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ABSTRACT 

 
This paper has classified the acceleration signals of different working states of gearbox based on the 
wavelet-fractal analysis. Considering the similarity of the power spectrums between bearing vibration signals 
and 1/f processes signals, the principles based on wavelet-fractal analysis for gearbox fault diagnosis are 
explored. The improved approach mainly includes three following steps: the discrete wavelet transform 
(DWT) is first performed on vibration signals gathered by accelerometer from gearbox to achieve a series of 
detailed signals at different scales; the variances of multiscale detailed signals are then calculated; finally, the 
improved approach slope features are estimated from the slope of logarithmic variances. The presented 
features reveal an inherent structure within the power spectra of vibration signals. The effectiveness of the 
proposed feature was verified by experiment on gear wear diagnosis. Experimental results show that the 
improved approach features have the merits of high accuracy and stability in classifying different fault 
conditions of gearbox, and thus are valuable for machine fault diagnosis. 
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1 INTRODUCTION 
 

The gearbox is one of the most important 
equipments in modern industrial applications. 
Unexpected failures may endanger normal machine 
operation and productivity, and thus cause 
significant economic losses. Therefore, condition 
monitoring and fault diagnosis play a valuable role 
in terms of system maintenance and process 
automation. 

Wavelet analysis is more suited for extracting 
information from measured data than the single scale 
analysis because measured data from most processes 
are inherently multiscale in nature owing to 
contributions from events occurring at different 
locations and with different localization in time and 
frequency [1]. Many mutiscale feature extraction 
methods have been developed. Wouwer [2] 
proposed a texture multiscale characterization 
method from discrete wavelet representations by the 
statistics of the wavelet detail coefficients. Luo [3] 
developed an approach for sensor fault detection via 
multiscale analysis. Yoo [4] proposed a dynamic 
monitoring method for multiscale fault detection and 
diagnosis in the wastewater treatment process. These 

papers displayed the good performance of multiscale 
method for feature extraction.  

In this paper, we propose a novel multiscale 
feature based on wavelet analysis for identifying the 
working conditions of rotating machinery. 
Concretely, to extract multiscale feature, the DWT is 
first performed on vibration signals gathered by 
accelerometer from rotating machinery and a series 
of detailed signals at different scales are achieved. 
Then the variances of multiscale detailed signals are 
calculated to form a feature vector. Finally, the 
wavelet-based multiscale slope features are 
estimated from the slope of logarithmic variances. 
Experimental results demonstrate the effectiveness 
of the proposed method for pattern representation 
and classification of rotating machinery. 

The principles of this approach are mainly base on 
the characteristics of rotating machinery vibration. 
The typical frequency contents are due to the 
modulation of resonance frequency and defect 
frequency. The side frequencies that are carried on 
the resonance frequency have an interval being equal 
to the defect frequency. This is a special 
phenomenon in rotating machinery vibrations 
related to defect-induced vibration.  
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2 THE IMPROVED WAVELET-FRACTAL 
ANALYSIS ALGORITHM  

 
The spectrum of the vibration signal can be 

divided into two parts by the resonance frequency as 
indicated in the Fig.1. Thus the power spectrum of 
the high frequency part B is satisfied: 
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 (1)where 0  is the resonance frequency where 

the power spectrum reaches the peak. Moreover, the 
power spectrum of the low frequency part A will be 
satisfied as below: 
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Figure 1. Typical Spectrum Of A Vibration Signal Of 

Rotating Machinery. 

 
According to Eq. (1) and Eq. (2), the slope of the 

logarithmic power spectrum in two parts will have 
good linearity. Recently, the DWT method has been 
proposed to estimate the slope β based on multiscale 
variance [5]. This structure has grate similarity of the 
process of 1/f [6, 7]. In the following, two multiscale 
slope features according to the two parts in power 
spectrum of the rotating machinery vibrations are 
investigated to represent the vibration pattern. 

Wavelet transform (WT) has proved its great 
capabilities in decomposing, de-noising, and 

analyzing non-stationary signals [8]. The variance of 
wavelet coefficients has the same dimension with 
energy and the variance in different scales is 
proportional to the energy in corresponding 
frequency band [9]. Recently, the DWT method has 
been proposed to estimate the slope β based on 
multiscale variance [10].Thus, the S(ω) in Eq. (1) 
and (2) can be replaced by the variance of the detail 
signals

2 jd , which can be estimated as 
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where j  represents the scale,  represents the 

slope which measures the variance progression over 
the scales.  

The variance of the detail signal at scale j is given 
as： 
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where 

2 jdm  is the mean of the detail signal at 

scale 
2 jd , and jN  represents the number of samples 

of the detail signal.  
The logarithms of the variance of each scale jl  

are calculated as: 
 

2
log[ ( )]jjl Var d .  (5) 

The slope   can then be estimated by the 

multiscale variance using least square method. The 
slope of the logarithmic variance in different scales 
would be able to estimate the slope of the 
logarithmic power spectrum. Two slopes, β1 and β2, 
are calculated respectively according to two power 
spectrum parts divided by resonance frequency as 
illustrated in Figure 1. These multiscale slope 
features make a convenient estimate of the signal 
structure which depends on the rotating machinery 
working conditions.  

The algorithm of the improved approach slope 
feature extraction is outlined in Figure 2.  
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Figure 2. Feature Extraction Based On Wavelet-Fractal 

Analysis 
 

The detailed steps are described as follows. 

Vibration signals are recorded from an 
automobile transmission gearbox. The gearbox is 
tested at three health conditions such as healthy, 
slight wearing gear, and severe wearing gear. The 
collected vibration signals from a gearbox is usually 
non-stationary [11]. In this study, the vibration 
signals are preprocessed by mean normalization and 
the empirical mode decomposition technique[12]. 
The DWT is conducted on vibration signals to 
achieve J levels of decomposition, and the logarithm 
of the variance is calculated, then the maximum in 
the log-variance vs scale curve were chosen as the 
turning point. Two spectrum parts are divided by the 
turning point. The slopes of the logarithmic variance 
progression, β1 and β2, are estimated for two parts 
by using Least Square Method (LSM), respectively. 
The slopes β1 and β2 are then explored as the 
multiscale slope features to distinguish different 
conditions of gearbox.  
 
3 EXPERIMENT 

 

The experimental setup is to conduct a fatigue test 
of an automobile transmission gearbox, which can 
load 5 forward speeds and one backward speed. The 
vibration signals were acquired by an accelerometer, 
which was mounted on the outer case of the gearbox 
when it is loaded with the third speed gearbox. The 
rotating speed is 1600 r/min and the corresponding 
meshing frequency of the third speed is calculated to 
be 500 Hz. The sampling frequency is set to be 3000 
Hz. Three different working conditions of test gear, 

including normal, slight wearing, and severe 
wearing, were selected to analyze the vibration 
signals measured on the gearbox. The vibration 
signals and their power frequency are in Fig.3 and 
Fig.4 respectively. 

The collected vibration signals from a gearbox is 
usually non-stationary. A pretreatment is performed 
to extract the resonance band near 250 Hz for each 
condition signal by using the empirical mode 
decomposition technique. The power spectrums of 
the pretreated vibration signals with different 
working conditions can be seen that the energy 
distribution is quite different in spectrums for three 
working conditions of the gearbox, but all of them 
follow the form represented in Fig.1. The multiscale 
slope feature analysis is then adopted with the 
experiential mother wavelet selection of Daubechies 

[13] wavelet with order 8N  . Here, the sampling 
frequency in gearbox test is much lower than in 
bearing test and the frequency band represented in 
the fifth level is about 0-100Hz. Lower frequency 
components in deeper levels are usually polluted and 
meaningless for gearbox conditions monitoring, so 
the gearbox acceleration signals were decomposed 
into 5 levels. The logarithmic variance plot is then 
indicated in Fig.5. In the gearbox test, scale 3 is 
selected as the turning point for its obvious highest 
position in the logarithmic variance plot and the 
peaks of spectrums indicated in Fig.5 are also 
located at the same frequency bands. The 
log-variance vs. scale plot of the wavelet coefficients 
variances shows good linear features from scale 1 to 
scale 3 and from scale 3 to scale 5, which 
corresponding to two slope features β1 and β2, 
respectively. It can be seen that the least-squares 
fitting lines of different condition samples are shown 
as different types of lines in Fig.5. 

 
Figure 3. The Vibration Signals Of Different Working 

Conditions Gearbox. 
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Figure 4. The Power Spectrum Of Different Working 
Conditions Gearbox 
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Figure 5. The Log-Variance-Scale Plot Of The Wavelet 
Coefficients And The Fitting Lines Generated By 

Least-Squares Approximation For Gearbox. 
 

Temporal window test is executed, and 1500 
samples are contained in each window and 750 
samples are overlapped between adjacent windows. 
Respectively 15 steps were executed for each 
condition, and the distributions of all slope feature 
values are shown in Fig.6. It can be seen that the two 
slope features display clear  clustering results, which 
indicates the effectiveness in characterizing different 
working conditions. 

Statistics of the multiscale slope features 
calculated by temporal window test, including mean 
value and variance, are calculated as listed in Table I 
to further validate the merits of proposed features. 
The results demonstrate the new presented feature 
extraction approach can play a good performance 

and has great value in rotating machinery fault 
diagnosis. 
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Figure 6. Representation By Two Multiscale Slope 

Features Of Testing Samples. 

 
TABLE I 

The results of temporal window trials for gearbox 
Working 
Stage 

Slope β1 Slope β2 

Mean Variance Mean Variance 

Normal 7.134 0.0073 -1.277 0.0079 

Slight 
Wearing 

6.778 0.0082 -2.513 0.0094 

Severe 
Wearing 

6.715 0.0093 -0.521 0.0075 

 
 

4 CONCLUSIONS AND DISCUSSIONS 
 

In this paper, a new approach is developed for 
gearboxes feature extraction from the acceleration 
signals by using wavelet analysis, which has been 
proved to be a useful tool for analyzing 
non-stationary signals.  

To estimate the wavelet-based multiscale slope 
features, we used the detailed signals decomposed 
by DWT from scales 1 to 5 whose frequency band is 
approximately 1-1500Hz for gearbox signal analysis. 
The turning points in log-scale-variance plots in 
these two experiment examples are located scale 3, 
whose frequency bands are 187.5 – 375 Hz, 
respectively. Temporal window tests are executed 
and the good cluster and low variance of the results 
affirm the validity of this method. In conclusion, the 
experiments demonstrate that the slope features can 
be used to characterize different working conditions 
of the gearbox.  

The approach explored in this paper provides an 
alternative for gearboxes condition monitoring and 
fault diagnosis. In addition, it is easy for fast 
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estimation which is very important for real-time 
monitoring of device. By combining with pattern 
identification theory, this approach has a great 
foreground for fault diagnosis and condition 
monitoring in practice. 
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