
Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

PARALLEL COMPUTATION ALGORITHM FOR LUC
CRYPTOSYSTEM BASED ON BINARY NUMBER

ZULKARNAIN MD ALI
Senior Lecturer, School Of Computer Science,

Faculty of Technology and Information Science (FTSM),
 Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

E-mail: zma@ftsm.ukm.my

ABSTRACT

LUC Cryptosystem is a public key cryptosystem based on Lucas Function. It is first discussed by Smith and
Lennon in 1993. They proposed a new public key system using Lucas Function instead of using
exponentiation based as found in RSA. Lucas Function is the second order linear recurrence relation. The
computation of LUC Cryptosystem is based on the computation of Lucas Function. Many of the existing
computation algorithms for Lucas Function are suitable for one processor and there is no problem to design
a computation algorithm for one processor as the Lucas Function can be implemented directly into
programming codes. In this paper, the Binary Numbers will be used as a technique for parallel computation
algorithm. The encryption process using Ve(P,1)(mod N) to get ciphertext, C from plaintext, P. While the
decryption used Vd(C,1)(mod N) to get P from C. Meanwhile N is the product of two relatively primes p
and q. In this case, the public key e (usually in decimal numbers) will be converted to the Binary Numbers.
Then, this number will be use in manipulating the Lucas Functions properties such as V2n, V2n+1 and V2n-1 to
find the fast computation techniques for Lucas Functions. Both processes run on special distributed
memory multiprocessors machine known as Sun Fire V1280. The proposed techniques can reduce a
computation time for LUC Cryptosystem computation compare to the computation algorithm for one
processor. As a comparison, the computation time for one processor and several numbers of processors are
also included.

Keywords: LUC Cryptosystems, Parallel Algorithm, Binary Numbers, Lucas Functions,

Distributed Memory Multiprocessors Machine.

1. INTRODUCTION

Public key cryptosystem is a form of cryptography
where a user has a pair of keys which are public
key and a private key [1]. The private key is kept
secret, while the public key may widely distributed.
A message encrypted by public key can be
decrypted with the corresponding private key.
Among public key cryptosystems, the RSA
cryptosystem is probably the most promising and
widely used public key cryptosystem [11].

The computation of its encryption and decryption is
based on exponentiation. Two researchers in [10]
introduced another public key cryptosystem based
on Lucas Function and it is known as LUC
Cryptosystem. Lucas Function also used in
factoring technique designed in [7]. Said and
Loxton in [9] extended the LUC system into a cubic
scheme of Lucas Function. Meanwhile, Castagnos
in [6] worked on a public key cryptosystems over

quadratic field quotients and also proposed another
cryptosystem.

Related discussions of Luc Cryptosystem security
can be found in [1], [3] and [5]. The existing
sequential algorithms that were designed for LUC
cryptosystem can be found in [4], [8], [12] and
[13]. The current research on speed up the
computation of LUC Cryptosystems can be found
in [14].

The two primes used in LUC Cryptosystem should
be big enough to ensure the security of the
message. When the computation involved very big
numbers of primes, the computation for encryption
and decryption also required huge computation
time. The ability of computation of with some
number of processors is better than only use one
processor.

The parallel computation algorithm for RSA can be
found in [2]. This work gives an idea where the

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

parallel computation is possible for any kind of
public-key cryptosystem. Some idea in this paper
gives an idea to do research in the same thrust for
LUC Cryptosystems. Therefore, new parallel
technique will be proposed. The algorithm that is
proposed will be using Binary Numbers and
manipulate some of the important properties of
Lucas Functions. For example, if public-key is 17.
Then, the Binary Number of 17 is 10001. The
number 10001 is then use in manipulating some
properties of Lucas Functions.

Then, the implementation part is very important.
The parallel algorithms are writing in C language
combined with the Message Passing Interface
(MPI) package. All computer codes in C then run
on distributed memory multiprocessors machine
known as Sun Fire V1280. As a result, when the
number of processors is increased, the computation
time will be reduced. It is also improved the
efficiency of computation for LUC Cryptosystem.

2. OVERVIEW OF LUC CRYPTOSYSTEMS

2.1 LUCAS FUNCTIONS
Let α and β be the roots of the polynomial equation
x2 – Px + Q = 0. It is easy to obtain P=α+β and
Q=αβ. Two solutions of the general second order
linear recurrence:

Un = (αn - βn)/(α - β) (1)
Vn = αn + βn (2)

Two functions in Lucas Sequence can be derived
from Equations (1) and (2). They are defined as:

Un = PUn-1 - QUn-2 (3)
where n≥2, U0=0 and U1=

Vn = PVn-1 - QVn-2 (4)
 where n≥2, V0=2 and V1=P

As mentioned in [10], the sequence Vn with Q = 1
is usually used to design LUC cryptosystem. Then,
the Equation (4) can simply be derived as,

Vn = PVn-1–Vn-2 (5)
where n≥2, V0=2 and V1=P

Only some equations related to this research will be
included in this paper. There are several functions
that are useful but not used in this research can be
found in [10].

V2n = Vn
2 – 2 (6)

V2n+1 = PVn
2 - VnVn-1 – P (7)

V2n-1 = VnVn-1 – P (8)

Functions (6), (7) and (8) seems very appropriate to
be use with the Binary Number of this study. Later

the design of parallel algorithms using the Binary
Number will be discussed in great detail in Section
3.

2.2 LUC CRYPTOSYSTEMS
LUC Cryptosystems is a public key
cryptosystem. Two different keys are need
for encryption and decryption. Throughout
this paper, we denoted the public key as e
and the private key as d. Key e is publicly
known and key d is remain secret. The
plaintext (original text) denoted as P and the
ciphertext denoted as C.

Two relatively primes such as p and q are
also important. Then, N is the product of p
and q. The encryption function is C =
Ve(P,Q)(mod N). Meanwhile, the decryption
function is P = Vd(C,Q)(mod N).

In LUC Cryptosystem, Q=1 and this apply
for its computation and design. This feature
has been explained in detail by Smith and
Lennon [10]. Therefore, to simplified
encryption and decryption of LUC
Cryptosystem, the encryption supposed to be
C=Ve(P,1)(mod N) and the decryption
supposed to be P = Vd(C,1)(mod N).

3. THEORITICAL ASPECTS

3.1 THE BINARY NUMBERS

Theorem 1: Given an integer n, a sequence
for n is a sequence of integers {b0, b1, …, bx}
such that b0 = (0 or 1), b1 = (0 or 1) and bx =
0. The reverse of this sequence form a
Binary Numbers.

Proof: It is straightforward, for b0 until bx,
let z = n mod 2, if z = 1 then {b0=1 and
n=n/2}, otherwise if z = 0 then (b0=0 and
n=n/2). Finally bx=0. The reverse of b0,
b1,…,bx is a Binary Numbers ■

Definition 1: Given a sequence {b0, b1, …, bx},
the length of the sequence is x.

Example 1: Let consider that n=1103. An
array k for Binary Numbers is
k[j]={1,1,1,1,0,0,1,0,0,0,1}. Then j=10.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

Algorithm 1 shows very simple steps for
generating the Binary Numbers.

Algorithm 1: Generating Binary Numbers

Input: n and i=0

Output: Array k[0,1,2,…,j]

Repeat

If (n mod 2 =1)
 k[i] =1

n = n/2
Else

k[i] = 0
n = n/2

End if

j++

Until n >= 1

The input for Algorithm 1 is the decimal
number. For example, given n=1103, then
Algorithm 1 will generate array k with
k[0]=1, k[1]=1, k[2]=1, k[3],=1, k[4]=0,
k[5]=0, k[6]=1, k[7]=0, k[8]=0, k[9]=0,
k[10]=1. The reverse of this sequence is
k[10]=1, k[9]=0, k[8]=0, k[7],=0, k[6]=1,
k[5]=0, k[4]=0, k[3]=1, k[2]=1, k[1]=1,
k[0]=1. The item within the array in reverse
order formed Binary Number for 1103, there
are 10001001111. Obviously, the array in
reverse order will be use in manipulating the
properties of Lucas Functions as found in
Equations (6), (7) and (8).

This decimal number comes from e in the
encryption Ve = Vn(M,1) (mod N) or from d in
the decryption Vd = Vn(C,1)(mod N). The
LUC Cryptosystem is using the Lucas
Function in its computation. The output of
this algorithm is array k[0,1,2,…,j]. An array
k is used to keep the value of a sequence.
Once array k is generated, this array will be
used to organize the parallel computation of
LUC Cryptosystems.

3.2 COMPUTATION OF LUC

CRYPTOSYSTEMS
This computation algorithm is design to be used
only with one processor. Once the sequence of
array k is generated, this array is used in the
algorithm. Algorithm 2 represents the
computation algorithm for one processor that can
be run in any computer machine. It is also can be
run in any distributed memory multiprocessor
machine.

Algorithm 2: Basic LUC Cryptosystem

Computation

Initial: Generate a Binary Numbers, k[j] (refer
to Algorithm 1)
Input: N=p*q, Vn=V1=P, Vj=V0=2 and i=j
Output: Vn
Repeat

V2n = Vn
2 – 2 (mod N);

If k[i] = 0 then
V2n+1 = PVn

2 - VnVn-1 – P (mod N);
 Vn=V2n

Vj=V2n-1
Else

V2n-1 = VnVn-1 – P (mod N);
Vn=V2n+1
Vj=V2n.

EndIf

i--

Until i=0

Let e=1103, P is a message (plaintext), p and
q are relatively primes number. The initial
part of Algorithm 2 is to generate a Binary
Number for public key, e. All of this depends
on Algorithm 1. Given e=1103, then
Algorithm 1 will generate array k with
k[0]=1, k[1]=1, k[2]=1, k[3],=1, k[4]=0,
k[5]=0, k[6]=1, k[7]=0, k[8]=0, k[9]=0,
k[10]=1. The reverse of this sequence is
k[10]=1, k[9]=0, k[8]=0, k[7],=0, k[6]=1,
k[5]=0, k[4]=0, k[3]=1, k[2]=1, k[1]=1,
k[0]=1.

The item within the array in reverse order
formed Binary Number for 1103, there are
10001001111. Clearly, by Algorithm 2, the
computation of LUC Cryptosystems will be
V2, V4, V8, V17, V34, V68, V137, V275, V551, V1103.

The following table, explain about how
Algorithm 2 works. Noted that No indicates
no computation for specific equations, while
Yes indicates need computation for specific
equations.

It shows direct representation for
computation algorithm that can be run on
one processor, such as Intel, AMD or any
kind of processors. Algorithm 2 is suitable
for both encryption and decryption process
(Ali, 2010). For encryption the public key is
needed, while for decryption the private key
is needed. In real implementation, the public

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

key is known by public. Therefore, the
experiment is only concentrate on the
computation time for encryption.

Table 1: Calculating LUC Cryptosystems Using

Algorithm 2.

i k[i] V n Vj V2n V2n-1 V2n+1
10 k[10] V1 V0 No No No
9 k[9] V2 V1 Yes Yes No
8 k[8] V4 V3 Yes Yes No
7 k[7] V8 V7 Yes Yes No
6 k[6] V17 V16 Yes No Yes
5 k[5] V34 V33 Yes Yes No
4 k[4] V68 V67 Yes Yes No
3 k[3] V137 V136 Yes No Yes
2 k[2] V275 V274 Yes No Yes
1 k[1] V551 V550 Yes No Yes
0 k[0] V1103 V1102 Yes No Yes

3.3 PARALLEL STRATEGIES
The main concern here is the computation of
Ve, the encryption process. The public-key, e
is known in public. Furthermore, the
parallel strategies can be achieved by using
Algorithm 1. The Binary Numbers can also
be used in designing the parallel algorithms.
The main idea is manipulating functional
decomposition for Lucas Functions.

It means that, each part of computation task
is actually the small part of the function.
Simply, every function involved in the
calculation of LUC Cryptosystem can be
broken into small parts. These small parts
will be process by each processor available.
Each time the processor is handling these
parts, every time that, the calculation
results will be returned to the main
processor.

For example, the Equation (7) in Section 2.1
above can be decomposed into small parts.
Equation (7) as V2n+1 = PVn

2 - VnVn-1 – P,
computation of PVn

2 will be handled by one
processor and the other part of that
equation, VnVn-1 will be handled by another
processor. The result will be instantly sends
back to the master processor and this master
processor will compute V2n+1. This is the
concept of functional decomposition used in
designing the parallel algorithms.

Overall, the result of each small task is

collected and will be synchronized to produce
the final result of parallel computation.
Furthermore, one task can be assigned into
one slave.

The master will synchronized the movement
of result from each task and decided which
value is using for the next computations.
The synchronization is the compulsory steps
in this parallel computation. If the process of
computation cannot be synchronized, the
result did not satisfy the nature of Lucas
Function computations.

The general strategies are:

a. Given public-key, e, then generate an
array of sequence of array k using
Algorithm 1.

b. Reverse the sequence because it
represented exactly the Binary
Numbers.

c. Use each item in the Binary Number in
the calculation of LUC Cryptosystem.

d. Synchronizations of movement of data
are done by master.

e. Master or slaves will decide which value
should be used for the next
computation. The nature of Lucas
Function works by recursive. Therefore,
the next values for the next
computations are determined by the
checking procedure. In this case, the
parallel computation algorithms have a
checking procedure in master and also
in all slaves.

4. THE PROPOSED ALGORITHM

4.1 OVERALL CONCEPTS
The algorithms discussed in this section can
be divided into three parts. Part 1 is the
algorithm used to generate an array
sequence for Binary Numbers. This already
discussed in Section 3.1.

Meanwhile, second part is the algorithm on
how to use Algorithm 1 to design a solution
of LUC Cryptosystem computation for one
processor. This is also discussed in Section
3.2. The third part shows on how to design
parallel computation for LUC Cryptosystem
depending on the number of processors.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

Overall idea on using the Binary Numbers
for parallel algorithm is discussed in Section
3.3. The comparison will be carried out to
compare the computation time of one
processor compare to the computation of
several processors. Up to this stage, the
possible maximum number of processors
that can be used in this parallel algorithm is
seven.

4.2 THE COMPUTATION ALGORITHMS

FOR SEVERAL PROCESSORS
In the design of parallel computation
algorithm, the algorithm must be suitable
for the architecture of Message Passing
Interface (MPI) library. This library is
suitable in this research. This library is
suitable for the use of programming code in
C language. Initialization can use the
command of MPI_Init() to initiate the using
of MPI standard. Algorithm 1 will generate
an array k.

Once an array k is generated, this array
should be used in reverse order. Therefore,
the using of array k should start with item
k[j]. Followed by k[j-1] and so on until the
index of array k reached 0. Generally, the
idea on using the array of Binary Numbers
is shown in Figure 1.

The array k[j], k[j-1] until k[0] represents
the index of array. Definitely, it is also show
the numbers of iterations required to
complete the parallel computation.

Figure 1: General Idea on Using Binary Numbers

The calculation of Ve starts with two values
V1 and V0. The initial values are required at
the beginning of the computation, therefore
the initial values are V1=2 and V0=P. Note
that, in all algorithms, MPI_Send() is
denoted by Send and MPI_Recv() is denoted
by Receive.

Symbol 'X' represents the inner side of the
parallel algorithms. Figure 2 and 3 show the
example of the inner side of the parallel
algorithms for two and seven processors.
Meanwhile, Vj and Vn show the value of
variables that was passed from current
iteration to the next iteration. The symbols
Vj and Vn show the possible values that
should be use for the next computations. The
final result is Vn.

The timeline t0 to t1 shows the time to
generate Binary Numbers. The t1 and t2

shows the time to compute LUC
Cryptosystem in parallel. Therefore, the
time line from t0 and t2 shows the total
computation time for this parallel approach.

Figure 2: Parallel Strategy For Two Processors.

Figure 2 shows a possible arrangement of
functional decomposition for parallel
algorithm on 2 processors. Here, one
processor will act as master and the other
one should be act as a slave. The possible
parallel codes that are suitable for Figure 2
are as follows.

The timeline t0, t1 and t2 are not shown in
this figure. The timeline t0 and t1 is the same
as in Figure 1. The timeline t2 in Figure 2 is
surely less than t2 in Figure 1. Same goes to
the other time line in Figure 3, the timeline
t0 and t1 is the same as Figure 1.

For sure, the timeline t2 in Figure 3 is surely
less than timeline t2 in Figure 2. It is
because the Figure 3 has seven processors
compare to Figure 1 and 2. However, all of
this timeline is now shown in Figure 2 and 3.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

Algorithm 3: Computation of LUC

Cryptosystems on Two Processors

Initial: Generate a Binary Numbers, k[0,1,2,…,j]
(refer to Algorithm 1).
Input: N=p*q, Vn=V1, Vj=V0 and m=j
Result: Vn

MPI Initialization.

Repeat
At master:
Send Vn and Vj to slave.
Receive V2n, V2n-1 and V2n+1 from slave.
If k[m]=1 then

Vn=V2n+1

Vj=V2n
Else

Vn=V2n
Vj=V2n-1.

At slave:
Receive Vn and Vj from master.
Compute V2n(mod N) [Using Equ. (6)]
Compute V2n-1(mod N) [Using Equ. (7)]
Compute V2n+1(mod N) [Using Equ. (8)]
Send V2n, V2n-1 and V2n+1 to master.
If k[m]=1 then

Vn=V2n+1

Vj=V2n.
Else

Vn=V2n

Vj=V2n-1.
m--
until m=0
MPI Close.

The movement of data between master and
slave(s) must be synchronized in order to
make sure that the master is presented with
the right value of Vn and Vj. If the master is
provided by the unsynchronized result, the
final result of the parallel computation may
be wrong.

The suggestion of synchronization between
master and slave(s) can be found in Table 1.
At anytime, one processor must be acted as
master. The other processors are slaves.
Based on Table 1, the parallel strategy for
parallel computation on seven processors is
shown in Figure 3. Master also has the
biggest number of MPI_Send() and
MPI_Recv() commands. It is shown clearly in
Algorithm 4.

The programming codes for master have a

biggest number of Send and Receive
commands. The master is also responsible in
synchronization of data movement between
master and slaves. This technique can be
achieved by equally distributes the
computation jobs into slaves.

All computations are done by slaves. The
master only does synchronization. Slaves are
responsible for computation and also the
initiation of the next values for the next
computation.

Some slaves do very small computation for
example Slave 1. Slaves are also responsible
to update its values and acknowledge the
updated values of the other slaves. The
parallel algorithm on seven processors is
explained Algorithm 4 below.

Figure 3: Parallel Strategy for Seven Processors.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

Algorithm 4: Computation of LUC

Cryptosystems on Seven Processors

Initial: Generate a Binary Numbers, k[0,1,2,…,j]
(refer to Algorithm 1).
Input: N=p*q, Vn=V1, Vj=V0 and m=j
Result: Vn

MPI Initialization

Repeat

At master :
Send Vn to Slave 4; Vn and Vj to Slave 5
Send V2n, V2n-1 and V2n+1 to Slave 4, 5 and 6
Receive V2n from Slave 1; V2n-1 from Slave 2;
and V2n+1 from Slave 3
Receive Vn

2 from Slave 4; VnVj from Slave 5
Receive Vn

2*P from Slave 6
If k[m]=1 then

Vn = V2n+1
Vj= V2n

Else

Vn = V2n
Vj= V2n-1

At slave 1 :
Receive V2n+1 from Slave 3; Vn

2 from Slave 4
Compute V2n = Vn

2 – 2 (mod N) [Equ. (6)]
Send Vn

2 to Slave 3 and Slave 6; V2n to master
If k[m]=1 then

Vn = V2n+1
Vj= V2n

Else

Vn = V2n
Vj= V2n-1
At slave 2 :

 Receive V2n+1 from Slave 3; VnVj from Slave 5
Compute V2n-1 = VnVj – P (mod N) [Equ. (7)]
Send V2n-1 to master; VnVj to Slave 3; VnVj to
Slave 6
If k[m]=1 then

Vn = V2n+1

Vj= V2n
Else

Vn = V2n

Vj= V2n-1

At slave 3 :
Receive V2n from Slave 1; VnVj from Slave 2;
Vn

2*P from Slave 6
Compute V2n+1 = Vn

2*P - VnVj - P (mod N) [Equ.
(8)]
Send V2n+1 to master and Slave 1 and 2
If k[m]=1 then

Vn = V2n+1

Vj= V2n
Else

Vn = V2n

Vj= V2n-1

At slave 4 :
Receive Vn, V2n, V2n-1 and V2n+1 from
master
Compute Vn

2
 Send Vn

2 to master and Slave 1
If k[m]=1 then

Vn = V2n+1

Vj= V2n
 Else

Vn = V2n

Vj= V2n-1

At slave 5 :
Receive Vn, Vj, V2n, V2n-1 and V2n+1 from
master
Compute VnVj
Send VnVj to master and Slave 2
If k[m]=1, then

Vn = V2n+1

Vj= V2n
Else

Vn = V2n

Vj= V2n-1

At slave 6 :
Receive Vn

2 from Slave 1; VnVj from
Slave 2
Receive Vn, Vj, V2n, V2n-1 and V2n+1 from
master

 Compute Vn
2*P

 Send Vn
2*P to master and Slave 3

If k[m]=1, then
Vn = V2n+1

Vj= V2n
 Else

Vn = V2n

Vj= V2n-1
m--

Until m=0
MPI Close

The primary issue with speedup is the
communication to computation ratio. To get
a higher speed up, the parallel design should
be considered and tried to have less
communications, make connections faster,
communicate faster and each slave can
compute more task. Unfortunately, this
paper will not discuss the speedup and
communication speed issues.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

The listed below shows a totally different
approach and strategy in design parallel
algorithms for a numbers of processors:

a. Computation of LUC Cryptosystem. The

computation of this cryptosystem is
simple done by compute V2n, V2n−1 and
V2n+1 in slaves and send the
computations results to master. Master
and each slave then check for the next
values to be used.

For example, refer to Algorithm 3 and 4
above. Algorithm 3 requires two
processors. One will serve as master
and the other as slave. The master
sends the value to slave. The slave does
the computations and sends back the
results to the master. On the other
hand, Algorithm 4 does the other
approach. The master sends the value to
the slaves. Each slave then does their
specific task and returns the results to
the master. In this case, it is clear that
Algorithm 4 distributes the computation
task to the slave in better way and
surely can achieved high performance
computation compared to Algorithm 3.

b. Distribution of computation jobs among
the processors. The algorithms
distribute the computation jobs
depending on the equations used in
Lucas Function. One processor will act
as the master that will synchronized the
movement of data.

For example, refer to Algorithm 3 and 4
above. In Algorithm 3, the slave suffers
with computations task. Here, the slave
is required to do all computation for
Equation (6), (7) and (8). On the other
hand, Algorithm 4 does the other
approach. Equations (6), (7) and (8) are
chunk into small pieces. Each slave does
the computation task and the master
brilliantly synchronize the results from
slaves.

c. Maximum number of processors. The

maximum of processors are seven
processors. Each processor is used in
different strategy. This is clearly shown
in Algorithm 4.

d. Checking the next value to be used. The
next value to be used for the next
computation should be known and
initiated.

The main reason of the checking
procedure is to make sure the master
will sending the right value to the slave.
Each item in the Binary Number is
useful in determining the value to be
used in subsequent calculations. It is
clearly shown that this parallel
algorithm has the checking procedure in
master and all slaves. If the item of
Binary Number is 1 then the next value
for subsequent calculations is V2n+1 and
V2n. On the hand, if the item of Binary
Numbers is 0, then the next value for
subsequent calculations is V2n and V2n-1.

5. PERFORMANCE EVALUATION AND

RESULTS

In this experiment, the parallel machine
that was selected is Sun Fire V1280 server.
It is the example of the distributed memory
multiprocessors machine.

Offer CPU/memory board Dynamic
Reconfiguration, hot swap power supplies
and disks, and Lights Out Management
(LOM) for reduced downtime and easier
maintenance.

It is scales up to twelve award-winning
UltraSPARC¨ III processors in a symmetric
multiprocessing architecture for investment
protection. It is also supports up to 96GB
memory to provide the headroom needed for
constrained Windows applications. This
machine is designed to provide high
performance tool in a compact form.

The capability of each algorithm can be
determined by running the experiments on
different sizes of keys and primes. Different
key size must produce different computation
time. Table 2 shows different size of keys.
Meanwhile, Table 3 shows different size of
primes.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

Table 2: Different Size of Public Keys (In Digits)

Public

Key e

Primes

p & q

Messages

P

159 100 5
339 100 5
579 100 5

Table 3: Different Size of Primes (In Digits)

Primes

p & q

Public

Key e

Messages

P

160 159 20
220 159 20
280 159 20

The computation time is included in each set
of data as the comparison of the existing
algorithm and the proposed algorithm. Table
4 shows the comparison of encryption
computation time for each algorithm on
different sizes of public key. The bigger the
public key size, the longer computation time
is produced for LUC Cryptosystem
computation.

The bigger the number of processors, the
better computation time is produced. In all
cases, the parallel computation algorithm
with seven processors distinctly better
computation time compared the smaller
number of processors.

Table 4: Computation Time For Different Size of

Public Keys (In Seconds)

No. of

Processors

Public Key e

159

digits

339

digits

579

digits

1 55.98 297.34 573.06
2 41.99 222.00 445.09
7 13.13 75.78 149.74

On the other hand, Table 5 shows the
encryption computation time for different
prime size. The bigger size of primes, the
longer computation time is a need. Note
that, the same size of public key and
message is used but the sizes of primes are
changed. All tables show that the parallel
algorithm is better.

Table 5: Computation Time For Different Size of

Primes (In Seconds)

No of

Processors

Primes p and q

160

digits

220

digits

280

digits

1 218.87 290.99 419.49
2 182.54 231.11 344.43
7 58.45 76.29 113.38

6. CONCLUSIONS

The parallel computation algorithms are
successfully implemented in the distributed
memory multiprocessor machines. The
length of array shows that the parallel
computation algorithm must use Binary
Numbers.

The computation of LUC Cryptosystem
shows that in the parallel implementation, it
will compute the values of V2n, V2n-1 and
V2n+1 in some slaves and send the results to
master. Master and each slave then check
the next values to be used. In all
computations, modulo N (N=p*q) should be
used in all computation of V2n, V2n-1 and
V2n+1.

The parallel implementation on seven
processors shows better computation time
for all experiments. The distribution of
computation jobs shows that all algorithms
successfully the computation jobs depending
on the equations used in Lucas Function.
The lesser the distribution of computation
jobs the better computation time. Lesser
distribution of computation jobs will reduce
communication delay between master and
slaves. Each processor is used in different
strategies. The strategy used is already
shown in each parallel algorithm.

ACKNOWLEDGMENTS:

The author wishes to thank Universiti Kebangsaan
Malaysia (UKM) and Government of Malaysia for
this work. This work was supported by
FRGS/1/2012/SG05/UKM/02/1 research grant from
Jabatan Pengajian Tinggi, Malaysia.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

REFRENCES:

[1] B. Schenier, Applied Cryptography (Protocols,
Algorithms and Source Code in C), Second
Edition, John Wiley & Sons Inc, 1996.

[2] C. K. Koç, High Speed RSA Implementation,
Technical Report, RSA Laboratories, (RSA
Data Security INC, CA 1994).

[3] C. S. Laih, F.K. Tu and W.C Tai, Remarks on
LUC public-key system, Electronic Letters,
Vol 30, No. 2, 1994, 123-124.

[4] C. T. Wang, C.C. Chang and C.H. Lin, A
Method for Computing Lucas Sequences,
International Journal Computers and
Mathematics with Application, 38, 1999, 187-
196.

[5] D. Bleichenbacher, M. Joye and J.J.
Quisquater, A New and Optimal Chosen-
message Attack on RSA-Type Cryptosystems,
Y. Han, T. Okamoto and S. Qing (Eds),
Information and Communications Security
ICICS97, LNCS 1334, Springer-Verlag, 1997,
302-313.

[6] G. Castagnos, An Efficient probabilistic
public-key cryptosystem over quadratic fields
quotients, Finite Field and Their Applications
13, Elsevier, 2007, 563-576.

[7] H. C. Williams, A ρ+1 Method of Factoring,
Mathematics of Computation, vol.39, 1982,
225-234.

[8] M. Joye and J.J Quisquater, Efficient
Computation of Full Lucas Sequences, IEEE
Electronics Letters, vol.32, no.6, 1996, 537-
538.

[9] M.R.M. Said and J. Loxton, A Cubic Analogue
of The RSA Cryptosystem, Bull. Austral Math
Soc, Vol. 68, 2003, 21-38.

[10] P. Smith and M. Lennon, LUC: A New Public
Key System, Ninth IFIP symposium on
computer security, E.G. Douglas, Ed, Elsevier
Science Publishers, 1993, 103-117.

[11] R. L. Rivest, A. Shamir and L.M. Adleman, A
Method for Obtaining digital signatures and
public-key Cryptosystems, Comm, ACM 21,
1978, 120-126.

[12] S. Chiou and C. Laih, An Efficient Algorithm
for Computing The LUC Chain, IEEE
Proceedings-Computers and Digital
Techniques, vol.147, no.4, 1995, 263-265.

[13] S. Yen and C. Laih, Fast Algorithm for LUC
Digital Signature Computation, IEEE
Proceeding: Computer and Digital Techniques,
vol.142, no.2, 1995, 165-169.

[14] Z.M Ali, Reduce Computation Steps Can
Increase the Efficiency of Computation
Algorithm, Journal of Computer Science 6(10),
Sciences Publication, 2010, 1203-1207.

