
database only require k hash calculations on the 
event instance signature. The online query 
performance is independent of the number of 
priority rules. On the other hand, this approach is 
cache friendly. The query results on signatures can 
be cached in event priority signature table of broker 
node. The succeeding event priority query might get 
result from the event priority signature table in cache 
memory of broker node as shown in Figure 11. 
Therefore, most network communication costs are 
reduced as memory access time is about 100 ns 
while even in a Data Center the RTT (Round-Trip 
Time) of the network is about 500,000 ns. The query 
performance and system throughput are improved 
significantly [25]. 

 

Broker PDE Service

Event instance signature

EventInstance: GenerateSignature

Priority Flag

EventInstanceSignature: QueryCacheTable

EventInstanceSignature: QueryBloomFilter

 
Figure 11: Interaction between Broker Node and PDE 

Service 
 
These benefits are at the cost of false positive 

determination and offline computation efforts. False 
positive issue is introduced by the employment of 
Bloom filter. It means that some low priority events 
may be flagged as high priority label. However, the 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
106 

 

probability of false positive can be controlled in the 
acceptable ratio by adjusting the Bloom filter 
parameters. Moreover, the impacts of false positive 
issue in practice are trivial and always can be 
neglected. Second, rule instantiation process might 
consume large amounts of computing resources and 
time. Fortunately, this process is offline. 

In essence, the false positive rate and complex 
offline processing are charged for the high 
performance and scalability of event priority 
determination engine. 

The multiple priority queue scheduling algorithm 
adopts FCFS (First Come First Serve) in each queue. 
The scheduling algorithm across multiple queues is 
designed to ensure that to deal high priority queue as 
far as possible. Our solution is to assign the time 
slice (processing weight) according priority. This 
approach can avoid starvation happened to low 
priority queue. 

 
5 PERFORMANCE EVALUATIONS 

 
Our performance evaluations have been tested on 

IBM System x3850 X5 Server with following 
configuration. We setup 12 virtual machines 
clustered in six groups at three physical servers. 
Each virtual machine is configured with 1G 
memory, 3GHZ CPU, 20G Hard disk and Gigabit 
network card. The OS image is Windows XP 
professional. 

The loadRunner tool is used to generate the load 
and evaluate the system performance in term of the 
hit per second and throughput as shown in Figure 13 
and Figure 14.  

In this experiment, we configure 50 Vusers to 
generate 5,000 notifications to one access broker 
node. The experiment last for 26 minutes and 28 
seconds as shown in Figure 12. The total throughput 
is 335,000 bytes. The average throughput is 211 byte 
per second.  

First, we verify that system functionality from 
logs in other broker nodes. All messages are 
delivered to right broker nodes as expected. No 
errors and no message loss happened. 

Figure 13 shows that the number notifications sent 
to the broker node every second during the 
experiments. Figure 14 shows that the bytes sent to 
the broker node every second during the 
experiments. 

 
Figure 12: Experiment Summary  

 

 
 

Figure 13: Hits Per Second In One Broker Node  
 

 
 

Figure 14: Throughput Per Second In One Broker 
Node  

 
6 CONCLUSIONS 

 
Our service execution platform is designed for the 

evolution from SOA architecture to EDSOA 
architecture. This paper introduces the design of the 
publish/subscribe network service infrastructure 
based on WS-Notification specifications for 
EDSOA business process service platform, 
including the system model, the network topology 
and routing strategy, software architecture. This 
paper expounds and analyzes the key technical 
issues in the design, and presents the corresponding 
solutions. 

At present, the framework and the core functions 
of the prototype system have already been 
developed. Some advance features are still under 
development.  

The service systems such as emergency 
management, coal information management and city 
heating management could be developed based on 
this platform. Through project practices, the 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
107 

 

platform was proved to simplify the development 
work of service system. 

ACKNOWLEDGEMENTS 

This work was supported by the National Grand 
Fundamental Research 973 Program of China under 
Grant No.2011CB302704; National Natural Science 
Foundation of China under Grant No.61171102, 
61132001, 61001118, 61003067; Project of New 
Generation Broadband Wireless Network under 
Grant No.2010ZX03004-001, 
2011ZX03002-002-01; Program for New Century 
Excellent  Talents  in  University (Grant No. 
NCET-11-0592). 

 
 

REFRENCES: 
 
[1] G. Cugola, A. Margara, “Processing flows of 

information: From data stream to complex event 
processing”,  ACM Comput. Surv., Vol. 44, No. 
3, pp. 15–84, 2012. 

[2] K. Katsaros, G. Xylomenos, and G. Polyzos, 
“Multicache: An overlay architecture for 
information-centric networking”, Computer 
Networks, 2010. 

[3] M. Castro, P. Druschel, A. Kermarrec, and A. 
Rowstron, “Scribe: A large-scale and 
decentralized application-level multicast 
infrastructure”, IEEE Journal on Selected Areas 
in Communications, Vol. 20, No. 8, pp. 
1489–1499, 2002. 

[4] B. Cooper, R. Ramakrishnan, U. Srivastava, A. 
Silberstein, P. Bohannon, H. Jacobsen, N. Puz, 
D. Weaver, and R. Yerneni, “Pnuts: Yahoo!’s 
hosted data serving platform”,  Proceedings of 
the VLDB Endowment, Vol. 1, No. 2, pp. 
1277–1288, 2008. 

[5] A. Silberstein, J. Chen, D. Lomax, B. McMillan, 
M.Mortazavi, P. Narayan, R. Ramakrishnan, and 
R. Sears, “Pnuts in flight: Web-scale data 
serving at yahoo”, IEEE Internet Computing, 
Vol. 16, No.1, pp.13–23, 2012. 

[6] Atul Adya, Gregory Cooper, Daniel Myers, 
Michael Piatek, “Thialfi: A Client Notification 
Service for Internet-Scale Applications”, Proc. 
23rd ACM Symposium on Operating Systems 
Principles (SOSP), 2011, pp. 129-142. 

[7] Jeff Dean, “Evolution and Future Directions of 
Large-scale Storage and Computation Systems 
at Google”, Proceedings of Symposium on 
Cloud Computing (SOCC) keynote, June, 2010. 

[8] D. Jordan, J. Evdemon, Web Services Business 
Process Execution Language Version 2.0, 
OASIS Standard, 
2007.http://docs.oasis-open.org/wsbpel/2.0/wsb
pel-v2.0.html. 

[9] M. Juric, “Wsdl and bpel extensions for event 
driven architecture”, Information and Software 
Technology, Vol. 52, No. 10, pp. 1023–1043, 
2010. 

[10] Guoli Li, Vinod Muthusamy, Hans-Arno 
Jacobsen, “A distributed service-oriented 
architecture for business process execution”, 
ACM Transactions on the Web, Vol.4, No. 1, 
2010. 

[11] Guoli Li, Vinod Muthusamy, Hans-Arno 
Jacobsen, Serge Mankovski: Decentralized 
Execution of Event-Driven Scientific 
Workflows, SCW 2006, pp. 73-82 

[12] Guoli Li, Hans-Arno Jacobsen: Composite 
Subscriptions in Content-Based 
Publish/Subscribe Systems. Middleware 2005: 
249-269 

[13] OASIS Technical Committee. http://www.oasis 
-open.org/committees/tc_home.php?wg_abbrev
=wsn 

[14] OASIS Technical Committee. Web services base 
notification1.3–http://docs.oasis-open.org/wsn/ 
wsn-ws _base_notification -1.3-spec-os.pdf, 
2006. 

[15] OASIS Technical Committee. Web services 
brokered notification 1.3 
http://docs.oasis-open.org/wsn/wsn-ws 
_brokered _notification- 1.3-spec-os.pdf, 2006. 

[16] OASIS Technical Committee. Web services 
topics 1.3 – 
http://docs.oasis-open.org/wsn/wsn-ws_topics-1
.3-spec-os.pdf, 2006. 

[17] A. Quiroz and M. Parashar, “Design and 
implementation of a distributed content-based 
notification broker for ws-notification,” 
Proceedings of 7th IEEE/ACM International 
Conference on Grid Computing, 2006, pp. 
207–214. 

[18] S. De Labey and E. Steegmans, “Extending 
ws-notification with an expressive event 
notification broker,” in Web Services, 2008. 
ICWS’08. IEEE International Conference on. 
IEEE, 2008, pp. 312–319. 

[19] Gu, P. and Shang, Y. and Chen, J. and Deng, M. 
and Lin, B. and Li, C. “ECB: Enterprise Cloud 
Bus Based on WS-Notification and Cloud Queue 
Model”, IEEE World Congress on Services 
(SERVICES), 2011, pp. 240-246. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15th November 2012. Vol. 45 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
108 

 

[20] P.T. Eugster, P.A. Felber et al., “The Many 
Faces of Publish/Subscribe, ACM Computing 
Surveys”, Vol. 35, No.2, 2003, pp.114-131. 

[21] V. Ramasubramanian, R. Peterson, E. G. Sirer, 
“Corona: A High Performance 
Publish-Subscribe System for the World Wide 
Web”, Proceedings of  NSDI’2006, pp.73-82, 
2006. 

[22] Zats, D., T. Das, et al., “DeTail: Reducing the 
Flow Completion Time Tail in Datacenter 
Networks”, SIGCOMM 2012, ACM. 

[23] B. Vamanan, J. Hasan, et al.,  “Deadline-aware 
datacenter tcp (D2TCP)”, SIGCOMM 2012, 
ACM. 

[24] C. Wilson, H. Ballani, et al., "Better never than 
late: Meeting deadlines in datacenter networks", 
SIGCOMM 2011, ACM. 

[25] R. Shi, Y. Zhang, B. Cheng, J. Chen, “Summary 
Instance: Scalable Event Priority Determination 
Engine for Large Scale Distributed Event-based 
System,” Proceedings of  IEEE 9th International 
Conference on Service Computing (SCC 2012), 
Honolulu, HI, USA 2012. 

http://www.jatit.org/

	1 Introduction
	2 PUBLISH/SUBSCRIBE PARADIGM AND WEB SERVICE NOTIFICATION
	2.1 Publish/Subscribe Paradigm
	2.2   Web Service Notification

	3 SYSTEM ARCHITECTURE
	3.1   Publish/Subscribe Model
	3.2   Distributed Web Service Notifications
	3.3 Overlay Network Topology And Cluster   Partition
	3.4    Software Architecture

	4 Analysis on Technical Issues
	4.1 High Availability And Fault Tolerance Design Of Broker Nodes
	4.2 High Availability Design On Management Node
	4.3    Integration Of Server Push And Client Pull
	4.4 Multiple Prioritized Queues And Scalable Priority Determination Engine

	5 Performance Evaluations
	6 Conclusions
	Acknowledgements

