Journal of Theoretical and Applied Information Technology

15" October 2012. Vol. 44 No.1 \Y
© 2005 - 2012 JATIT & LLS. All rights reserved- L ———
S 100
ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

DUALITY FOR NONDIFFERENTIABLE MULTIOBJECTIVE
SEMI-INFINITE PROGRAMMING WITH GENERALIZED
CONVEXITY

XIAOYAN GAO
School of Science, Xi'an University of Science arethnology, Xi'an, 710054, China

ABSTRACT

The purpose of this paper is to consider the MorelfWWpe dual model for a class of non-smooth
multiobjective semi-infinite programming problemrm this work, we use generalization of convexity
namely G —(F,8) convexity and Kuhn-Tucker constraint qualificatidn prove new duality results for

such semi-infinite programming problem. Weak, sgramd converse duality theorems are derived. Some
previous duality results for differentiable multjebtive programming problems turn out to be spetiales
for the results described in the paper.
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1. INTRODUCTION generalized mathematical programming problems,
various generalized convexity notations have been

In recent years, there has been considerabRiroduced. In particular, the concept of
interest in so-called semi-infinite programminggeneralizedF, p) — convexity, introduced by Preda

problem--the optimization of an objective function7] was in turn an extension of the convexity and

in finitely many variables over a feasible regionyas used by several authors to obtain relevant
defined by an infinite number of constraints, sincesults. In [8, 9], the concept &f — p - invexity

this model arises in a large number of applications . .
in different fields of mathematics, economics ang"d (F.,a,,o,d)— convexity V\./ere_ mtroducet_j,
engineering, i.e., control of robots, mechanicalespectively. Furthermore, duality in mathematical
stress of materials, and air pollution abatement etProgramming has not only used in many theoretical
We can see in [1, 2]. To date, many authorand comp_utatl_onal developments in mathema’qcal
investigated the optimality conditions and dualityProgramming itself but also used in economics,
results for semi-infinite programming problems. Ircontrol theory, business problems and other diverse
particular, Kanzi and Nobakhtian[3] establishedi€lds. A large literature was developed around
some alternative theorems and several necess&i§neralized convexity and its applications in
optimality conditions of Fritz-John and Karush-multiobjective programming. Many authors invest-
Kuhn-Tucher type for nonsmooth semi-infiniteigated the optimality conditions and duality result
programming problem. In [4], they also establisheéPr multiobjective programming problems under the
necessary and sufficient optimality conditionsconditions of generalized convexity. In [10], the
under various constraints qualifications ~forsufficient optimality conditions and duality resalt
nonsmooth semi-infinite programming prob'emWere. obtained under the generahzed convex
using Clarke subdifferential. We also refer [56] functions.

understand different aspects of semi-infinite |, this paper, motivated by the above work
programming. several duality results are established for a atéiss

On the other hand, the concept of convexity anfultiobjective semi-infinite programming problem
generalized convexity plays a central role involving the new generalized convexity
mathematical economics, management science, and
optimization theory. Therefore, the research od. DEFINITIONSAND PRELIMINARIES
convexity and generalized convexity is one of the
most important aspects in  mathematical In the section, we define a kind of generalized
programming. To relax convexity assumptiong£onvex functions about the Clarke subgradient.
imposed on theorems on optimality conditions for
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Let f:X - R be locally Lipschitz, where  b(x,x°)¢ f(x)— f(x°)] <0 = F(x,x%a(x,x%&)
X OR" is an open set. Then the Clarke directional +p||6?(x Xo)||2 <0,0E00f (x°)

derivative of f atx[J X is defined by Definition2.5. f is said to b —(F,d) strict
f(y+td)-f(y)

fo(xd) = Iyi[nxsupf : pseudo-convex af’ O X , if for all xOX,x# x°,
to there existb,¢@,a,p0 and €, such that

The Clarke subgradient is given by b(x, X)L f (%) = F(x%)] <0 = F (% X% a(x X))

(&.d)< t%(x d), 0d ORY. +p]a0 ) < 0,08 00t (<)

Definition2.1. A functional F: X x X xR - R Definition2.6. f is said to b& -(F,6) quasi-
(X OR") is said to be sublinear about the thirdconvex atx’0X , if for all xOX , there

of (x) ={EOR"

variable, if for all(x, x,) 0 X x X . It satisfies existsb,¢,a,p and &, such that
F(X, %0, +a,) S F (X, X0 )+ F (X, X 50 ), b(x, X ) f (X) = f(x°)] <0 = F(x, X% a(x, x°)¢&)
Oa,,a,0R". +p||9(x, x°)||2 <0,0&00f (x°)
F(x,%;ra) =rF(x,x,;a.),0r OR, @ OR" Definition2.7. f is said to b& —(F,8) weak
1821 2= o .

quasi-convex ak’0X , if for all xOX , there

By the above inequality, it is clear existsh,@,a,0 and &, such that

thatF (x,x,;0)=0. o 0 0 0
b(x, X )A T (X) - F(X)] <0= F(x X ;a(x,x")¢)

W thaiX i t bset
e suppose thaX is nonempty open subse +p||6?(x,x°)||zso,D£Daf )

of R", f:X - Ris local Lipschitz function at
x°’OX ,F:XxXxR" - R is sublinear about the
third variable,b: XxXx[0,1] - R,,¢:R-~ R , 3. DAULITY THEOREMS

lim b(x, x’; A) =b(x,x°),a: X*x X - R, \{0}, pOR  Now we consider the following multiobjective
-0 semi-infinite programming problem
,0: XxX - R" , where@ is vectorial application. o
_— o minimizef (x) = (f (), f (). T (x;))
Definition2.2. f is said to b& —(F,8) convex (SIVP) subject tog K u ¥ QuOU |
atx’0 X , if for allxO X , there existd,¢,a,p <O X

andd, such that
where X OR" is a nonempty open setf, :

b(x, x*)¢ f(x) - f(x%)] = .
(AT 09 = 1)) , X 5 R(i=12;-,p),g :XxU - R"antl OR"™
FOOa06xX0)E)+ p00x)| OE00f (°) s an infinite index set. We suppose thatand
Definition2.3. f is said to be stricG - (F,6) g are locally Lipschitz and Clarke subdifferentiable

0 - <
convex atx’0X , if for all xOX , there exists atx . We put X {x|g(xu) =0, x0X,ubu}
b.¢,a,p and @, such that for the feasible set of problem (SIVP).

o o Now we define
b(x, x")d f(x) — f(x7)] >
=[i i < i .
Foxa (0 + oo Denar ey 8 {ijotx u) =0,x0 X, DU}
10¢) ={i| (X", u') =0,x° 0 X,u' DU,
Definition2.4. f is said to beG-(F,6)
pseudo-convex at’ 0 X , if for all xO X , there u ={u DU|g(x u') =0,x0X,i 04}, which is

existsh,¢,a,p and &, such that countable subset df ;
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N={u |,./.1i =0,i 04}, which means that; = 0 It's meaning that there is no othel X°, such
for allidA , and only finitely many are strictly that f,(x)= f,(x),0j 0f,2,---,p} and f,(X)
positive. <f, (X*),ki i

T =y < i . . .
For anyu ={u DU|g(x u) =0,xU X104}, Definition3.3. X O X° is said to be a properly
the Mond-Weir type dual model for (SIVP) is givenefficient solution of (SIVP), ifx is an efficient

by solution, and there exists a real numbgr 0,
maxf () such that for ak O{L,2,---,p} , only one of the

P _ following systems holds:
st. 00) A,0f, W)+ > pdg v u');
j=1

(SIVD) icA f. () - f;(x')<0,0x0X°
2 Hog(vu)=0; M (£, (9= (X ) +(f;(09 = ,(x ) =0,
b 0j 04, 2,-,p}, j 2k
A20,j=12- pD A =14 0Ai0A I P
= Theorem3.1. (Weak duality)
Let

p
w° ={(v Ui,/],/l)OEl Aof (v)+ ,Uiag(v,ui); i
| ; [ é j:1’21"',p with Z/]J=1,,LI||]/\,||:|A, assume
j=1

X . P
D H4OgVU) =04 = 0,)=12 p DA =1 there exists F,by,@.b,¢,a.0, (=12 p)r
ioA j=1
J 0A),8 , such that

LetxOX°, (v,u’,A,4)OW®, for vO X°, A, 20,

4 OAiOA,U OU” OU} denote the set of all (

. . P P
feasible solutions of (SlVD) (I) bo(XvV)%[ZAj fj (X) _z/]j fj (V)]
The following notation conventions are used in = 1=
this paper

p p
= F(x,v,a'(x,v)Z/\j{j )+ZAij ||9(X,V)||2 ,
For X, yOR", x= (X, %), ¥y= ¥ r.Y, ) i=L =1

where the superscrift denotes the transpose of a D{J Dafi (V)
vector, (i) ~b(xv)@l D pg(v,u)] =

i0l (v)
() x<y = X <y,i =1 n;
Foov,a(xv) Y ud)+ > urexvy’,
(i) X<y = x =y,i=1---,n, and at least one oW oW
X, <Y, holds for somg; 0¢ Oog(v,u'),u’ 0V
(iif) The complementary conditiomolds, that is,
(i) x=y = x =y,i=1---n; asg(v,u') >0, we always havg; =0,i DA|l (v);
(V) x=y < x Zy,i=1--n. (VVa=0=>¢g@=0,g@)= 0=>a< 0,

Definition3.1. X OX° is said to be a weak P(V)>0b (x\v)>0;

efficient solution of (SIVP), if there is no P -
otherxd X°, such that V) ;/]ipi+§"1‘ri =0.
f(x)< f(X) Then we can obtaifi(x)* f(v).

Definition3.2. X [0 X° is said to be an efficient Proof: Suppose that the result does not hold, then

. o —
solution of (SIVP), if there is no othefl X°, such there existsxO X", such thatf(x)= f(v) . It
that follows that there exists at least one in#exsuch

f o that
<
(¥ = f(X) f 09 < f (), f; () = £, (v),

0j0f{,2,---,p}, j2k
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Sinced, =0,j=1,2;-- p with) A, =1, so we DAE+D %0
= j=1 ioa
have

So we have a contradiction. Hence the result
follows.

P P
Af(X)=-> Af (V=0
; 100 le i) Theorem3.2. (Weak duality)

By (iv), we obtain LetxOX°, (v,u’,A,4)0W°, forvOX°, A, >0,
p p j=42;--,p with g4 OA,i0A , assume there
bO(X’V)%[;AJ' fj(x)—;)lj fi(W]1=0 existsF, by, ¢.b.¢.a.0, (= 1,2 p)7, (OA )
, such that

Then from (i), we have b b

) () bR A T (=Y A f, (V)] <0

FOovia(x V)Y A,6)+ = i J'le

= (1) = Fxv,a(x VY AE)+> Ap, locv) <o,
0¢; Oof; (v);

According to (iii), it follows thagz OA , and not (i) ~B(xV)@l X #g(vu)]=0

p
Zl/y. p; |6 v)[ = 0,0¢ 0of, (v)
s

. i0l (v)
all g are zeroes, asll(v) .
= FOov,a(xv) Y ud)+ > un ey’
Thus we have i0rv) i0r(v)
i <0,0¢ Odg(v,u')u' OU";
g(v,u')=0 '
iulzm'u'g( ) (il a<0=>g@)<0,a= 0=¢g @)= 0,
By (iv), we get by (x,v) >0,b, (x,v)= 0;
; . p
-B(x V)@l > #9(v,u)] <0 (V) D Ao, + D pr, 20,
i0l (v) =1 toT

Then (ii) yields Then we can obtaifi(x)’ f(v).
Proof: Suppose that the result does not hold, then

F(x,v; , )+ T 6(X, 2 <0, .
(xvia(xv) 2, 4d)* 3, uri o) there existsx(X° , such thatf(x)= f(v) . It

i0r(v) i0l (v)

07, Odg(v,u'),u' OU",iO1 (V) follows that there exists at least one in#exsuch
that
Using (iii) again, we have
(Vi (VY )+ Y [0 ot
F(x,via(x,v)) ud)+ ) Ut |60(x,v i i
= < @ 0o, 2,---,p}h j £k
<0,0¢ Odg(v,u')u' OU" i0A Sinced; >0,j =1,2;-- p, it follows that
Adding (1) and (2), then by the sublinearity of p p
F and (v), we get DA< 2A V)
o j=1 j=1
F(x,v;a'(x,v)(ZAjfj +Z,uiZi ) According to (iii), we have
j=1 idA
p J p P
<-OAp, +> un)ex v =0 by (VG A, () =204 (W] <0
=1 inA = =1

where 0¢&, Oof, (v),0¢;, Odg(v,u'),u' OU". Then (i) yields

Hence, we known for all$; 0odf (v) and
¢, 0og(v,u'),u' OU",i0A, we have
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F(x,v;a(x,V)i/ljfj )+ (i) bo(x,v)qq)[zp:/]j f.(%) —i/\j f.(W]=0

®)

P P P

;/\j p, |6 v)|* <0,0¢ Dot (v) = F(x,v,a(x,v)zl/\jfj )+Zl/1j p; |6V

= j= j=

Since for allu'OU",g(v,u')=0, as g OA, <0,0¢; Dof,; (v); ‘
i 01(v), it follows that (i) -b(xv)@l > #9(v,u)]=0
i0l (v)

D H4g(v,u)=0 = Fov,a(v) Y ud)+ > ur ey
i0l (v) i01 (v) i01 (v)

<0,0¢ Oag(v,u' ),u OU";
(il a<0=>¢@g@)=0,a= 0=>¢g @)= O,

By (iii), we have

—bl(X.V)ﬂ[iDIZMM g(v,u)]=0 b, (V) > O, (x.v) = O:
Then from (i), we get (iv) Zp:/\jpj + Z,Uifi =0;

. 2
F(x,v,a(x,v)_mz(:),uizi )+.DIZ(:)'U‘Ti "H(X’V)” =0, Then we can obtaifi(x)’ f(v).
Proof: The proof is similar to the theorem 3.2.

0¢, Oag(v,u'),u' OU,i0l (v)
Theorem3.4. (Weak duality)
Lety =0, for alliDA\I(v) , it follows that _
LetxOX°, (v,u’,A,4)OW®, for vO X°, A, 20,
FOova(v)Y (d)+ > ur [0eov)’ ’
% % ” | 4)  j=L2.,pwith Y A =14 0A,i0A, assume
=0,0¢ Oag(v,u'),u OU" i0A =1
_ . _ there exists F,b,,@.b.¢ .0 P, (=12 p)r,
Adding (3) and (4), then by the sublinearity of(i 0A),6 , such that

F and (iv), we have
p p
F(x,v;a(x,v)(i/]j{j +Z,uigi ) (i) bo(X,V)%[;/h f;(%) _;Aj f;(W]=0

P P
P =>FXxv,a(x,v)) AE)+D> A p [6(X,v 2§0,
A0+ Sunletxff =0 Covabon A& 2 Am o6
j=1 i0A

0¢; Oof, (v);
Where 0¢; 00f, (v),0¢; Odg(v,u'),u' OU". (i) -Bxval Y 4gv,u)] =0
i0l (v)
Hence, .we. kn?Yvn for all§, Dof,(v) and N F(x,v,a(x,v)z rar z ur "9()(’\/)"2 <0
¢, 0og(v,u'),u' OU ,iOA, we have i0rv) i0r(v)

, 0¢, Oag(v,u'),u' OU";

DA+ G 20 (i)

i=1 i0a a=0=>¢g@=0,a=0=¢g@)=0p,kv)> O

But which contradicts the constraint condition off (x,v) = 0;

(SIVD). Hence the result follows. p
iv) » A.p + 7. =0;
Theorem3.3. (Weak duality) ( )JZ; 1P+ L HT

LetxOX°, (v,ul,A,£)OW°, forvD X% A =0, Thenwe canobtaif(x)" f(v).
Proof: Suppose that the result does not hold, then
there existsx(X° , such thatf(x)= f(v) . It

follows that there exists at least one indlexsuch
that

j=1,2.-- ,pwith ¢ OA,i0A, assume there exists

Flb(]!%lbllwllalpj (J = 112'1" 1p )T| (DA )6
such that
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f () < W), fi00 = f;(v),
0j 0,2+, ph j £k

P
Since A, =0,j=1,2;-- p with D A =1, it
j=1
follows that

ilaj f()= ilaj f.(v)
According t(;_(iii), we hav;
bo(x,vm[jzi’lm f,(0 —JZF;AJ =0
Then (i) yields

p P 2
F(x,v;a(x,v)z A&+ Ao, |0V
j=1 j=1

<0,0¢, 00, (v)

(5)

Since for allu'OU",g(v,u')=0, asy OA
i dl(v), it follows that

> ug(v,u)=0

i0r (v)

By (iii), we have

B (x4l Y, #9(v.u)] =0

i0r (v)

Then from (i), we get

Foovia(xv) 3 ud)+ Y ur ol

i01 (v) i0I(v)

<0,0¢ Odg(v,u'),u' OU" 0l ()

Lety =0, foe alli DA\ (v) , it follows that

FOovia(o)Y i4d)+ Y U0y’

i0A i0A (6)

<0,0¢, Oag(v,u'),u' OU" i0A

Hence, we known for all¢, 0df(v) and
¢, 0og(v,u'),u' OU",iOA, we have

SAE+Y Ul %0

ioA
But which contradicts the constraint condition of
(SIVD). Hence the result follows.

Theorem3.5. (Strong duality)

Suppose that is a properly efficient solution of
(SIVP), and the Kuhn-Tucker constraint qualificatio

is satisfied ak’ . Then there existé1™, / )= 0, such
that (x',u’,A",4 ) is feasible solution of (SIVD).

Furthermore, the two problems (SIVP) and (SIVD)
have the same objective value. Furthermoreif
hypothesis of theorem 3.2 is also satisfied for all

xO X% and(v,u',A,)OW°, then(x',u',A",4/ ) is a
properly efficient solution for (SIVD).

Proof: Sincex’ is a properly efficient solution of
(SIVP), and the Kuhn-Tucker constraint

qualification is satisfied at' , then there exists
A >0,j=1,2;-p and g OAiOI(X) (not

all i are zeroes), such that for ardyJU", we have

P .
00N A0f, (X )+ 3 fiag(x ,u),
=1

ion(x")
> iog(X ,u')=0,0u 0OU" ,idl(X ),

io1(x)

Lety =0, as OA\I(X), it follows that

P .
00 Aaf, (X )+ i ag(x u'),
=1 icA

D 4 0g(xX ,u')=0,0u' 0V i0A,

i0A

Hence, (X',u',A",4 ) is feasible solution of
(SIVD).

Adding (5) and (6), then by the sublinearity of

F and (iv), we have

i0A

F(x,v;a'(x,v)(iAj{j + Z,ui(i )

< —(Zi:/lj,oj > un)exv =o

i0A

where 0¢&, Oof, (v),0¢;, Odg(v,u'),u' OU".

It is clear that the two problems have the same
objective value ax” and(x ,u', A", 4 ).

Since X is a properly efficient solution of

A
SIVP), letM =(p-1 =~
( ), le (p )Lgrpgéxw]j
Suppose on the contrary thét ,u',A",4 ) is

not a properly efficient solution of (SIVD). Then
there exists
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onejO{L,2, -, p} and(v,u',A,£)OW°, such that  Theorem3.7. (Converseduality)
f.(x) < f,(v) andf (X) > f(v) for anyj#k. It Let f,(x)=f,(V)(j=12,,p)atx OX° and

follows that (x,u’,A",4 )OW . Suppose that ford; >0
y —_— * 4 —_— v . p * * H H *
fi(v) = £,(x) > M[f,(x) = f, (V)] (j=12:.p), QA f, Y 4gEu)),0u OU
/]* X _ j=1 idl (v)
= (p_l)grpf‘gxp/]_i [f & )= )] satisfies the hypothesis of theorem 3.%" &t X°,
1 : ~ then (x',u',A",4/ ) is a properly efficient solution
= PEAT6) - 6,00) of (SIVD).
J Proof: Using the result of theorem 3.3, we known
So for anyj # k , we get V' is a properly efficient solution of (SIVP). It is
X clear that is also a properly efficient solution of
_il[fj(v)_fj(x*)] >ALE(X) = f (V] (SIVP). If it is not true,_then there exists one
p j0{,2,---,p} and one xOX° , such that
Summing for anyj # k , then we obtain f; (x') > f; x) , andf, (X') < f, (x) for anyk # j .
oo - " , \ - It follows that
ALHM = 1,601 > 2 ALR(X) = £ (V] ) _ ) _
< f () = 1,00 > M[ £, (x) = £.(X)]
So we get “ _ . -
o, ) Also, we havef,(x') = f,(v)for anyj =1,2,--
)I*Tf(v):Z)I’; f;(v) P
j=1
b ) . @) Now we have a contradiction. Therefore, is
> z/lj f,(x)=A1 Tf(x) also a properly efficient solution of (SIVP).
j=1

We can derive thd ,u',A",4/ ) is a properly
efficient solution of (SIVD) like the proof of
f(xX) f(v) theorem 3.5.

Then using the result of theorem 3.2, we get

Sincel” >0, it follows that 4. CONCLUSION

AfX) A fV) Throughout this paper, we have defined a new
generalized convex function, extending many well-

But which contradicts the inequality (7). Henceknown classes of generalized convex functions.
we conclude that(x,u',A" ,4/ ) is a properly Furthermore, we have formulated the multi-

efficient solution of (SIVD). objectivg dual problem and prov_ed the results
_ concerning weak and strong duality between the
Theorem3.6. (Strong duality) primal (SIVP) and the dual (SIVD), there should be

is an efficient solution of further opportunities for exploiting this structusé

Suppose  thai the semi-infinite programming problem.

(SIVP), and the Kuhn-Tucker constraint
qualification is satisfied at' . Then there 5. ACKNOWLEDGMENT
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