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ABSTRACT 

 
Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the 
challenge of the selection of the proper function class with polynomial smooth techniques applied to 
Support Vector Regression models, this study takes three interplation points spline interpolation technology 
and modification interpolation value to generate a new polynomial smooth function 2| |x ε  in ε -insensitive 

support vector regression. The experimental analysis shows that 2
MS ε -function is better than 2pε -function 

and 2Sε -function in properties, and the approximation accuracy of the proposed smooth function is three 

order of higher than that of classical 2pε -function. 

Keywords: Support Vector Regression, ε-insensitive Loss Function, Smooth Polynomial Function, 
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1. INTRODUCTION  
 

Smooth function has been widely studied in 
numerical modeling[1-6], which, especially in the 
interest of the authors, has been successfully 
applied for classification of and regression model 
fittings in image processed and pattern 
recognition[2, 3, 7, 8]. Applying smooth function to 
regression models means to deal with square 
unsmoothed issue in ε-insensitive loss function 
while fitting the regression models [8]. According 
to the basic concept on how to solve classification 
problem, Lee et al, used 2pε -function as to 

smoothly approach the target function, and brought 
forward the ε-insensitive support vector regression 
model (ε-SSVR) in 2005 [8]. Their results show 
that the effect of ε-SSVR is better than both 
LIBSVM[9] and lightSVM [10] in both regression 
property and efficiency.  

It is, however, still an open and challenging issue 
to find a better smooth function [1,2,5,7,9]. 
Accordingly this paper is motive to present a study 
on using three interpolation points Cubic Spline 
Interpolation polynomial and modification 
interpolation value to improve this kind of smooth 
function in fitting support vector regression model. 
The proposed 2

MS ε -function is better than 2pε -

function and 2Sε -function in property, and the 

approximation accuracy of the proposed smooth 
function is three order of higher than that of 

classical 2pε -function and one order of higher than 

that of classical 2pε -function 2Sε -function. The 

simulation case study shows that it improves the 
regression effect. 

This paper is organized as follows: section 2 
introduces regression problems and difficulties. 
section 3 introduces ε-insensitive loss function and 
support vector regression .In Section 4, we first 
introduce the principle and derive formula of Cubic 
Spline Interpolation polynomial, then use 
Modification Spline Interpolation polynomial to 
smooth single  variable positive function, and we 
define 2| |x ε ’s polynomial approximation function 

2 ( , )MS x kε . In Section 5, we analyze the 

performance of polynomial smooth approximation 
function 2 ( , )MS x kε . It is the 1st-order smooth 

function, and the approximation accuracy is 
0.0081/k. Section 6, we run two numerical 
simulation experiments by using data sets from 
artificial database and UCI database to verify the 
validity of the model. Finally, we make a 
conclusion and foresee the future work in section 7. 

 
2. REGRESSION BASED DATA FITTING 

 
First, we discuss the simplest regression problem 

in 2-dimensional space: Let’s suppose all values 

1x , 2x , ... , mx  from 1 to m, each ix is 

corresponding with an observed value iy . The 
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purpose is using the designated data set to generate 
interdependent function ( )y f x= . We usually use 

this way to solve the problem as below: first, to 
restrict the function ( )y f x=  in a simple function 

class in advance, then searching for ( )f x  that can 

meet the following conditions in the function class 
as mush as possible: 

( ) , 1,2, ,i iy f x i m= = L          (1) 

In order to easy to deal with, we always use 
linear regression way, i. e., restricting ( )f x  to be 

linear function ( )f x wx b= + . Then search for f (x) 

which can meet the equation (1). 

2 2( ( )) ( )i i i iy f x y wx b− = − −              (2) 

Equation (2) is often used to measure the 
deviation degree between ( )y f x wx b= = +  and 

( )i iy f x= .The smaller value is, the less error is 

and higher efficient it is. So this process can be 
translated into the following optimized formula. So 
that we can define w and b in the 
function ( )f x wx b= + : 

2

,
1

min ( )
m

i iw b
i

y wx b
=

− −∑                   (3) 

Obviously, the regressive formula and solution 
above can be extended to a normal situation. 

First, extending data class (1) to data set S: 

1 1{( , ), , ( , )} n
m mS x y x y R R= ⊆ ×L       (4)  

Secondly, the function class which restrict the 
function y=f (x) (1) above also can be extended to 
be a real function setF . Generally, there is not only 
criterion to measure the deviation of regression 
function ( )y f x=  from ( )i iy f x= . We call 

equation (3) above as quadratic loss function. Of 
course, other loss function also can be used. If we 
name loss function as ( , , )c x y f . The optimized 

formula (3) will become minimization formula with 
empirical risk. 

1

min ( , , ( ))
m

i i if F
i

c x y f x
∈ =
∑                    (5) 

Thus, the interdependent function ( )y f x=  can 
be obtained, i. e., regression function. 

When solving the optimized formula(5), the first 
issue is how to choose the function class set F. For 
the designated normal training data set S (4), we 
can not restrict F to be too small function class, 

such as linear functions will produce large 
regression error in a model in nature of 
nonlinearity. On the other hand, F cannot be too 
large otherwise the regression function will be 
meaningless. For example, we will obtain the 
following equation based on data set S (4) when F 
is the whole real function set. 

,
( ) {

0,
i i

i

y x x
f x

x x

=
=

≠
  1,2 , .i m= L            (6) 

Obviously, the regression function is too 
illogical. Accordingly the key point is how to 
choose the function class set F, neither too simple 
nor too complicated. Furthermore, it becomes 
difficult to choose the right one for the regression 
function. 

 
3. SUPPORT VECTOR REGRESSION 
 

For better analysis, we define the ε-insensitive 
loss function of independent variable X as x ε , 

| | max{0,| | }x xε ε= − , as shown in Figure 1. 

Definition the square of ε-insensitive loss function 
as 2| |x ε , and the positive function x+  as 

( ) max{0, }i ix x+ = .       

Data set 1 1{( , ), , ( , )} n
m mS x y x y R R= ⊆ ×L , 

define matrix A=[ 1 2,, mx x x⋅ ⋅ ⋅ ], ix  is n dimensional 

vector, each ix is corresponding with an observed 

value iy , obviously m nA R ×∈ , that it is 

{( , ) | , , 1, , }.n
i i i iS A y A R y R for i m= ∈ ∈ = L  

The purpose is using the designated data set S to 
generate a regression function ( )f x , let ( )f x   

predict y more accurately according to the new 
input of x. The standard we use is ε-insensitive loss 
function: 

| ( ) | max{0,| ( ) | }y f x y f xε ε− = − −   (7) 

x

| |x ε

ε− ε+  

Figure 1: Ε-Insensitive Loss Function x ε  

For linear regression case,( ) Tf x w x b= + , where 
nw R∈  is a indeterminate vector, b is a 
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indeterminate constant.  ε-insensitive linear 
regression function is shown in Figure  2, we select 
two hyperplanes of the margin in a way and we call 
the distance between the two hyperplanes is ε zone. 
Only by there are no training points falling into the 
margin, we can have loss, and the loss is 
| ( ) |y f x− - ε . 

x

( )f x
× ×

×
×× ×

×

×
×

××
×
××

×
T( )f x w x b ε= + −

T( )f x w x b= +

T( )f x w x b ε= + +

 

Figure 2: Ε-Insensitive Linear Regression Function 

For nonlinear regression case( ) ( )f x x bωϕ= + , 

where ( )ϕ ⋅ : nonlinear function. In theory, we can 
change it into linear regression ones to settle it 
according to kernel technique.    

Standard regression problem is to solve the 
following minimum problem [11]: 

* *1
2

1

*

*

min ( , , , ) ( )

. . ( )

( )

0, 0, 1,2, ,

n
T

i i
i

i i i

i i i

i i

Q b C

s t y x b

x b y

i n

ω ξ ξ ω ω ξ ξ

ω ϕ ε ξ
ω ϕ ε ξ
ξ ξ

=

 = + +

 − ⋅ − ≤ +
 ⋅ + − ≤ +

 ≥ ≥ = ⋅⋅ ⋅

∑

    

(8) 

Where  

1 2( , , , ) ,T
nξ ξ ξ ξ= ⋅⋅ ⋅ * * * *

1 2( , , , )Tnξ ξ ξ ξ= ⋅⋅ ⋅ , ε( 0) 

is the maximum deviation allowed during the 
training and C(>0) represents the associated penalty 
for excess deviation during the training. The slack 
variables iξ and *

iξ , correspond to the size of this 

excess deviation for positive and negative 
deviations respectively. The first term,Tω ω  is the 
regularized parameter; thus, it controls the function 

capacity; the second term *

1

( )
n

i i
i

ξ ξ
=

+∑ , is the 

empirical error measured by the ε-insensitive loss 
function. 

The computation of Standard support vector 
regression is more complicated, because when 
solving the Optimization problem, you need to 
solve quadratic programming, especially when the 
training sample number is increased. The solution 

will face curse of dimensionality, in result that we 
can’t train it. Suykens J.A.K [11] proposes least 
squares method-support vector machines (LS-
SVM) to make the problem comes down to linear 
equations, and solving linear equations is easier and 
faster than the quadratic programming. Standard 
regression problem is to solve the following 
problem: 

21
2

1

min ( , )
2

. . ( ) , 1,2, ,

n
T

i
i

i i i

C
Q

s t y x b i n

ω ξ ω ω ξ

ω ϕ ξ
=

 = +

 = ⋅ + = ⋅⋅ ⋅

∑
           (9) 

  In addition, Lee et al adds the parameter 
21

2 b into the objective function to induce strong 

convexity and to guarantee that the problem has a 
unique global optimal solution. The regression 
issue can be expressed by below unconstrained 
optimized issue formula [9]: 

1

2 2

( , ) 1

1
min ( ) | | .

2 2n

m
T

i i
w b R i

C
w w b A w b y ε+∈ =

+ + + −∑      (10) 

Obviously, the 2| |x ε  in formula (10) is not 

derivative, so this target function is not derivative.  

4. POLYNOMIAL SMOOTH 
APPROXIMATION FUNCTION  

 

Cubic spline function may generate smooth 
interpolation curve by combining the discontinuous 
cubes and the second derivative is continuous at the 
joint point, namely sampling point. 

4.1 Mathematical Description 

Assumption a set of nodes 

0 1 ... na x x x b≤ < < < ≤   at[ , ]a b , if the function 

s(x) meet below term[11],  

(1)  2( ) [ , ]s x C a b∈ ; 

(2) ( )s x is cubic polynomial at every region 

1[ , ]i ix x + ( 0,1,..., 1)i n= − . 

If s(x) also meets the following spline term at 
node, 

(3) ( ) , 0,1,...i iS x f i n= =  . 

Then ( )s x  is called cubic spline interpolation 

function, the second derivative of ( )s x  at [ , ]a b  is 
continuous. 

In this study, when using cubic spine 
interpolation polynomial approach positive function 
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x+ , at the end point a=0x ,b= nx  of region [a,b], 

using following boundary conditions: ' '
0 0( )S x f= , 

' '( )n nS x f= , at region 1[ , ]i ix x + , the formula of cubic 

spline function is 

3 3 2
1 1

1

( ) ( )
( ) ( )

6 6 6
i i i i i

i i i
i i i

x x x x M h x x
S x M M f

h h h
+ +

+
− − −

= + + −

2
1

1( )
6

i i i
i

i

M h x x
f

h
+

+
−

+ − ( 0,1, , 1)i n= ⋅⋅ ⋅ −        (11) 

To solve jM  we can write it in matrix form as 

following: 

00

11 1 1

11 1

2 1

2

...... ... ... ...

2

1 2
nn n

n

dM

dM

dM

dMn

µ λ

λ −− −

    
    
    
     =
    
    
         

            (12) 

     Where:  [ ]0 0 1 06 , ,d f x x x=                        (13) 

[ ]1 16 , ,i i i id f x x x− +=                      (14) 

[ ]16 , ,n n n nd f x x x−=                       (15) 

1

1

i
i

i i

h

h h
µ −

−

=
+

                                  (16) 

1

1 i
i i

i i

h

h h
λ µ

−

= − =
+

                       (17) 

1i i ih x x −= −                                      (18) 

4.2 The Derivation Of Smoothing Process 

We use the method of cubic spline interpolation 
polynomial to smooth single variation function at 

region 1 1,k k−   . Take 3 interpolation data from 

positive function x+  at region x<0 x=0 and x>0m , 

point 1
j kx = − , 1 0jx + =  and 1

2j kx + =  (k>0), 

corresponding 0jf = , 1 0jf + = , 1
2j kf + = . 

Using cubic spline interpolation polynomial to 
smooth positive function x+  at region 1 1,k k−   , 

table 1 is interpolation point, corresponding 
function and the first derivative value. 

 
Table 1: Interpolation Point And Function Value 

 

j jx  jf  '
jf  

0 
1 
2 

-1/k 
0 
1/k 

0 
0 
1/k 

0 
0 
1 

0 1

1
h h

k
= = , 1

1

2
µ = ,    

2 1µ = , 0 1λ = , 1

1

2
λ = , 

'
0 0 1 0

0

1
6 ( [ , ] ) 0d f x x f

h
= − =  

[ ]1 0 1 26 , , 3d f x x x k= =  

'
2 2 1 2

1

1
6 ( [ , ]) 0d f f x x

h
= − =  

0

1

2

2 1 0
0

1 1
2 3

2 2
00 1 2

M

M k

M

 
    
     =    
       

 

                    (19) 

Then have the answer 0M k= − , 

1 2M k= , 2M k= − , so the cubic spline 
interpolation polynomial for the smoothing of 

single variable function at region 1 1,k k−    is as 

below:   

2 3 2

2 3 2

1 1 1
, [0, ]

2 2( )
1 1 1

, [ ,0]
2 2

k x kx x x
kS x

k x kx x x
k

− + + ∈= 
 + + ∈ −


       (20) 

( )S x x+≤ , in 1/ 3x k= ± , the difference value is 

the largest,max( ( )) 2 / 27x S x k+ − = . In order to 

make ( )S x greater than x+ , the ( )S x as a whole 

moves up to 2 / 27k [12]. 

Then the approaching function of the positive 
function x+  is  
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2 3 2

2 3 2

1

3
1 1 2 1

, 0
2 2 27 3( , )

1 1 2 1
, 0

2 2 27 3
1

0 0
3

M

x x
k

k x kx x x
k kS x k

k x kx x x
k k

x k
k

 ≥

− + + + ≤ <


= 
 + + + − < <


 ≤ − >


 (21) 

4.3 The polynomial approaching function 2
MS ε  of 

2
x ε

 

Define 2 ( , )MS x kε  is the square of polynomial 

approaching function ( , )MS x kε  for ε-insensitive 

loss function x ε , from formula (21) we have 

following conclusion:  

2 1
3

2 3 2 2 1
3

2 3 2 2 1
3

2 1 1
3 3

2 3 2 2 1
3

2 3 2

( ) ,

1 1 2
( ( ) ( ) ( ) ) ,

2 2 27
1 1 2

( ( ) ( ) ( ) ) ,
2 2 27

( , ) 0 ,

1 1 2
( ( ) ( ) ( ) ) ,

2 2 27
1 1

( ( ) ( ) (
2 2

k

k

k

M k k

k

x x

k x k x x x
k

k x k x x x
k

S x k x

k x k x x x
k

k x k x x

ε

ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε

ε ε ε ε ε

ε ε

− ≥ +

− − + − + − + < < +

− + − + − + − + < <

= − ≤ ≤ − +

− + + + − + + − < < −

+ + + − 2 1
3

2 1

2
) ) ,

27

( ) ,

k

k

x
k

x x

ε ε ε

ε ε















+ + − − < < −

 − − ≤ − −

                  (22) 

5. PROPERTY ANALYSIS 
 

Lemma 1[8]  2pε -function 

2 2 2( , ) ( ( , )) ( ( , ))p x k p x k p x kε ε ε= − + − − , 

where 
1

( , ) ln(1 )kxp x k x e
k

−= + +  , 0k > , e is 

the base of natural logarithm, it has the following 
properties: 

(1) 2pε -function is any-order smooth w.r.t. x;; 

(2) 2 2( , ) | |p x k xε ε≥ ; 

(3) Forx R∈ and| |x < ρ ε+ : 

 2 2 2log 2 2
( , ) | | 2( ) log 2p x k x

k kε ε
ρ− ≤ + . 

Lemma 2[13] 2Sε -function  

2 1

2 2 1 1

2 1 1

2 2 1 1

2 1

( ) ,

1 1 1
( ( ) ( ) ) ,
4 2 4

( , ) 0 ,

1 1 1
( ( ) ( ) ) ,
4 2 4

( ) ,

k

k k

k k

k k

k

x x

k x x x
k

S x k x

k x x x
k

x x

ε

ε ε

ε ε ε ε

ε ε

ε ε ε ε

ε ε

 − ≥ +

 − + − + − + < < +

= − ≤ ≤ − +

 + − + + − − < < −

 − − ≤ − −

(23) 

has the following properties: 

(1) 2Sε  is 1st-order smooth w.r.t. x. That is, at 

interpolation points, 

2 1
2

1
( ( ), )kS k

kε ε± + =        2 1( ( ), ) 0kS kε ε± − + =    

2 1 2
( ( ), )S k

k kε ε∇ ± + =    2 1
( ( ), ) 0;S k

kε ε∇ ± − + =  

(2) 2 2( , ) | |S x k xε ε≥  
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(3) 2 2
2

1
( , ) | |

11
S x k x

kε ε− ≤  

Theorem 1 2
MS ε  is defined in(16), we have: 

(1) 2
MS ε  is 1st-order smooth w.r.t. x. That is, at 

interpolation points, 

2 1
3 2

1
( ( ), )

9M kS k
kε ε± + =                         (24) 

2
2

4
( , )

729MS k
kε ε± =                               (25) 

2 1
3( ( ), ) 0M kS kε ε± − + =                           (26) 

2 1 2
( ( ), )

3 3MS k
k kε ε∇ ± + =                       (27) 

2 2
( , )

27MS k
kε ε∇ ± =                               (28) 

2 1
( ( ), ) 0

3MS k
kε ε∇ ± − + =                     (29) 

(2)  2 2( , ) | |MS x k xε ε≥                                       (30) 

(3)  2 2
2

1
( , ) | |

124MS x k x
kε ε− ≤                        (31) 

Proof: 

(1) According to the definition, we can directly 
prove it. 

(2) Verify 2 2( , ) | |MS x k xε ε≥  

   For 1
kx ε≥ + , 1

kx ε≤ − −  and xε ε− ≤ ≤ , 

Conclusion is obviously correct. 

For 1
kxε ε< < + , define: 

 2 2( ) ( , ) | |g x S x k xε ε= −  , then we have 

2 3 21 1
( ) ( ( ) ( ) ( )

2 2
g x k x k x xε ε ε= − − + − + −

2 2 2 32 1
) ( ) ( ( )

27 2
x k x

k
ε ε+ − − = − −

2 3 2
( ) ( ) )

2 27
k x x

k
ε ε+ − + − + •

2 3 21 1 2
( ( ) ( ) ( ) )

2 2 27
k x k x x

k
ε ε ε− − + − − − +  

Define: 

2 3 2
1

1 3 2
( ) ( ) ( ) ( )

2 2 27
h x k x k x x

k
ε ε ε= − − + − + − +

2 3 2
2

1 1 2
( ) ( ) ( ) ( )

2 2 27
h x k x k x x

k
ε ε ε= − − + − − − +

Then we get 1 2

4
( )

729
h

k
ε = , for 

1
3kxε ε< < +  

2 2
1

3 3
( ) ( ) 2 ( )

2 2
h x k x k xε ε∇ = − − + − +

2 23
(1 ( ) ) 2 ( ) 0

2
k x k xε ε= − − + − >  . 

So 1( )h x is strictly monotonic increasing at 

region 1
3kxε ε< < + . So for 1

3kxε ε< < + , 

1( )h x > 1 2

4
( ) 0

729
h

k
ε = > , so, 1( ) 0h x > Then we 

get 1
2 3( ) 0kh ε+ =  

For 1
3kxε ε< < +  

2 2
2

3 1
( ) ( ) 2 ( )

2 2
h x k x k xε ε∇ = − − + − −

1
(1 ( ))(1 3 ( )) 0

2
k x k xε ε= − − − − − <  

So 2( )h x is strictly monotonic decreasing at 

region 1
kxε ε< < + . So for 1

kxε ε< < + , 

2( )h x > 1
2( ) 0kh ε+ = , so, 2( ) 0h x > . 

then 2 2( , ) | |MS x k xε ε≥  is correct for 
1
3kxε ε< < + . 

Similarly, for the case of 1
3k xε ε− − < < − , we 

have 2 2( , ) | |MS x k xε ε≥ . 

Hence, 2 2( , ) | |MS x k xε ε≥  

(3) Verify 2 2
2

1
( , ) | |

124MS x k x
kε ε− ≤  

For 1
3kx ε≥ + , 1

3kx ε≤ − − and 1 1
3 3k kxε ε− ≤ ≤ − + , 

the conclusion is obviously correct. 

For 1
3k xε ε− + < < ,we have 

2 2 2( , ) | | ( , )M MS x k x S x kε ε ε− = ,due to 2
MS ε is a 

strictly monotone increasing function for 
1 1

3 3k kxε ε− + < < + , so  
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2 2
2 2

4 1
( , ) ( , )

729 124M MS x k S k
k kε ε ε≤ = < ;For

1
3kxε ε− < < − ,we have 

 2 2 2( , ) | | ( , )M MS x k x S x kε ε ε− = ,due to 2
MS ε  is a 

strictly monotone decreasing function for 
1 1

3 3k kxε ε− − < < − ,so 

2 2
2 2

4 1
( , ) ( , )

729 124M MS x k S k
k kε ε ε≤ = < ; For 

1
3kxε ε< < +  

2 2( ) ( , ) | |Mg x S x k xε ε= − ,we have variable 
substitution for formula: 

2 3 21 1
( ) ( ( ) ( ) ( )

2 2
g x k x k x xε ε ε= − − + − + −

2 22
) ( )

27
x

k
ε+ − − , ( ) (0,1)a k x ε= − ∈ ,then

2 2
3 2

2

1 1 2
( ) ( )

2 2 27

a a
g a a a

k k k k k
= − + + + −  has 

maximum value point a=0.0751 at region 

0<a<1,hence 2

1
( ) (0.0751)

124
g x g

k
≤ < ,therefore, 

the conclusion is correct. 

Similarly, for the case of 1

3k
xε ε− − < < − , we 

have 2

1
( ) (0.0751)

124
g x g

k
≤ < . 

Hence, 2 2
2

1
( , ) | |

124MS x k x
kε ε− ≤ . 

6. EXPERIMENTAL RESULT 
 

In the case of k=5,ε=0.3, the smooth function 
approximation comparison chart is as Figure 3, then 
we can see that, 2

MS ε -function has higher 

approximation accuracy than 2pε -function and 2Sε -
function with the same K value. 

When 2pε -function and 2Sε -function as smooth 

functions, define ρ=1/ k , from Lemma 1 and 

Lemma 2 we have 2 2 2( , ) | | 1.3854 /p x k x kε ε− ≤  and 
2 2 2( , ) | | 0.0909 /S x k x kε ε− ≤ , Table 2 list the 

approximation accuracy of three smooth functions, 
then we can see that the approximation accuracy of 

2
MS ε -function is three order of magnitude higher 

than that of the 2pε -function and one order of 

magnitude higher than that of the 2Sε -function at 
the same K value.  

 

Figure 3:  Smooth Function Approximation 
Comparison Chart In The Case Of K=5 And Ε=0.3 

 

Table2: Approximation Accuracy Of Smooth Functions 

smooth 
function 

2pε - 

function 

2Sε - 

function 

2
MS ε - 

function 
approximation 

accuracy 
21.3854 /k  20.0909 /k  

20.0081/k  

To further verify the property of this smooth 
function applying to support vector regression, Two 
simulated experiments were selected to demonstrate 
the analytical results, which were run at Matlab7.0 
on a personal computer with an AMD X4 620 
processor and 2GB memory. Based on the first 
order optimality conditions of unconstrained 
convex minimization problem, our stopping 
criterion was satisfied when the 2-norm of gradient 
of the objective function is less than 510− .For an 

observation vector y and the prediction vector ŷ , 
the 2-norm relative error of two vectors y and 
ŷ was defined as follows:  

2

2

ˆ|| ||

|| ||

y y

y

−
                             (32) 

This relative error used to measure the accuracy 
of regression. In order to evaluate how well each 
method generalized to unseen data, we split the 
entire data set into two parts, the training set and 
testing set. The training data was used to generate 
the regression function that is learning from 
training data; the testing set, which is not involved 
in the training procedure, was used to evaluate the 
prediction ability of the resulting regression 
function. We also used a stratification scheme in 
splitting the entire data set to keep the “similarity” 
between training and testing data sets . That is, we 
tried to make the training set and the testing set 
have the similar observation distributions. A 
smaller testing error indicates better prediction 
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ability. We performed tenfold cross-validation on 
each data set  and reported the average testing error 
in our numerical results. To generate a highly 
nonlinear function, a Gaussian kernel was used for 
all nonlinear numerical tests defined as below: 

2
2|| ||( , ) , , 1,2,3, ,i jA AT

i jK A A e i j m
µ− −= = L     (33) 

The parameters µ  and C  were determined by a 

tuning procedure.  

First, we selected 101 points evenly from [-1, 1] 
as the input data of the artificial data sets and the 
observation was generated from a simple function 
as follows:  

30
sin( )

( ) 0.5 ,
30

x
f x

x

π ρ

π

= ⋅ +              (34) 

Table 3: Numerical Result For Sin Function 

Methods #SVs 
Train 

Error(%) 

Test 

Error(%) 

CPU 

(s) 

ε-PSSVR 

ε-MPSSVR 

69 

69 

5.76 

5.48 

5.76 

5.48 

0.026 

0.022 

-1 -0.5 0.5 1
x

-0.1

0.1

0.2

0.3

0.4

0.5

 

Figure 4: Regression Function Produced By Smooth 
Support Vector Regression 

Where ρ  is an additive Gaussian noise with 
mean=0 and standard deviation 0.04σ = .We set 

0.02ε = , which is one half standard deviation of 
the Gaussian noise. The rest of the parameters, 

33µ =  and C=6, were determined by a tuning 
procedure. The experimental results show that the 
ε-PSSVR has the smallest relative error. ε-PSSVR 
took 0.026 CPU seconds , while ε-MPSSVR took 
0.022 seconds. We summarized the results in 
Figure 4 and Table 3. 

The second artificial data set was obtained by 
using MATLAB command “peaks (170)” to 
generate 28900 data points in R2. Just like our first 
experiment, the Gaussian noises (mean=0 and 

standard deviation 0.4σ =  ) were added. Similar to 
the first experiment, we set 0.02ε = , 1µ =  and C = 
1000.  Because of storing the fully dense kernel 
matrix required in nonlinear ε-PSSVR, will exceed 
the memory capacity and the reduced kernel 
technique was applied here. We randomly selected 
300 points which are slightly over 10 percent of the 
entire training data set to form a reduced set and 
used the reduced kernel formulation to generate the 
nonlinear regression function. The resulting 
function of ε-PSSVR (a) and the original function 
(b, without noises) were shown in Figure 5. The 
dots that were shown in Figure  5 form the reduced 
set. This result was generated in 11.362 seconds 
with 0.01 relative error. We also tested ε-SSVR on 
his artificial data set. However, they took a much 
longer time to get the solution with the same level 
of accuracy. We summarized the numerical results 
of these two artificial data sets in Table4. 

 

Figure 5:  The Regression Of 3D Artificial Data 
Sets(A)(B) 

 

Table4: Numerical Result For 3D Artificial Data Sets 

Methods #SVs 
Train 

Error(%) 
Test 

Error(%) 
CPU(s) 

ε-PSSVR 
�ε-MPSSVR 

17820 
17818 

1.08 
1.01 

1.12 
1.01 

12.086 
11.362 

 
7. CONCLUSIONS 

 

In this paper, we successfully obtain the 
polynomial smoothing function which approaches 
the square of ε-insensitive loss function by using 
three interpolation points cubic Spline interpolation 
method, that is 2

MS ε -function, and proved that this 
function has better properties, the approximation 
accuracy is three order of higher than 2Pε -function 

and one order of higher than 2Sε -function. As a 

result, to apply 2
MS ε -function in support vector 

regression, the number of support vector is less, 
CPU time. Therefore, we can provide a new, better 
polynomial smooth function in smooth support 
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vector  regression model fitting and other related 
fields. 
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