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ABSTRACT

Regression analysis is often formulated as an apdiiion problem with squared loss functions. Fadhng
challenge of the selection of the proper functidass with polynomial smooth techniques applied to
Support Vector Regression models, this study t#ke® interplation points spline interpolation teclogy

and modification interpolation value to generateeav polynomial smooth functiopx f in € -insensitive
support vector regression. The experimental aralgsows thats,, -function is better tharp? -function
and S’ -function in properties, and the approximation aacy of the proposed smooth function is three
order of higher than that of classicpf -function.

Keywords: Support Vector Regression, e-insensitive Loss Function, Smooth Polynomial Function,
Madification Interpolation

1. INTRODUCTION classical p? -function and one order of higher than

Smooth function has been widely studied ifhat of classical p? -function S’ -function. The
numerical modeling[1-6], which, especially in theSimulation case study shows that it improves the
interest of the authors, has been successfulifgression effect. _ _
applied for classification of and regression model This paper is organized as follows: section 2
fittihgs in image processed and patterintroduces regression problems and difficulties.
recognition[2, 3, 7, 8]. Applying smooth functiom t Section 3 introduces-insensitive loss function and

regression models means to deal with Squaﬁ]pport vector .I’egl’eSSion .|n.SeCti0n 4, we fIrSt
unsmoothed issue ir-insensitive loss function introduce the principle and derive formula of Cubic
while fitting the regression models [8]. AccordingSPline  Interpolation  polynomial, then use

to the basic concept on how to solve classificatiofflodification Spline Interpolation polynomial to
problem, Lee et al, usedp® -function as to smooth single variable positive function, and we

smoothly approach the target function, and brougﬁjteflne Ix's polynomial approximation function

forward thee-insensitive support vector regressionSu. (k) . In Section 5 we analyze the
model €-SSVR) in 2005 [8]. Their results showperformance of polynomial smooth approximation
that the effect ofe-SSVR is better than both function S, (x,k) . It is the 1st-order smooth

LIBSVM[9] and SVM "™ [10] in both regression function, and the approximation accuracy is

property and efficiency. 0.0081/k. Section 6, we run two numerical
Itis, however, still an open and challenging issusimulation experiments by using data sets from

to find a better smooth function [1,2,5,7,9]artificial database and UCI database to verify the

Accordingly this paper is motive to present a studyalidity of the model. Finally, we make a

on using three interpolation points Cubic Splin&onclusion and foresee the future work in section 7

Interpolation  polynomial and  modification

interpolation value to improve this kind of smoothp, REGRESSION BASED DATA FITTING

function in fitting support vector regression madel

The proposedS;, -function is better thanp? - First, we discuss the simplest regression problem

function and SZ -function in property, and the in 2-dimensional space: Let's suppose all values

, y e from 1 to m, eachx is
approximation accuracy of the proposed smootl % ) Xm X
function is three order of higher than that oferresponding with an observed valye. The

e —
92




Journal of Theoretical and Applied Information Technology
15" October 2012. Vol. 44 No.1 \.\/

© 2005 - 2012 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

purpose is using the designated data set to generatich as linear functions will produce large
interdependent function= f(x). We usually use regression error in a model in nature of
this way to solve the problem as below: first, tgronlinearity. On the other hand, F cannot be too

restrict the functiony = f(x) in a simple function large _otherW|se the regression fun_ct|0n W'” be
meaningless. For example, we will obtain the

class in advance, then searching fdix) that can  fo|iowing equation based on data set S (4) when F
meet the following conditions in the function clasds the whole real function set.
as mush as possible: _
y = f(x), i=1,2;-- m 1) f(x)z{i’;'x;’ﬂ i=12..m. ©6)
1X N
In order to easy to deal with, we always use %

linear regression way, i. e., restrictirfdx) to be Obviously, the regression function is too

linear functionf (x) = wx+b . Then search for f (x) !logical. Accordingly the key point is how to
. _ choose the function class set F, neither too simple
which can meet the equation (1).

nor too complicated. Furthermore, it becomes
(y. = F(%))2 = (y, —wx —b)? ) diffiCl_JIt to choose the right one for the regressio
function.
Equation (2) is often used to measure the
deviation degree betweey= f(x)=wx+b and 3. SUPPORT VECTOR REGRESSION

y, = f(x).The smaller value is, the less error is

and higher efficient it is. So this process can be For better analysis, we define thensensitive
translated into the following optimized formula. Soloss function of independent variable X p$ ,

that . we can define w and b in thele: max{0,[x |-¢}, as shown in Figure 1.
function f (x) = wx+b : Definition the square of-insensitive loss function

oo , as [xf , and the positive functionx, as
nv],'bn; (¥ —wx ~b) ®) (x,); =max{0,x }.

Obviously, the regressive formula and solution Data  set S={0%, ¥ -+ O Yn)} DRIXR

above can be extended to a normal situation. define matrix A=[x, x, (I, ], x is n dimensional
First, extending data class (1) to data set S: vector, eachx is corresponding with an observed
value y , obviously AOR™" , that it is

S={(% V), (X ¥} OR"XR 4 )
0% Vs O Vb @ oAy | ADRy OR for —Lo
Secondly, the function class which restrict therhe purpose is using the designated data set S to
function y=f (x) (1) above also can be extended t@enerate a regression function(x) , let f(x)

be a real function s&t . Generally, there is not only p'redict y more accurately according to the new

criterion to measure the deviation of regressio " o
. input of x. The standard we usecinsensitive loss
function y=f(x) from y, =f(x) . We call function:

equation (3) above as quadratic loss function. Of
course, other loss function also can be used. If we ly=f()L=max{0ly-f &)lFe} (V)

name loss function as(x,y,f). The optimized M

formula (3) will become minimization formula with
empirical risk.

mind: (... () ©)

Thus, the interdependent functigiF f(X) can 0 X

-£ +e
be obtained, i. e., regression function.

. . . Fi 1. E- itive Loss Functi X
When solving the optimized formula(5), the first 'gure NSENSITIve -oss FUnction | |£

issue is how to choose the function class set F. Fo
the designated normal training data set S (4), we ~ = _ _ _
can not restrict F to be too small function classwOOR" is a indeterminate vector, b is a

For linear regression casg(x) =w'x+b, where

e —
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indeterminate constant. e-insensitive linear will face curse of dimensionality, in result thaew
regression function is shown in Figure 2, we delecan't train it. Suykens J.A.K [11] proposes least
two hyperplanes of the margin in a way and we caliquares method-support vector machines (LS-
the distance between the two hyperplaneszisne. SVM) to make the problem comes down to linear
Only by there are no training points falling inteet equations, and solving linear equations is easidr a
margin, we can have loss, and the loss ifaster than the quadratic programming. Standard

ly-f(X)|-€. regression problem is to solve the following
problem:
b f(X) /f;X):WTX+b+£ Ca
X % mnQ(w,&) =i w+—=>Y &
X x : 221 ' €)
_—x X f(=w'x+b st. y = wP(x)+bé i =1,2/In
X = "
X2 In addition, Lee et al adds the parameter
— =, X f(x)=w'x+b-¢ 12§ iecti i i
X X sb%into the objective function to induce strong
0 X convexity and to guarantee that the problem has a
] o ) . unique global optimal solution. The regression
Figure2: E-Insensitive Linear Regression Function  jssye can be expressed by below unconstrained

For nonlinear regression cabéx) = wp(x)+b, OPtimized issue formula [9]:
C

. H H m
where¢(£_ﬂ. _nonll_near functlon.. In theory, we can i l(wTw+b2)+—Z|AW+b—yi B, (0)
change it into linear regression ones to settle itwbor™ 2 23

according to kernel technique.
Obviously, the |[x[ in formula (10) is not

gerlvatwe, so this target function is not derivati
4. POLYNOMIAL SMOOTH

Standard regression problem is to solve t
following minimum problem [11]:

minQ(w,b,&,& )=t w+ Czn: E+E&) APPROXIMATION FUNCTION
i=1
st. y, ~wlp(x)-bs e+ Cubic spline function may generate smooth
wPH(x)+b-y <e+& interpolation curve by combining the discontinuous
. : cubes and the second derivative is continuouseat th
§20,& 20,=12[n

joint point, namely sampling point.

®) 4.1 Mathematical Description

Where .
Assumption a set of nodes

E=(&,&,OME ), & =(&,&,,0MK,) , &(Z0) asx <x<..<x,<b at[ab], if the function
is the maximum deviation allowed during thes(x) meet below term[11],
training and C(>0) represents the associated penalt
for excess deviation during the training. The slack (1)
variables¢ an.dg?*, correspond_ .to the size of th.is (2) s(x) is cubic polynomial at every region
excgs; dewatlon_ for p05|_t|ve aan _negauvem, x.] (i=0,1,...n- 1).
deviations respectively. The first term,w is the

regularized parameter; thus, it controls the fuorcti  If s(x) also meets the following spline term at
node,

(3)S(x)=f,i=0,1,.n .

s(x)0C?[a,b];

capacity; the second tenﬁl({i +&) , is the
i=1

empirical error measured by tlkensensitive loss
function. Then s(X) is called cubic spline interpolation

The computation of Standard support vectoFunCFion’ the second derivative ox) at[ab] is
regression is more complicated, because whe®ntinuous.
solving the Optimization problem, you need to |, ihis study, when using cubic spine

SO'.V? quadratic programming, especially when t,hﬁlterpolation polynomial approach positive function
training sample number is increased. The solution
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X,, at the end point ax, ,b=X, of region [a,b],
using following boundary conditionsS (x,) = f,,
S(x,) = f., at regiodx, X.,] , the formula of cubic

Table 1: Interpolation Point And Function Value

spline function is j X f, f;
- =x)°® -x)3 h2 x. - 0 -1/k 0 0
spg = B Xy OOX) (g M X X 1 o o0 o
o S 767 h 2 1k 1k 1
a(f, My XX g1t 1 1
i1 6 h T ho=h1=E,,U1=§,
To solveM; we can write it in matrix form as 1
following: '1'12:1’/]":1’/11:5'
2 1 M, b | 1 :
d, =6—(f[X,,%x]-f,) =0
L2 A M, d, o ho( [Xo: Xu] = f5)
.= (12) d1:6f[xo’X11X2]:3<
2 /]n—l Mn—l dnfl
1 2| ™Mn| |d, ]| d2:6%(f2'—f[xl,x2]):0
Where: d, =6 [X),%,X,] (13) 2107, 0
0
di=6f[)§—1r)§1)§+1] (14) % 2 _; Ml - 3< (19)
d, =6f [x,,%,, %] (15) 01 2 |M] [0
e . (16) Then have the answer M, =-k |
h.+h M,=2k , M,=-k , so the cubic spline
h interpolation polynomial for the smoothing of
A=1-4 =h +h (17) single variable function at regioh—%.1] is as
-1
below:
=X -X 18
N 4o e e+ Ly xd[0 —1]
4.2 The Derivation Of Smoothing Process S(x) = 2 27 "k (20)
We use the method of cubic spline interpolation 1 1 1

_ : piir _ KX+ kP +=x, xO[-=,0]
polynomial to smooth single variation function at 2 2 k

region [-+,4]. Take 3 interpolation data from

positive functionx, at region x<0 x=0 and x>0m
point X, =—¢ , X, =0 and X, =% (k>0),

S(x)<X,, in x=+1/3k, the difference value is
' the largestmax(x, —S(x))= 2/2K . In order to

make S(X) greater thanx, , the S(X) as a whole
correspondingf; =0, f;,, =0 f,, =¢. moves up to2/ 27k [12].

Using cubic spline interpolation polynomial to Then the approaching function of the positive

smooth positive functionx, at region[-%,1], functionx, is

table 1 is interpolation point, corresponding
function and the first derivative value.
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1
X X=—
3k
—%k2x3+kx2+—;x+%, 05x<—31(
Sy (x.k) = 1 1 5 1 (21)
KOG+ kP +=x+—, ——<x<0
2 27Kk X
0 X< —i k>0
3k

4.3 The polynomial approaching function Sj, of loss function|X, , from formula (21) we have
|x|2 following conclusion:

Define S, (x,k) is the square of polynomial
approaching functionS,,,(x,k) for e-insensitive
(x-¢&)?, xzt+e
(—Ekz(x—£)3+k(x—£)2+—1(x—£)+—2)2,g<x<3—1k+£
2 2 2k

(%kz(x—gf+k(x—g)2+—;(x—£)+§)2,—3—1k+5< X<é&

Si.(xk)=40 , 2-esxs-%+e¢ (22)

(—%kZ(x+5)3+k(x+£)2——;(x+£)+%)2.—€< X<x~€

(%kz(x+5)3+k(x+£)2—}(x+£)+i)2,—3—1k—£< X<-€

27k
(-x-¢&)?, x<-i-g
5. PROPERTY ANALYSIS (x—&)", x2ite
Lix— e + Lix—gy+Ly2 _1 1
Lemma 1[8] p?-function (4k(x £) +2(X £)+4k)’ (FESX<y+e
2(x,k)=40 , L-g<xg-1+
2(x,K) = (P(x~£,K))* + (p-X~£,K)), (k) (TESXSTyte
(Ek(x+£)2—}(x+£)+—lZ—i—£<x<—1—£
4 2 &k K

where p(x,k)=x+% InA+e™) ,k>0, e is

(-x-¢)?, x<-i-¢
the base of natural logarithm, it has the following (23)
properties:
has the following properties:
(1) p?-function is any-order smooth w.r.t. x;;
(1) S is 1st-order smooth w.r.t. x. That is, at

(2) PZ(xk)2IxE; interpolation points,

(3) ForxORand|x |[<p+&: Sf(’—“(%”)’k):k—lz SE((-1+£),k)=0

P (x k)~ I x b= 202927+ 2 jog 2. 1 2 1
“ “ DSf(i(Fe),k):E DSf(i(—E+g),k) =0;

Lemma 2[13] S’ -function
(2) SE(x.k) 2| x E
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) Define:
(3) S(xk) )
n(x)———kz(x > +k(x-£)°*+= (x €)+ﬁ
Theorem 1S;, is defined in(16), we have: 2
X =——k2 x-£)°+k(x-¢& 2 1 X— &) +——
h,(x) > (x=€)" +k(x-¢) 2( ) X

(1) Si, is 1lst-order smooth w.r.t. x. That is, at

interpolation points, 1 Then we get h(e)= 72%2  for
SNE 3—1k+€).k)=w (24) E<Xx<i+e
S, (e k)= @5 Ch()= 2K (x-e) +2k(x-e)+>
R PTC 32 2
S (-2 +£)K)=0 (26) =K e A kme)> 0.
1 2 So h(X) is strictly monotonic increasing at
OS2 (x(—+&),k)=— 27
el (3k ) X @1 region £<X<g+& . So for £<x<g+& |
0S%, (€, k)_ﬁ (28) h(x) > h(e) = 2%2 >0, so,h(x)>0Then we
1 gethy(35+€) =0
2 —_
e +£) k)=0 (29) Fore <x<4+¢&
(2) Si.(xk)2|xE (30)

Oh, (x) = —gkz(x—g)z +2k(x—£)——;

3) Sh.(xK)-Ixfs—— (31)

124k2 = —%(1— k(x-&)(1- X x—-¢£))<0

Proof: . . . .
So h,(X) is strictly monotonic decreasing at

(1) According to the definition, we can dlrectlyregion g<x<l+e . So for e<x<i+e

prove it.
X)>h,(:+¢£)=0, soh,(x)>0.
(2) Verify S2,(x,k)2|x h,(x) >h,(+e) h, (x)
For x=>14+g X < ——£ and —e<x<e then S\zllf(xlk) 2|XE is correct for
=1 , ,

- E<SX<g+E.
Conclusion is obviously correct. 3

Similarly, for the case of3—£<x<-£, we
have S, (x,K) 2| x f.

Fore <x<z+¢&, define:

g(x) = SZ(x,k)-|x £ , then we have

Hence, S, (x,k) 2| x [
900 = (-5 K (x= &) +k(x=8)* + (x~2)
2 (3) Verify S2.(x,k)— | S ——— 124k2

+ﬁ) ~(x- )7 = (- 5K (x-8)°

Forx24;+&, X< -3 —fand 5 —ESXS -4 +&,

the conclusion is obviously correct.

27k
For—4+¢&<x<¢ ,we have

S (%K)-|xE=S2, (xk) ,due to S, is
strictly monotone increasing function for
—&+tESX<g+E,s0

(-Ekz(x-€)3+k(x-€)2— L (x- €)+ﬁ)

e —
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4 1

(%K) S (e K)=—F<—
SRS S ()= <

—£ < X<4 -&,we have

S, (X, K)-|xf=Si, (x k) ,due to S, is a

strictly monotone decreasing function for
" TESX<F €50
4 1
2 X,k < 2 £,k =< Eor
S (%K) = §j, ( )729k2 1242
E<X<g+E
g(x)=Si. (x,k)-|xf ,we have variable

substitution for formula:

900 = (-5 K*(x=&)" +k(x=8)" + (x~2)

magnitude higher than that of tH%f -function at

the same K value.

—
AN “
\\

S
AN
“~

[N}

0.3 0.2

0

=
0.4 -0.1 0.2 0.3 0.4

Figure 3: Smooth Function Approximation
Comparison Chart In The Case Of K=5 And £=0.3

Table2: Approximation Accuracy Of Smooth Functions

+i)2—(x—5)2 , a=k(x-&)0(0,1) . Lthen

sz -
function

S

function

p:-
function

smooth
function

27k

2

a1 2y @

a+ has

appoximatior 1 3g54 K2

2 0.0081 k>
accuracy 0.0909 k

1 s
a)=(-—a’+—+—
9(@) =( 2k k 2k

maximum value point

27Kk k?
a=0.0751 at

O<a<1,henceg(x) < g(0.0751)< ,therefore,

124k?
the conclusion is correct.

Similarly, for the case of3-~£<X<-£, we
1

h X) < g(0.0751)< .
aveg(x) < g( ) ac

L
1247
6. EXPERIMENTAL RESULT

Hence i, (x,k)— | x f<

In the case of k=870.3, the smooth function

approximation comparison chart is as Figure 3, then

we can see thatS,, -function has higher

approximation accuracy thap’ -function andS’ -
function with the same K value.

When p? -function and S? -function as smooth
functions, definep=1/k , from Lemma 1 and
Lemma 2 we havep?(x,K)-|x f< 1.3854 k* and
S2(x,k)—|x < 0.0909k* , Table 2 list the

To further verify the property of this smooth

regionfunction applying to support vector regression, Two

simulated experiments were selected to demonstrate
the analytical results, which were run at Matlab7.0
on a personal computer with an AMD X4 620
processor and 2GB memory. Based on the first
order optimality conditions of unconstrained
convex minimization problem, our stopping
criterion was satisfied when the 2-norm of gradient
of the objective function is less tha®®.For an
observation vector y and the prediction vecjor
the 2-norm relative error of two vectors y and
¥ was defined as follows:

ly-y I}
Iy [}

This relative error used to measure the accuracy
of regression. In order to evaluate how well each
method generalized to unseen data, we split the
entire data set into two parts, the training seat an
testing set. The training data was used to generate
the regression function that is learning from
training data; the testing set, which is not inealv

in the training procedure, was used to evaluate the
prediction ability of the resulting regression
function. We also used a stratification scheme in

(32)

approximation accuracy of three smooth functionsplitting the entire data set to keep the “simi{dri
then we can see that the approximation accuracy bé&tween training and testing data sets . Thatés, w
S:. -function is three order of magnitude highertried to make the training set and the testing set
have the similar observation distributions. A

2 .
than that of thep; -function and one order of smaller testing error indicates better prediction

e —
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ability. We performed tenfold cross-validation onstandard deviatiow = 0.4 ) were added. Similar to
each data set and reported the average testiog efhe first experiment, we set=0.02, =1 and C =

in our numerical results. To generate a highlyopo. Because of storing the fully dense kernel
nonlinear function, a Gaussian kernel was used f@hatrix required in nonlineas-PSSVR, will exceed

all nonlinear numerical tests defined as below: the memory capacity and the reduced kernel
technique was applied here. We randomly selected
300 points which are slightly over 10 percent @& th
entire training data set to form a reduced set and
used the reduced kernel formulation to generate the
nonlinear regression function. The resulting

First, we selected 101 points evenly from [-1, 1];unctipn of &-PSSVR (a) and the original function
as the input data of the artificial data sets drel t (0, Without noises) were shown in Figure 5. The

observation was generated from a simple functiofiots that were shown in Figure 5 form the reduced
as follows: set. This result was generated in 11.362 seconds

with 0.01 relative error. We also teste@®SVR on

K(A,A‘T)Ze_”“/-\_AJIE,i,j=1,2,3;" m (33)

The parameterg: and C were determined by a
tuning procedure.

sin(@x) his artificial data set. However, they took a much

0507 4 longer time to get the solution with the same level

f(x)=05 30 P (34) of accuracy. We summarized the numerical results
T X of these two artificial data sets in Table4.

Table 3: Numerical Result For Sin Function

Methods  #SVs Train Test CPU
Error(%) Error(%) (s)
e-PSSVR 69 5.76 5.76 0.026
&-MPSSVR 69 5.48 5.48 0.022

Figure5: The Regression Of 3D Artificial Data
Sets(A)(B)

Table4: Numerical Result For 3D Artificial Data Sets

Train Test
Methods #SVs Error(%)  Error(%) CPU(s)
* &-PSSVR 17820 1.08 1.12 12.086
[e-MPSSVR 17818 1.01 1.01 11.362

Figure 4: Regression Function Produced By Smooth

Support Vector Regression 7. CONCLUSIONS

Where £ is an additive Gaussian noise with
mean=0 and standard deviatian=0.04.We set
£=0.02, which is one half standard deviation o

In this paper, we successfully obtain the
fpolynomial smoothing function which approaches
the square ot-insensitive loss function by using
. three interpolation points cubic Spline interpalati

=33 = i . . .
H and C=6, were determined by a tunlnq’nethod, that isS; , -function, and proved that this
procedure. The experimental results show that the

e-PSSVR has the smallest relative erssPSSVR unction has better properties, the approximation
took 0.026 CPU seconds , wh#éeMPSSVR took accuracy is three order of higher thRA-function

0.022 seconds. We summarized the results @nd one order of higher tha® -function. As a

Figure 4 and Table 3. result, to apply S, -function in support vector

The second artificial data set was obtained byegression, the number of support vector is less,
using MATLAB command “peaks (170)" to CPU time. Therefore, we can provide a new, better

generate 28900 data points in R2. Just like ost firpolynomial smooth function in smooth support
experiment, the Gaussian noises (mean=0 and
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vector

regression model fitting and other related

fields.

(8]
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