
Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

A WEB-BASED TOOLKIT FOR LARGE-SCALE
ONTOLOGIES

1Yuxin Mao

1 School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018,

P.R. China

E-mail: 1maoyuxin@zjgsu.edu.cn

ABSTRACT

There is no doubt that those large-scale domain ontologies are playing a critical role in building a large
variety of semantic-based systems. It’s important and urgent to share and reuse large-scale ontologies to
support semantic-based applications in a more efficient way. In this paper, we propose a web-based toolkit
for building and reusing large-scale ontologies. The toolkit consists of a web-based ontology editor as well
as a modulation-based API for ontology reuse. The web-based ontology editor supports cooperative online
development of large-scale ontologies. It distinguishes itself from other editors by an easy-to-use interface.
A modulation-based API is implemented for manipulating modulation from large-scale ontologies. It makes
it possible to extract frequently-used portions from large-scale ontologies and cache those portions of
knowledge in database for potential reuse. Moreover, we have evaluated the performance of the toolkit by
simulation and application. In summary, the proposed toolkit is able to support building and reusing large-
scale ontologies.

Keywords: Ontology, Web-based, Sub-Ontology, Reuse, Reasoning

1. INTRODUCTION

As the foundation of the Semantic Web [1],
ontologies [2] are the specification of
conceptualisations, used to help programs and
humans share knowledge. Encoding domain-
specific knowledge in terms of ontologies provides
a possible approach to overcome the problem of
semantic heterogeneity in modern information
systems. Nowadays, ontologies are increasingly
seen as a key technology for enabling semantics-
driven knowledge processing [3]. To overcome the
problem of semantic heterogeneity and encode
domain knowledge in reusable format, large-scale
ontologies will play a critical role in developing
semantic-based (or knowledge-based) systems.

There is no doubt that those large-scale domain
ontologies are playing a critical role in building a
large variety of semantic-based systems that
typically operate on and communicate with
statements in some formal knowledge
representation. However, including large-scale
ontologies in their complete form could incur an
unnecessarily high storage and maintenance cost.
Therefore, to knowledge-intensive domains like
bioinformatics or traditional Chinese medicine
(TCM), it’s important and urgent to share and reuse

large-scale ontologies to support semantic-based
applications in a more efficient way.

In this paper, we propose a web-based toolkit for
building and reusing large-scale ontologies. The
toolkit consists of two parts, a web-based ontology
editor as well as a modulation-based API for
ontology reuse. The remaining of the paper is
organized as follows. In Section 2, we introduce a
web-based ontology editor for modeling and
building large-scale ontologies. In Section 3, we
present a modulation-based API for reusing large-
scale ontologies. In Sections 4 illustrate the
performance evaluation of the toolkit. Section 5
concludes the paper with an outlook to future
research directions.

2. WEB-BASED ONTOLOGY EDITOR

Recent advent of the Semantic Web has
facilitated the incorporation of various large-scale
ontologies in many disciplines especially biology
and medicine, such as Gene Ontology (GO) [4] for
gene product, UMLS [5] for integrating biomedical
terminology, MGED Ontology [6] for microarray
experiment and so on. Many ontology editors
already exist and most of them are offline and
general tools for constructing domain ontologies
such as OilEdit [7], Protégé [8] and so on. As a

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

most popular and powerful ontology editor, Protégé
is a tool that allows users to construct an ontology.
However, Protégé fails to satisfy some disciplines
like biology or TCM with complex real-life
requirements. Moreover, Protégé does not support
web-based collaborative work well for ontology
development. To overcome the problem of
semantic heterogeneity and encode domain
knowledge in reusable format, we need an
integrated toolkit to develop large-scale ontologies.

Therefore, we develop a web-based ontology
editor that allows users to edit and explore ontology
online (see figure 1). The editor runs on the server-
side and publishes large-scale ontologies to users
through Web services. No special clients are
required and users can browse and edit ontologies
anywhere with their web browsers. It supports
cooperative online ontology editing, incorporates a
data-base back-end for large-scale ontology storage,
and interacts with several popular ontology formats.

The editor also provides a tree-based view for
classes and a form-based view for instances of an
ontology. Figure 1 shows the standard user
interface of the editor. The interface is divided into
a set of panels—Figure 1 has three panels visible.
The class panel (1) shows the class hierarchy, the
instance panel (2) shows a list of instances, and the
property panel (3) shows the details of a selected

instance. The property panel consists of several
slots, with each corresponding to a class property.
To a specific instance, users can specify its property
value by inputting either literals or related instances
in a pop-up panel (4) from slots. Besides, we also
implement some additional functions (5) like
searching a class or instance in the scope of the
ontology, counting the number of classes or
instances and so on, to facilitate development.

We employ a layered privilege model for the
ontology editor. Users that play different roles in
the process of ontology development own different
privileges. Assume the target ontology is divided
into several categories (e.g. disease, biomedicine,
acupuncture and so on, to a TCM ontology), then
there are mainly four kinds of privileges: reader,
developer, checker and administrator.

(1) Readers can browse all the contents of the
ontology.

(2) Developers can input, modify and delete
instances within a category but have no privilege to
manipulate the classes of the category.

(3) Checkers own the privilege to manipulate
both classes and instances in a category.

(4) Administrators have the global privilege to
all categories of the whole ontology.

1

2

5

4

3

Fig. 1 The default user interface for the ontology editor. Note that the ontology is currently written in Chinese.
In this figure, the class toxicity is selected by user, which is a sub-class of herbal medicine property. In the
instance panel, the instance toxic reaction is selected. Toxic reaction has a property definition, whose value is
another instance, which is shown in the pop-up panel.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

The classic Web application model adopts a
“click, wait & re-fresh” user interaction and a
synchronous request/response communication
mechanism, which results in slow, low productivity
and inefficient Web applications. When an
ontology grows in size, it's intolerable that users
wait several minutes for page refresh in online
development. We provide users with a graphical
inter-face based on AJAX (Asynchronous
JavaScript And XML), which is a combination of
techniques for submitting server requests in
asynchronous communication and returning data
from the server to the user without the necessity of
waiting for a page load. For example, an ontology
developer wants to add a sub-class called
haematology to the existing class biochemistry in a
TCM ontology. He selects the class biochemistry in
the class hierarchy tree, add a class under
biochemistry and input the class name,
haematology. Things are finished in a single page
(see figure 1). The user sees the impact of his
operations immediately without additional sub-
mission or waiting, just as typing a document on his
PC.

The web-based ontology editor for developing
large-scale ontologies distinguishes itself from
other editors by providing an AJAX-based
graphical interface, cooperative online development
and layered privilege control.

3. ONTOLOGY REUSE BY MODULATION

Taking into account the locality of knowledge
reference, we propose to represent those context-
specific portions of knowledge from the whole
ontology as sub-ontologies (SubO) [9]. A large-
scale ontology like GO contains relatively complete
knowledge about the domain of interest it focuses
on. Our conjecture is that the activities of a
semantic-based system are always local to a subset
of known information (e.g., a large-scale domain
ontology). Taking into account the locality of
knowledge reference, we propose to represent those
context-specific portions of knowledge from the
whole ontology as SubOs, which can be reused in
semantic-based systems. We give a formal
definition of SubO based on the semantic structure
of ontology as follows:

Sub-Ontology. Formally, a sub-ontology (SubO for
short) can be represented as a triple <C, K, O>,
where C is a set of contextual concepts to feature
the SubO as the context of problem-solving to the
source ontology, K is a self-contained knowledge
set relevant to C, and O is a link to the source
ontology.

The concept (note that in the rest of this paper,
we just take concept and class as the same term to
ontology) set C is used to capture the features of
knowledge reference and elements in C are the
concepts related with a problem-solving scenario at
most. Contextual concepts can vary with contexts
and it makes sense that a SubO can be reused in
different contexts. The self-contained characteristic
of K means that all knowledge references are
involved in K.

For example, the family ‘phosphofructokinase’
in InterPro (Mulder et al, 2003) is annotated to
GO:0006096 (glycolysis), GO:0003872 (6-
phosphofructokinase activity), and GO:0005945 (6-
phosphofructokinase complex). Then the SubO for
these three GO terms is shown in figure 1: the
concept set is {GO:0006096, GO:0003872,
GO:0005945} and the knowledge set contains all
the GO terms in the figure. Therefore, ontology
reuse for GO-based systems can be achieved in
terms of utilizing SubOs. In other words, SubO is
treated as the basic unit of ontology reuse.

Fig. 2 The Subo For Annotating The Family
‘Phosphofructokinase’ In Interpro

We implement a modulation-based API for

manipulate SubOs from large-scale ontologies. The
API is an open source toolkit for manipulating
SubOs from large-scale ontologies. We can extract,
store and query SubOs efficiently with the API to
achieve ontology reuse. Ontology users or
semantic-based systems can use these APIs to
extract, store or query SubOs from large-scale
ontologies.

Given a set of terms C, SubOs potentially
required for semantic-based systems can be directly
extracted from ontologies by our API. The process
of extraction is reduced into a group of traversals.
Briefly, the extraction of SubOs proceeds as
follows:

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

(1) Class labels if any (e.g. transcription, DNA-
dependent) in C are converted into class IDs (e.g.
GO_0006350).

(2) Starting at a class c, we traverse classes
related to c through relation links (e.g. is-a or part-
of) in the ontology.

(3) The traversal is performed with the breadth-
first algorithm. The breadth-first traversal
terminates when a depth of n has been met or there
are no more terms to be traversed.

(4) For each input term in C, we find the
corresponding ontology class, perform a traversal in
the ontology and get a subset of ontology.

(5) Finally we combine all subsets together and
the final set is just the knowledge set K of the
required SubO.

The traversal depth n is an alterable parameter to
the API. Note that the terminal classes in a traversal
path are called edge classes whose definitions are
not allocated in K. For example, starting from
GO_0006349 and GO_0006355, we traverse GO
until a depth of 2 has been met. The classes (e.g.
GO_0050789) that terminate the traversal are edge
classes. The final SubO is shown in figure 3, and
the gray nodes denote edge classes. Except edge
classes, every class in the SubO has its complete
definition in K.

Newly extracted SubOs from large-scale
ontologies in terms of <C, K, O> can be directly
used as a Jena [10] ontology model or stored in a
repository to be reused in the future. Next time any
request with a similar set of ontology terms is
transferred to the repository of SubOs rather than
directly to the ontology. The API supports database
storage for SubOs and query over database by
concept sets. Given a set of class IDs or class labels,
the API queries database and returns the best-
matched SubO.

In relational database, the three elements of
SubO are stored in different fields respectively.
Moreover, an additional field called frequency is
reserved to record how often a SubO is reused by
semantic-based systems. The frequency field is
useful to systems that require dynamic evolution on
SubOs. This calls for the additional capability of
semantic-based systems to keep evolving (modify,
augment, prune, etc.) frequently used SubOs,
emerged to be specialized in their own areas of
concern [9]. In this way, a repository of SubOs is
used as a cache for large-scale ontologies. Caches
work well because of a principle known as locality
of reference. By keeping as much of the data as

possible in the SubO repository, semantic-based
systems avoids accessing the whole ontology.

Fig. 3 A Subo With A Traversal Depth 2.

4. PERFORMANCE EVALUATION

In order to evaluate the performance of the
proposed toolkit, we use it to develop a large-scale
ontology for TCM called Traditional Chinese
Medicine Language System (TCMLS) [11]. By
using the web-based toolkit, we have developed the
TCM ontology (see the statistics in table 1). As we
can see in the table, the toolkit is able to support
large-scale ontology. The ontology has become
large enough to cover different aspects of the TCM
discipline and is used to support semantic-based
systems for TCM.

Table 1 The Major Result Of The TCM Ontology By The
Toolkit.

Item Value

Response Time (ms) 500

Query Response Time (ms) 1000

Number of Classes 10370

Number of Instances 78754

Moreover, we have evaluated the modulation-
based API of the toolkit. The most important and
frequent operation for ontology reuse is SubO
extraction. Therefore we investigate the efficiency
of SubO extraction by using the toolkit. We
randomly extract about 100 SubOs from the TCM
ontology with different depth values and record the

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

average extraction time for each of them. Table 2
just illustrates the time of extracting a SubO under
different depth values. From table 2 we can see that
the time is increased to a large extent when the
depth value grows from 1 to 5. It makes sense that
the extraction process is more complex under a
larger depth value. The toolkit is able to support
extracting SubOs from large-scale ontologies under
certain time.

Table 2 The Time Of Extracting A Subo Under Different
Depth Values By Using The Toolkit.

Depth 1 2 3 5

Time (105 ms) 3.2104 3.9726 4.7403 5.2203

Moreover, we have also evaluated the cache
performance of the API. The primary metrics used
to evaluate the cache performance are hit-ratio and
response time. A cache with higher hit-ratio and
lower response time is better. We perform a number
of operations to the cache with SubOs from the
TCM ontology. We calculate the average hit-ratio
and the response time for a number of operations
(e.g. 500).

Table 3 The Cache Performance Of The Toolkit.

Number 500 1000 2000

Hit-ratio 30% 45% 53%

Response
Time (ms) 100 80 30

From table 3, we can see that the performance of
the cache is improved when the number of
operations increases. The cache is able to improve
the performance of semantic-based systems by
keeping frequently-used SubOs in a repository.

5. CONCLUSION

Building and reusing large-scale ontologies is
important to implement semantic-based systems. In
this paper, we propose a web-based toolkit in order
to achieve the purpose. The toolkit consists of a
web-based ontology editor as well as a modulation-
based API for ontology reuse. The web-based
ontology editor supports cooperative online
development of large-scale ontologies. It
distinguishes itself from other editors by an easy-to-
use interface. A modulation-based API is
implemented for manipulating SubOs from large-
scale ontologies. It makes it possible to extract
frequently-used portions from large-scale
ontologies and cache those portions of knowledge

as SubOs in database for potential reuse. In
summary, the proposed toolkit is able to support
large-scale ontologies. Future works include how to
extend the toolkit to support more ontology
languages and how to integrate a reasoning engine
to support ontology reasoning.

ACKNOWLEDGEMENTS

This work is partially supported by a grant from

a NSFC Program (NO. NSFC61003309) and
Science and Technology Department of Zhejiang
Province Program (NO. 2010C33045, and
2010C33047).

REFRENCES:

[1] T. Berners-Lee, Hendler J, Lassila O. “The
Semantic Web”, Scientific American, Vol. 284,
No. 5, 2001, pp. 34-43.

[2] T. Gruber, “A Translation Approach to Portable
Ontology Specifications”, Knowledge
Acquisition, Vol. 5, No. 2, 1993, pp. 199-220.

[3] A. Maedche, B. Motik, L. Stojanovic, R. Studer,
and R. Volz, “Ontologies for Enterprise
Knowledge Management,” IEEE Intelligent
Systems, Vol. 18, No. 2, 2003, pp. 26-33.

[4] M. Ashburner, C.A. Ball, J.A. Blake, et al.,
“Gene Ontology: tool for the unification of
biology”, The Gene Ontology Consortium. Nat.
Genet., Vol. 25, 2000, pp. 25-29.

[5] O. Bodenreider, “Unified medical language
system (umls): integrating biomedical
terminology”, Nucleic Acids Research, Vol. 32,
No. D, 2004, pp. D267-D270.

[6] L. Patricia, et al., “The MGED Ontology: a
resource for semantics-based description of
microarray experiments”, Bioinformatics, Vol.
22, No. 7, 2006, 866-873.

[7] S. Bechhofer, I. Horrocks, C. Goble, and R.
Stevens, “OilEd: a Reason-able Ontology Editor
for the Semantic Web”, Proc. KI2001, Vol.
2174, 2001, pp. 396-408.

[8] N.F. Noy, M. Sintek, S. Decker, et al., “Creating
Semantic Web Contents with Protege-2000”,
IEEE Intelligent Systems, Vol. 16, No. 2, 2001,
pp. 60-71.

[9] Y. Mao, W.K. Cheung, Z. Wu, J. Liu, “Dynamic
Sub-Ontology Evolution for Collaborative
Problem-Solving”, Proc. AAAI Fall Symposium,
v FS-05-01, 2005, pp. 1-8.

Journal of Theoretical and Applied Information Technology
 15th October 2012. Vol. 44 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

[10] B. McBride, “Jena: A semantic web toolkit”,
Internet Computing, IEEE, Vol. 6, Issue 6, 2002,
pp. 55-59.

[11] X. Zhou, Z. Wu, A. Yin, et al., “Ontology
Development for Unified Traditional Chinese
Medical Language System”, Journal of
Artificial Intelligence in Medicine, Vol. 32, No.
1, 2004, pp. 15-27.

