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ABSTRACT 
 

Face recognition has attracted growing attention for applications such as identity authentication and 
human-computer interface. However, a major challenge of face recognition is that the captured face image 
often lies in a high-dimensional feature space. To overcome the curse of dimensionality problem and improve 
the performance of face recognition, a novel manifold learning algorithm called orthogonal approximately 
harmonic projection (OMMP) is proposed in this paper. The OAHP algorithm is based on the harmonic 
projection (AHP) and explicitly considers the local geometrical structure and cluster structure of the face 
space. Meanwhile, the OAHP method can produce orthogonal basis vectors to preserve the metric structure 
of face space, which greatly enhances the discriminating power of the reduced lower-dimensional feature 
space. Experimental results on three face databases show that the proposed OAHP performs much better than 
related algorithms in terms of recognition rate. 
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1 INTRODUCTION 
 

In the past decades, face recognition has received 
extensive attention due to its potential applications 
in many fields, such as information surveillance, 
identity authentication, and human-computer 
interface. As a result, many face recognition 
algorithms have been proposed, and surveys in this 
area can be found in [1]. In general, a face image of 
size  is represented as a vector in the image space . 
However, the image space is always of very high 
dimensionality, ranging from several hundreds to 
thousands. Therefore, it is often necessary to 
conduct dimensionality reduction to acquire an 
efficient and discriminative representation before 
formally conducting classification. In fact, face 
images can be usually considered as samples drawn 
from a low-dimensional manifold and artificially 
embedded in a high-dimensional ambient space. To 
find a meaningful low-dimensional representation of 
high-dimensional data, the most representative 
dimensionality reduction algorithms are principal 
component analysis (PCA) and linear discriminant 
analysis (LDA)[2]. 

PCA aims to reduce data dimensionality by 
performing a covariance analysis between factors, it 
projects the data along the directions where the data 
vary the most. Applying PCA algorithm to face 
recognition, Turk and Pentland[3] developed the 

well-known Eigenfaces method. Since PCA is an 
unsupervised method, it is only optimal with respect 
to presentation and reconstruction while not for 
discriminating one face class from others. Unlike 
PCA, LDA is a supervised dimensionality reduction 
algorithm. It aims at finding an optimal 
transformation that maps the data into a 
lower-dimensional space that minimizes the 
within-class scatter and simultaneously maximizes 
the between-class scatter, thus achieving maximum 
discrimination. LDA has been extensively applied to 
face recognition, and the popular Fisherfaces[2] 
method is found on the LDA algorithm. The 
drawback of LDA is that it requires large training 
sample size for good generalization. For face 
recognition, it is generally believed that algorithms 
based on LDA are superior to those based on PCA 
when sufficient labeled face images are provided. 
However, both PCA and LDA are designed for 
discovering only the global Euclidean structure, 
whereas the local manifold structure is ignored. In 
fact, a number of research efforts have shown that 
the face images possibly reside on a nonlinear 
submanifold[4-6]. To analyze the high-dimensional 
data that lie on or near a submanifold of the ambient 
space, many manifold learning-based dimensionality 
reduction algorithms have been proposed, such as 
isometric feature mapping (ISOMAP)[7], locally 
linear embedding(LLE)[8], and Laplacian 
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eigenmap(LE)[9]. ISOMAP aims to find the 
low-dimensional representations for a data set by 
approximately preserving the geodestic distances of 
the data pairs. LLE maps the data into a 
low-dimensional space by preserving the 
relationship between the neighboring points. LE 
aims to preserve proximity relationships by 
manipulations on an undirected weighted graph, 
which indicates neighbor relations of pairwise data 
points. These nonlinear manifold learning 
algorithms have achieved impressive results on 
some benchmark artificial data sets. Nevertheless, 
the nonlinearity makes them computationally 
expensive. In addition, they are defined only on the 
training data set, and it is unclear how the mapping 
can be computed for new testing points. Therefore, 
they are not suitable for face recognition. The 
approximately harmonic projection (AHP)[10] 
method is recently proposed to model the local 
manifold structure. AHP is a linear manifold 
learning method based on the harmonic framework, 
and the optimal transformation can be obtained by 
approximating the Dirichlet integral. However, the 
basis vectors obtained by the AHP method are not 
orthogonal, which makes it difficult to reconstruct 
the data. 

To cope with the above drawback of AHP, we 
propose a new manifold learning algorithm termed 
orthogonal AHP (OAHP) for face recognition. 
OAHP is fundamentally based on the AHP method. 
It uses the approximate affine hull of the nearest 
neighbor graph to model the local geometrical 
structure of face manifold. The projection vectors 
are then obtained by solving a generalized 
eigenvalue problem. Similar to the AHP, the OAHP 
algorithm can also preserve the local geometrical 
structure, but meanwhile it requires the basis vectors 
to be orthogonal, which makes it more effective for 
preserving the intrinsic geometrical structure and the 
metric structure of the face space. Furthermore, our 
experimental results show that OAHP have more 
locality preserving power than AHP. In fact, 
previous researches have shown that locality 
preserving power is directly related to the 
discriminating power. Therefore, OAHP might be 
optimal in discriminating face images with different 
classes which is the ultimate goal of face recognition. 
     The remainder of the paper is organized as 
follows. In section 2, we provide a brief review of 
the AHP algorithm. Section 3 introduces our 
proposed OAHP algorithm for face recognition. The 
experimental results on face recognition are reported 
in Section 4. Finally, we present the conclusions in 
Section 5.  

2 BRIEF REVIEW OF AHP  
 

AHP is a recently proposed linear manifold 
learning method for dimensionality reduction [10]. It 
is based on the approximate affine hull and explicitly 
utilizes the edge length to reflect the geometrical 
structure of the manifold structure of the data space. 

Given a set of face images  1, , m
nx x  � , let 

 1, , nX x x  . Let cW  and bW  be two weight 

matrices defined on the face images. The objective 
function of AHP is defined as follows: 
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where ijd  denotes the length of the edge between ix  

and jx , cW  and bW are two matrices defined as 

follows: if ix  and jx  are connected,  then  

1c
ij ijW d  and b

ij ijW d ; otherwise, 0c b
ij ijW W  . 

cD and bD are two diagonal matrices defined as 
c c
ii ijj

D W  , b b
ii ijj

D W . 

The objective function in AHP aims to use the 
approximate affine hull of the graph to separate data 
points sampled from different components. 
Therefore, minimizing it is to ensure that if ix  and 

jx  lie the multiple connected components, then 

 T
i iy a x  and  T

j jy a x  are made close by the 

optimal projection. Finally, the projection vector 
a that minimizes (1) is given by the minimum 
eigenvalue solution to the following generalized 
eigenvalue problem: 

   2c c T b b TX D W X a X D W X a        (3) 

Note that, to avoid the singularity problem existed 
in AHP, one may first apply PCA to remove the 
components corresponding to zero eigenvalues. 
Thus, the projection vector of AHP can be 
considered as the eigenvectors of the matrix 

    1

2 b b T c c TX D W X X D W X


   associated 
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with the smallest eigenvalues. In addition, since 

    1

2 b b T c c TX D W X X D W X


   is not 

usually symmetric, the AHP projection axes are not 
orthogonal, which makes it less effective for 
preserving the metric structure of the face space. 

 

3 OAHP ALGORITHM FOR FACE 
RECOGNITION 

 
In this section, we propose a novel manifold 

learning algorithm termed orthogonal AHP (OAHP) 
and apply it to the face recognition. 

It is worth noting that the singular problem occurs 
frequently in appearance-based face recognition, 
since the number of face images (n) is much lower 
than the dimension of the face image space ( m m ). 
To cope with this issue, we first project each face 
image into the PCA subspace by removing the 
components corresponding to zero eigenvalues, so 

that the matrix  2 b b TX D W X  becomes 

nonsingular. Another consideration of using PCA as 
preprocessing is for noise reduction. The algorithmic 
procedure of OAHP is formally stated as follows. 

1) PCA projection. We project each face image ix  

into the PCA subspace by throwing away the 
components corresponding to zero eigenvalue. For 
simplicity, we still adopt x to denote the image in 
the PCA subspace and let PCAA  denote the 

transformation matrix of PCA in the following steps.  

2) Constructing the nearest neighbor graph and 
computing the edge weight. Let graph G  represent 
a graph with n nodes, where each node i denotes a 
face image ix . We construct an edge between nodes  

i  and  j  if ix is among the k nearest neighbors of 

jx or jx is among the k nearest neighbors of ix . 

Similar to the AHP method, OAHP preserves the 
geometrical structure of the graph by simultaneously 
using edge length and orientation. For each edge, let 

ij j ie x x   denote the edge vector which has an 

orientation from ix to jx , and the edge gradient is 

calculated according to 

ij

T T
j i

e
ij

a x a x
f

d


                             (4) 

where ij j id x x  is the edge length. Then, two 

edge weight matrices cW  and bW of the graph 

G are defined as follows: if ix  and jx  are 

connected, then  1c
ij ijW d  and b

ij ijW d ; 

otherwise, 0c b
ij ijW W  . In addition, cD and bD are 

two diagonal matrices defined as c c
ii ijj

D W  , 

b b
ii ijj

D W . 

3) Computing the orthogonal basis vectors of 
OAHP. The projection vector a that minimizes (1) 
under the constraint (2) is given by the eigenvectors 
associated with the smallest eigenvalues of the 
following generalized eigen-problem: 

   2c c T b b TX D W X a X D W X a         (5) 

Since the generalized eigenvectors of (5) are 
non-orthogonal. The OAHP algorithm aims at 
finding a set of orthogonal basis vectors 1 2, , , da a a  

which satisfy the following optimal objective 
function: 

 
 1 arg min
2

T c c T

T b b Ta

a X D W X a
a

a X D W X a





               (6) 

and  

 
 

arg min
2

T c c T

d T b b Ta

a X D W X a
a
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            (7) 

with the constraint 

1 2 1 0T T T
d d d da a a a a a                    (8) 

Since the  2 b b TX D W X is positive definite 

after PCA projection, following the strategy 
suggested in [6] and [11], we can also normalize it 

such that  2 1T b b Ta X D W X a  for any a . Then 

the above minimization problem can be equivalently 
transformed into the following optimal objective 
function: 

 arg min T c c T
opt a

a a X D W X a              (9) 

with the constraint 

 2 1T b b Ta X D W X a                        (10) 

1 2 1 0T T T
d d d da a a a a a                        (11) 

where 1a is the eigenvector of the matrix 

    1

2 b b T c c TX D W X X D W X


  associated 

with the smallest eigenvalue. 
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In order to compute the d-th basis vector that 
minimizes the above optimal objective function, the 
Lagrange multiplier is used to transform (9) to 
include the constraints (10) and (11): 

 
  

1 1 1 1

2 1
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           (12) 

The optimization can be performed by 
0d dL a   , then we have 

   
1 1 1 1

2 2 2

0
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d d
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(13) 

Multiplying the left side of (13) successively by 

     1 1

1 12 , , 2T b b T T b b T
da X D W X a X D W X

 

 

, we can obtain  the following  set of  1d    
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If we define the following notions, 

   1
1 1, ,

Td
d  
                        (14) 

   1
1 1, ,d
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                           (15) 
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          (16) 

   1
( 1) 2d T b b T
ij i jB a X D W X a

                (17) 

Then by using the above notions (14)-(17), the 
previous set of   1d    equations can be 

represented in a single matrix relationship 
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Consequently, we have 
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In addition, multiplying the left side of  (13) by 

   1
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 , we can obtain 
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which can be simply represented as follows by using 
the above notions (14)-(17): 
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By combining (19) and (21), we can obtain 
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Thus, the basis vector da can be regarded as the 

eigenvector of the matrix 

     
    

11 1( 1) ( 1)
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associated with the smallest eigenvalue. Finally, we 
can obtain the optimal orthogonal basis vectors 

 1 2, , , da a a . 
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4) OAHP projection. Let  1 2, , ,OAHP dA a a a  , 

then the lower-dimensional feature presentation 
y of the face image x via OAHP can be represented 

as follows: 

 T

PCA OAHPx y A A x                      (22) 

5) Face recognition in the lower-dimensional 
feature space. Once we obtain the 
lower-dimensional feature representations of face 
images by using (22). Face recognition becomes a 
pattern classification task. Thus, we can apply the 
nearest neighbor classifier to identify different facial 
images. 

Note that the orthogonal basis vectors of OAHP 
can preserve the metric structure of the data space. 
We simply prove this argument in the following. Let 

 1 2, , ,OAHP dA a a a  be the transformation matrix, 

then the Euclidean distance between two data points 
in the reduced feature space can be calculated as 
follows: 

 

 

   

,i j i j

T T
OAHP i OAHP j

T
OAHP i j

T T
i j OAHP OAHP i j

D y y y y

A x A x

A x x

x x A A x x

 

 

 

  

           (23) 

Since OAHPA is an orthogonal matrix, i.e., 
T

OAHP OAHPA A I , the metric structure of the data 

space is preserved. 

The proposed OAHP algorithm tries to preserve 
the local manifold structure by minimizing the 
objective function (1) under the orthogonal 
constraint of the basis vectors. A face image is 
transformed into the local geometry preserving 
subspace for recognition. Previous researches have 
shown that the eigenvalues of the subspace can 
reflect the locality preserving power [4-6], and 
smaller eigenvalues has more local geometry 
preserving power. Figure 1 shows the eigenvalues of 
AHP and OAHP on the ORL face database. As can 
be seen, the eigenvalues of OAHP are consistently 
smaller than those of AHP, which indicates that 
OAHP has more local geometry preserving power 
than AHP.  
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Figure 1: Eigenvalues Of AHP and OAHP 

 
4  EXPERIMENTAL RESULTS 
 

In this section, three experiments have been 
conducted to show the effectiveness of our proposed 
OAHP method on three face databases. The OAHP 
method is compared with the PCA, LDA, and AHP 
methods. For AHP and OAHP, we adopt the same 
nearest neighbor graph structure. Meanwhile, we 
first apply PCA to avoid the singular problem before 
using LDA, AHP, and OAHP methods. 

In this study, three bench-mark face databases 
were used for testing: the Yale database (http: //cvc. 
yale.edu/projects/yalefaces/yalefaces.html), the 
Olivetti Research Laboratory (ORL) database 
(http://www.uk.research.att.com/facedatabase.html), 
and the CMU PIE (pose, illumination, and 
expression) database[12]. In all the experiments, the 
following preprocessing steps were applied: First, all 
of color images are converted into gray ones. Then, 
the centers of the eyes of an face image are manually 
detected, aligned, cropped, and re-sized to 32 32 , 
which is further normalized to zero mean and unit 
variance. Some sample images after preprocessing 
of the three face databases are shown in Figure 2 to 
Figure 4, respectively. 

 
Figure 2: Face Image Examples Of The Yale Database 

 

 
Figure 3: Face Image Examples Of The ORL Database 

 

 
Figure 4: Face Image Examples Of The CMU PIE 

Database 
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In short, to perform face recognition, we first 
obtain the face subspace with dimensionality 
reduction algorithms. Then, the new face image to be 
identified is projected into the face subspaces. 
Finally, the nearest neighbor classifier is adopted to 
identify the new face image, where the Euclidean 
metric is used as the distance measure. 

The Yale face database was constructed at the 
Yale Center for Computational Vision and Control. 
It contains 165 gray scale images of 15 individuals. 
The images demonstrate variations in lighting 
condition, facial expression (normal, happy, sad, 
sleepy, surprised, and wink). In this test, recognition 
rates were determined by the “leaving-one out” 
strategy: To classify an image of an individual, that 
image was first removed from the data set. Then, for 
each evaluation, 10 rounds of experiments are 
repeated with random selection of the training data, 
and the average result is recorded as final 
recognition rates. The recognition rates and the 
optimal dimensionality obtained by PCA, LDA, 
AHP, and OAHP are shown in Table 1. The best 
results occur when using 50, 14, 15, 15 dimensions 
for PCA, LDA, AHP, and OAHP, respectively. The 
recognition rates of PCA, LDA, AHP, and OAHP 
are 75.6%, 92.8%, 94.9%, and 96.8%, respectively. 
As can be seen, the OAHP method outperforms the 
original AHP method and performs the best among 
the compared algorithms. Figure 5 shows the plots of 
recognition rate versus different reduced 
dimensionality on the Yale face database. 

Table I: Performance Comparisons On The Yale 
Database 

Method Recognition rate Dimensionality 

PCA 75.6% 50 

LDA 92.8% 14 

AHP 94.9% 15 

OAHP 96.8% 15 

Table II: Performance Comparisons On The ORL 
Database 

Method Recognition rate Dimensionality 

PCA 86.1% 190 

LDA 92.3% 39 

AHP 93.5% 40 

OAHP 96.7% 50 

 

Table III: Performance Comparisons On The CMU 
PIE Database 

Method Recognition rate Dimensionality 

PCA 82.4% 150 

LDA 94.6% 67 

AHP 95.2% 90 

OAHP 97.4% 120 
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Figure 5: Recognition Rate Versus Reduced 
Dimensionality On The Yale Database 
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Figure 6: Recognition Rate Versus Reduced 
Dimensionality On The ORL Database 
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Figure 7: Recognition Rate Versus Reduced 

Dimensionality On The CMU PIE Database 
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The ORL face database contains a set of face 
images taken at the Olivetti Research Laboratory in 
Cambridge. It contains 400 images of 40 individuals. 
Some images were captured at different times and 
have different variations including expression, 
lighting and facial details (glasses/no glasses). The 
images were taken with a tolerance for some tilting 
and rotation of the face up to 20 degrees. In this test, 
a random subset with five images per individual was 
chosen to form training set, and the rest of the 
database was considered to be the testing set. In 
order to obtain steady results, we average the results 
over ten random splits. The recognition results are 
shown in Table 2. As can be seen, our proposed 
OAHP consistently outperforms the PCA, LDA, and 
AHP methods. OAHP has the best performance and 
the maximum achieved recognition rate is 96.7% 
when keeping 50 dimensions. For the PCA and LDA 
methods, the best recognition rates are 86.1% and 
92.3%, respectively. While for AHP, it is 93.5%. 
Figure 6 depicts the plots of recognition rate versus 
different reduced dimensionality on the ORL face 
database. 

The CMU-PIE face database contains 68 subjects 
with 41368 face images as a whole. The face images 
were captured by 13 synchronized cameras and 21 
flashes under variations in pose, illumination, and 
expression. We choose the five near frontal poses 
(C05, C07, C09, C27, C29) and use all the images 
under different illuminations, lighting and 
expressions which leaves us 170 near frontal face 
images for each individual. Within the 170 face 
images for each individual in this test, a random set 
with 100 face images per individual are used for 
training and the other 70 for testing. We average the 
results over 10 random splits. Table 3 shows the 
recognition results. As can be seen, the best results 
occur when using 150, 67, 90, 120 dimensions for 
PCA, LDA, AHP, and OAHP, respectively. The 
recognition rates of PCA, LDA, AHP, and OAHP 
are 82.4%, 94.6%, 95.2%, and 97.4%, respectively. 
Therefore, the OAHP method achieves the best 
performance among the compared methods. Figure 7 
shows the plots of recognition rate versus different 
reduced dimensionality on the CMU PIE face 
database. 

In summary, from the above experimental results, 
we can make the following observations. 

1) Our proposed OAHP algorithm consistently 
outperforms PCA, LDA, and AHP algorithms, 
which demonstrates that the orthogonal basis vector 
constraint can effectively enhance the performance 
of OAHP algorithm. 

2) The PCA algorithm gives relatively poor 
performance since it is an unsupervised learning 
method. 

3) The manifold learning-based algorithms, i.e., 
AHP and OAHP, perform much better than 
conventional algorithms, i.e., PCA and LDA. The 
possible explanations are as follows: Both PCA and 
LDA can only discover the global Euclidean 
structure, while both AHP and OAHP can encode 
more discriminating information by preserving local 
manifold structure which is more important than the 
global Euclidean structure for classification. 

4) Although the AHP method performs much 
better than PCA and LDA methods by using local 
geometrical structure and cluster structure for face 
recognition, it still performs worse than our 
proposed OAHP method. This result demonstrates 
that OAHP can have more locality preserving power 
than AHP by enforcing the orthogonal basis vector 
constraint, which is consistent with the observation 
in [5] and [6] that the locality preserving power is 
directly related to the discriminating power. Thus the 
OAHP method has more discriminating power than 
AHP. 

5 CONCLUSION AND FUTURE WORK 
 
In this paper, we have proposed a novel manifold 

learning algorithm for face recognition, called 
orthogonal approximately harmonic projection 
(OAHP). It combines the locality preserving power 
of approximately harmonic projection (AHP) and 
orthogonal basis vectors constraint to provide an 
effective approach for dimensionality reduction. The 
experimental results on three face databases show 
that the proposed algorithm performs better than 
other related algorithms. However, OAHP is 
essentially linear. Our future work is to extend 
OAHP to nonlinear map with kernel trick. 
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