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ABSTRACT 
 

Mill load is an important equipment index which is closely related to operating efficiency, product quality 
and energy consumption of grinding process. Due to high dimension and collinearity of spectral data, mill 
load model has high complexity, poor interpretability and generalization. A soft sensor modeling method of 
mill load parameters is proposed based on frequency spectrum feature using Synergy Interval Partial 
Least-Squares Regression (SiPLS). Based on the spectrum feature of the shell vibration or acoustic signal, 
three soft sensor models of mill load, such as mineral to ball volume ratio, charge volume ratio and pulp 
density are developed, respectively. The proposed method is tested by the wet ball mill in the laboratory 
grinding process. The experimental results have demonstrated the proposed method has higher accuracy and 
better generalization performance than the full-spectrum model and iPLS feature spectrum model, and the 
feature spectrum model based on the shell vibration is superior to the acoustic feature spectrum model. 
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1 INTRODUCTION 
 

Ball mills are widely used for grinding in most 
comminution circuits. The crushed crude ores are 
grinded into enough fine slurry to ensure good 
liberation of the value minerals to be recovered. Mill 
load is the most important parameter for control and 
optimization of the grinding process [1]. It is 
difficult to online measure the mill load for poor 
conditions inside ball mills because of a series of 
complex impact and grinding among steel balls and 
materials, steel balls and lining. Mill load 
measurements mainly depend on the skilled operator 
in the industrial fields so that some economic 
benefits lost in order to ensure equipment safety and 
process continuity. Due to frequent fluctuations of 
ore properties and operation states, ball mills are 
difficult to keep stable and optimal operation. Some 
abnormal phenomena, such as empty grinding and 
block grinding, result in low efficiency, high energy 
consumption, and even damage. Therefore, online 
reliable measurements of internal instantaneous load 
of ball mill, including the new feed ore, slurry, water 
and steel balls inside the ball mill, have important 
significance for improving the production efficiency, 
quality of grinding mineral and saving energy. 

In the industrial application, mineral to ball 
volume ratio, charge volume ratio and pulp density 
are important parameters to describe the mill load [3]. 
There are two main methods: direct measurement 
and indirect measurement. Unfortunately, direct 
measurement sensors are not widely applied because 
of assembly difficulty, post-maintenance complexity 
and high cost of investment [4]. Indirect 
measurement method is commonly used by using 
easily measurement external response signal of ball 
mill, such as power, bearing vibration, acoustic 
emission and shell resilience. An intelligent 
information fusion monitoring method of mill load 
was proposed to overcome the subjectivity and 
arbitrariness of the operator experience by 
combining the domain specialist knowledge, rule 
reasoning and statistical process control with the 
multi-source signals [5, 6]. However, it cannot 
obtain the quantitative parameters of the mill load, 
which constraints the control and optimization of the 
grinding process. Y. G. Zeng (1994) found that 
feature intervals of vibration signal are directly 
related to the parameters of mill load [7] and the 
acoustic signal includes more information on mill 
operating parameter than the bearing vibration signal, 
but the study only involved the pulp density of the 
mill load. Li et al. (2006) [8] used RBF neural 
network to real-time predict the charge volume ratio 
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using acoustic, pressure and power signal by 
consistent correlation analysis method. Although 
amplitude, energy and the other global features of 
the signal are extracted, plenty of information in 
acoustic signal spectrum is ignored so that it is 
difficult to guarantee the measurement accuracy and 
sensitivity. 

With the development of sensors, data processing 
and communication technology, the analysis and 
monitoring of the ball mill load based on shell 
vibration signal with high sensitivity and strong 
anti-interference improve the quantitative and 
qualitative measurement performance of mill load. 
Gugel et al (2007) [9] proposed dual-array 
accelerometers to obtain vibration signals from the 
shell wall, the result shows that the detection 
accuracy based on vibration is better than acoustic 
method. Although the vibration and acoustic 
frequency spectrum contain plenty of information 
about the mill load, mill load model is difficult to 
build effectively. This is because the hyper-high 
dimension and high colinearity in the frequency 
spectrum variables and vibration / acoustic signal is 
difficult to extract time-domain feature. 

Feature extraction and selection is an effective 
method to avoid the curse of dimensionality, 
improve generalization and enhance interpretability. 
Tang et al (2010) [10] analyzed the vibration signal 
time/ frequency feature under different grinding 
conditions in experimental scale ball mill. Genetic 
algorithm-partial least square (GA-PLS) was used to 
select the vibration spectrum feature. The selected 
feature frequency bands by using GA were the 
suboptimal solutions and their physical significance 
are difficult to explain. Tang et al. (2010) [11] 
developed three support vector machine (SVM) 
models to predict the mill operating parameters 
based on feature variables at low, medium and high 
frequency bands using principal component analysis 
(PCA). But the soft sensor modeling method exits 
manual division of frequency bands, extraction of 
linear features, and SVM needs to solve the 
quadratic programming problem.  

Multivariate data analysis and latent variable 
methods can achieve data dimensionality reduction 
by projecting multivariate data to low dimensional 
space. Interval partial least squares (iPLS) 
regression is an efficient method to select the 
spectral data [12]. The iPLS algorithm splits the full 
spectrum into many sub-intervals of equal width, 

where each sub-interval builds a local PLS 
regression model. The best regression model based 
on sub-intervals produce the lowest RMSECV 
values by using leave-one-out cross validation 
(LOO-CV). iPLS and its extension methods are 
widely used in the spectral engineering field to 
analyze various of the spectrum information [13-15]. 
Synergy Interval Partial Least-Squares Regression 
(SiPLS) calculates all possible sub-interval 
combination models [16]. The combination with the 
lowest RMSECV will be chosen.  

The relationship between external response 
signals and mill load parameters is very complex. It 
is difficult to build the mechanism mathematical 
model to describe. The vibration / acoustic signal 
contains plenty of information, and there is physical 
mapping between vibration mode and ball mill 
running state. However, only one local interval of 
vibration spectrum or acoustic spectrum is 
insufficient to build the effective prediction model of 
ball mill load [13]. That is because the frequency 
spectrum variables of the response signals are 
superimposed by a series of impact with different 
intensity, different frequencies, and there are 
hyper-high dimension and high colinearity in the 
frequency spectrum variables. A soft sensor 
modeling method of SiPLS is proposed to build the 
PLS model of ball mill load where sub-interval 
combination with the lowest RMSECV and the 
maximum correlation coefficient. The method is 
verified on the laboratory small ball mill.  

 

2 SPECTRAL FEATURE SELECTION AND 
SOFT SENSOR OF BALL MILL LOAD 
USING SIPLS  
 

Mechanism model of mill load parameter are 
difficult to build due to complex slurry theological 
properties in wet ball mill. Mill load parameters are 
related to different intervals of frequency spectrum. 
It is difficult to select the feature of 
vibration/acoustic frequency spectrum due to the 
hyper-high dimension, high collinearity and 
redundancy in the frequency spectrum. Therefore, a 
feature selection method of ball mill vibration / 
acoustic frequency spectrum feature is proposed. 
Soft measurement models of ball mill load are built 
based on the informative intervals of vibration and 
acoustic frequency, as shown in Figure 1. 
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Figure 1: The Feature Selection Strategy Of Frequency Spectrum Based On Ipls 

 

Redundancy information from vibration and 
acoustical signals was removed in order to reduce 
the complexity of the soft sensing model and 
enhance understanding of ball mill grinding 
mechanism. The proposed feature selection and soft 
sensor modeling method mainly consist of 
vibration/acoustic data acquisition and 
preprocessing, time-frequency transformation, 
SiPLS feature selection and soft sensor modeling. 
Input variables include vibration signal VX  and 
acoustic signal AX , output variables are three mill 
load parameters, such as mineral to ball volume 
ratio 1y , charge volume ratio 2y  and pulp density 3y . 
Firstly, vibration signals were measured by a 
vibration acceleration sensor installed on the shell 
surface of ball mill, and or acoustic signals were 
obtained by an acoustic sensor installed near the inlet 
of ball mill. Secondly, remove the outliers and noise 
from the original vibration or acoustical signals. The 
time domain waveforms of the shell vibration or 
acoustic signals are transformed into the frequency 
domain power spectrum by PWELCH method. Then, 
combine vibration and acoustic signal generation 
mechanism with the change of spectrum structures, 
full-spectrum are split into a number of subintervals 
with equal width. Next, calculate all possible 
subinterval combination models by interval numbers 
of 2, 3 or 4 and choose the combination with the 
lowest RMSECV as the feature frequency spectrum 
subinterval. Finally, build mineral to ball volume 
ratio model, charge volume ratio model and pulp 
density model based on vibration or acoustic 

frequency spectrum feature and verify the accuracy 
of the mill load model based on feature of frequency 
spectrum. Spectral feature selection and soft sensor 
modeling of mill load in the ball mill are as follows: 

(1) Remove the outliers and noise from the 
original vibration signal ( )VX t  or the acoustic 

signal ( )AX t . The time domain waveform of shell 
vibration or acoustical signal are preprocessed and 
transformed into the frequency domain power 
spectrum by PWELCH method, and the vibration 
power spectrum ( )VX ω  and acoustic power 

spectrum ( )AX ω  are averaged by several rotation 
periods of frequency spectrum [10].  

(2) Split the whole frequency spectrum of the 
shell vibration signals or acoustic spectrum into a 
number of intervals I  along the spectrum variables. 

(3) Combine two, three or four intervals from 
the I  subintervals with equal width, 

, 1, ,kX k Kω = L . The number of all interval 
combinations is  

( )
!

! !
j K

K j K jC −=                                      (1) 

where j  is the combination number of two, three or 
four intervals should to be lower than the number of 
intervals, j I< . 

(4) Calculate all possible PLS model 
combinations of two, three or four intervals. For the 
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spectral feature selection of the vibration signals, the 
input of the PLS regression model is the frequency 
spectrum of the vibration signals. For the spectral 
feature selection of the acoustic signals, the input of 
the PLS regression model is the frequency spectrum 
of the acoustic signals. The outputs of PLS model 
are mill load parameters iy  ( 1,2,3i = ), such as 
mineral to ball volume ratio, charge volume ratio 
and pulp density. 

The PLS is expressed as a bilinear decomposition 
of both the full frequency spectrum X  and the mill 
load parameter variables Y  as 

T T

1

T T

1

h

k k
k

h

k k
k

X TP E t p E

Y UQ F u q F

=

=

⎧
= + = +⎪⎪

⎨
⎪ = + = +
⎪⎩

∑

∑
                   (2) 

where [ ]1 2, ,..., N h
hT t t t R ×= ∈ , 

[ ]1 2, ,..., N h
hU u u u R ×= ∈  are X and Y latent score 

vectors with the extracted h principal 
components, respectively; the (n×h) matrix 

[ ]1 2, ,..., hP p p p=  and the (m×h) matrix 

[ ]1 2q , ,..., hQ q q=  represent X- and Y- loadings 
vectors, respectively; the (N×n) matrix E and the 
(N×m) matrix F are X- and Y- residuals, 
respectively. If enough component are remained 
in the PLS, residual E and F can equal to zeros.  

The goal of PLS is to minimize F  and 
achieve the relations between X and Y scores. A 
link between X and Y space is established by 
linear regression (least squares) between hu  and 

ht , which is known as the inner relationship.  

, 1,...k k ku t b k h= =                          (3) 

where ( ) 1T T
h h h h hb t t t u

−
=  is regression coefficient of 

the ordinary least squares. The scalar b is stored as 
an element of diagonal matrix { }1 2, ,..., hB diag b b b= . 
The inner relationship is expressed in the matrix 
notation 

U TB=                                    (4) 

When h  principal components are retained in the 
PLS model, the latter principal components have 
very small variance and are considered to be noise or 
the cause of the collinearity. In this work, the 
non-linear iterative partial least squares (NIPALS) 
algorithm is used to build the PLS models.  

(5) The root mean squared error (RMSE) is used 
as a measure of how a model performs. RMSE is 
defined as follows:  

( )2
,ˆ

, 1, 2,3i k i
i

y y
RMSE i

N
−

= =∑             (5) 

where N is the number of samples, iy  is the 
laboratory measured value and ,ˆi ky  is the predicted 
value. RMSECV is calculated from the 
cross-validated samples, and RMSEP is calculated 
from the independent test set. RMSECV is 
calculated for each combination region. 
Correspondingly, the correlation coefficients of the 
three output parameters are calculated for the 
predicted versus measured variables for a 
combination of several intervals. The combination 
of the intervals with the lowest RMSECV and the 
highest correlation coefficient is selected as the 
spectral feature for each mill load parameter.  

(6) Develop PLS models of the mill load 
parameter on the selected intervals from SiPLS and 
predict for the new data sets.  

 

3 EXPERIMENT RESULTS AND DISCUSS 
 
3.1 Experiments and Data Processing 

The experiments were performed on a laboratory 
scale lattice-type ball mill (XMQL-420×450) with 
the drum of 460 mm in diameter and 460 mm in 
length. The vibration signals were measured by a 
vibration acceleration sensor with sampling 
frequency 51,200 Hz, which was installed on the 
outer shell of the ball mill. The acoustic sensor was 
installed near the inlet of ball mill. The experimental 
ball mill has maximum ball load of 80 kg, 
pulverizing capacity of 10 kg per hour and a rated 
revolution of 57 per minute. A series of grinding 
experiments with the different operation conditions 
are done by adding the steel balls of different size 
(diameter of 30, 20 and 15mm), copper ores and 
water into the ball mill. Steel balls, ores and water 
have been homogenized inside the ball mill, which 
lasted about one minute. Grinding experiments are 
shown in Table 1.  
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Table 1: Grinding Experimental Conditions Of The 
Ball Mill Operation 

No. Ball  
(kg) 

Ore 
(kg) 

Water 
（kg） 

time 
（s） 

01 40 10 10 40 
02 40 10 15 40 
03 40 10 20 40 
04 40 10 30 40 
05 40 10 40 40 
06 40 10 2 60 
07 40 12 2 60 
08 40 14 2 60 
09 40 16 2 60 
10 40 18 2 60 
11 40 20 2 60 
12 40 20 5 60 
13 40 20 7.5 60 
14 40 20 10 60 
15 40 20 12.5 60 
16 40 20 15 60 
17 40 20 20 60 
18 40 22 10 60 
19 40 24 10 60 
20 40 26 10 60 
21 40 28 10 60 
22 40 30 10 60 
23 40 35 10 60 
24 40 40 10 60 
25 40 45 10 60 
26 40 50 10 60 
 

In this section, the performance of the mill load 
modes was evaluated on the experimental ball mill 
and compared with full spectrum PLS model, iPLS 
model. All the evaluations were carried out in the 
Matlab R2010a software (The Mathworks). The 
power spectral density (PSD) was calculated using 

Welch’s method with the overlap fraction length of 
512 [10]. Shell vibration PSD with the ranges of 
1-10100 Hz and acoustic PSD with the ranges of 
1-4500 Hz are used to construct PLS model. The 
region before 100 Hz was excluded according to the 
prior knowledge. The preprocessing methods are 
implemented by the mean centering.  

3.2 Selection Of The Relevant Spectral 
Intervals 

The dataset was divided into calibration and 
prediction data. The iToolbox [17] was used to 
explore feature selection of vibration and acoustic 
spectral data sets with many collinear variables. In 
the SiPLS, all models are built on the vibration 
spectral data (every 2nd Hz is recorded), acoustic 
spectral data and the dependent data with the three 
mill load parameters. PLS combination models are 
calculated and are cross validated by Venetian blinds 
with five segments and systematic exclusion. The 
mill load parameter models are tested by an 
independent data set.  

In the SiPLS models, maximum number of PLS 
components is set as 30, the other parameters are as 
follows: independent data (Vibration or acoustic 
spectrum), dependent data (ball volume ratio, charge 
volume ratio and pulp density), the number of 
intervals (10, 20, 30, 40, 50), the number of interval 
combinations tested (2, 3 or 4), the number of 
segments (5, 10). Through calculating all possible 
PLS model with the above parameters setting for the 
different independent data and dependent data, 
selection results of relevant spectral intervals are as 
shown in Table 2-4. Table 2-4 show main feature of 
vibration frequency spectrum and acoustic 
frequency spectrum which are closely relevant to the 
mill load parameters, such as mineral to ball volume 
ratio, charge volume ratio and pulp density.  

Table 2: Results Of The Selection Of Relevant Spectral Intervals And Soft Sensor For The Mineral To Ball Volume Ratio 

Model 
Data Modeling method Intervals Combination 

number(Comb) 
PLS 

comp. 

optimal 
interval 

combinations 
RMSECV rCV 

vibration Full-spectrum PLS 1 1 4 1 0.5138 0.7846 

vibration Feature-spectrum 
iPLS 20 8 5 [16 11 17 10 

14 9 13 1] 0.7704 0.6688 

vibration Feature-spectrum 
SiPLS 40 2 8 [1 3] 0.0961 0.9637 

acoustic Full-spectrum PLS 1 1 1 1 0.5823 0.7325 

acoustic Feature-spectrum 
iPLS 10 7 5 [7 9 6 5 3 1 4] 0.4728 0.8135 

acoustic Feature-spectrum 
SiPLS 20 4 4 [7 8 9 17] 0.1213 0.9370 
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Table 3: Results Of The Selection Of Relevant Spectral Intervals And Soft Sensor For The Charge Volume 
Ratio 

Model 
Data 

Modeling method Intervals 
Combination 

number(Comb) 
PLS 

comp. 

optimal 
interval 

combinations 
RMSECV rCV 

vibration Full-spectrum PLS 1 1 5 1 0.1732 0.7381 

vibration Feature-spectrum 
iPLS 20 7 4 [18 15 14 13 

17 1 16] 0.1379 0.6933 

vibration Feature-spectrum 
SiPLS 30 2 11 [4 19] 0.0456 0.9579 

acoustic Full-spectrum PLS 1 1 1 1 0.2737 0.7152 

acoustic Feature-spectrum 
iPLS 10 5 2 [10 2 6 5 3] 0.1352 0.3700 

acoustic Feature-spectrum 
SiPLS 40 2 7 [16 23] 0.0074 0.6572 

Table 4: Results Of The Selection Of Relevant Spectral Intervals And Soft Sensor For The Pulp Density 

Model 
Data 

Modeling method Intervals 
Combination 

number(Comb) 
PLS 

comp. 

optimal 
interval 

combinations 
RMSECV rCV 

vibration Full-spectrum 
PLS 1 1 5 1 0.1384 0.7208 

vibration Feature-spectrum 
iPLS 20 3 6 [11 17 9] 0.2449 0.7376 

vibration Feature-spectrum 
SiPLS 10 4 3 [1 2 9 10] 0.1064 0.7398 

acoustic Full-spectrum 
PLS 1 1 4 1 0.7802 0.5825 

acoustic Feature-spectrum 
iPLS 20 6 5 [12 10 9 5 1 

11] 0.1844 0.5451 

acoustic Feature-spectrum 
SiPLS 30 4 7 [9 14 17 18] 0.0717 0.9599 

 
Table 2 to 4 list the optimal interval combinations, 

corresponding RMSECVs and PLS components. 
When the combination number is bigger than 50 for 
the vibration signals, computation costs expensively. 
Computation time depends on the number of 
intervals and the selected number of intervals to 
combine. Take feature selection of shell vibration 
signal for instance, RMSECVs as a function of the 
number of PLS components and spectral 

subintervals selected by SiPLS algorithm are shown 
in Figure 2. From Figure 2 (a) to (c), it can be seen 
that mineral to ball volume ratio is relevant to the 
low frequency bands of shell vibration spectral data, 
charge volume ratio is relevant to the middle 
frequency bands of shell vibration spectral data, and 
pulp density is relevant to low and high frequency 
bands of shell vibration spectral data.  

 



Journal of Theoretical and Applied Information Technology 
 15th October 2012. Vol. 44 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
70 

 

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1

2

3

4

5

6

7

x 10
-4

 
(A) Mineral To Ball Volume Ratio 

0 1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

RMSECV versus PLS components for model on interval:  4  19

Number of PLS components

R
M

S
E

C
V

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1

2

3

4

5

6

7

x 10
-4

Variables

C
ha

rg
e 

vo
lu

m
e 

ra
tio

, 
V

ib
ra

tio
n 

da
ta

Selected intervals [4  19]

 
(B) Charge Volume Ratio 

0 1 2 3
0

0.05

0.1

0.15

0.2

RMSECV versus PLS components for model on interval:  1   2   9  10

Number of PLS components

R
M

S
E

C
V

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1

2

3

4

5

6

7

x 10
-4

Variables

P
ul

p 
de

ns
ity

, 
V

ib
ra

tio
n 

da
ta

Selected intervals [1   2   9  10]

 
(C) Pulp Density  

Figure 2: Feature Selection Of Mill Load Model Based On Vibration Signals 
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3.3 Prediction Based on SiPLS Models  
Full-spectrum model performance of the shell 

vibration signals and acoustic signals are compared 
with feature spectrum PLS model using the optimal 
parameters in Table 2 to 4 for three parameters of the 
mill load. Performance comparison result of mill 
load parameter prediction is shown in Table 5. From 
Table 5, RMSE prediction based on the vibration 
and acoustic feature spectral model are less than 
their full spectrum model for all three mill load 
parameters. Only the mineral to ball volume ratio 
parameter, prediction RMSE of the full spectrum 
model of acoustic signal is less than the full 

spectrum model of the shell vibration signal. For the 
charge volume ratio and pulp density parameters of 
the mill load, the performances of shell vibration 
full-spectrum models are superior to the acoustic 
full-spectrum model. For all three mill load 
parameters, prediction performances of 
feature-spectrum SiPLS models are better than 
feature-spectrum iPLS model and full spectrum 
model based on vibration or acoustic signals, and 
performances of feature spectrum model of shell 
vibration signal are better than the acoustic signal 
feature spectrum model. 

Table 5: Comparison Of Full Spectrum PLS Model And Feature Spectrum Model Based On Ipls And Sipls 

Model 
Data 

Modeling method 
mineral to ball volume 

ratio 
charge volume ratio pulp density 

RMSEP rp RMSEP rp RMSEP rp 
vibration Full-spectrum PLS 0.7976 0.7372 0.0582 0.9471 0.1314 0.8117 

vibration 
Feature-spectrum 
iPLS 

0.2907 0.9521 0.0498 0.9509 0.0550 0.9692 

vibration 
Feature-spectrum 
SiPLS 

0.2723 0.8383 0.0465 0.9601 0.0545 0.9695 

acoustic Full-spectrum PLS 0.4500 0.8623 0.2277 0.5758 0.2164 0.2459 

acoustic 
Feature-spectrum 
iPLS 

0.3579 0.9326 0.1073 0.7255 0.1091 0.8808 

acoustic 
Feature-spectrum 
SiPLS 

0.2049 0.9563 0.1027 0.7470 0.1075 0.8972 

 
4 CONCLUSION 
 

A soft sensor modeling method of mill load 
parameters are proposed based on feature space of 
frequency spectrum using synergy interval PLS. 
Three mill load parameter models including mineral 
to ball volume ratio model, charge volume ratio 
model and pulp density model are built and 
compared with the full-spectrum PLS model and 
iPLS feature spectrum model. The experimental 
results show that prediction performances of mill 
load parameters based on the SiPLS model are better 
than the corresponding full-spectrum models, iPLS 
feature spectrum models, and the feature spectrum 
models based on the shell vibration are superior to 
the acoustic feature spectrum models. Due to the 
experiment limitations to small samples of a wide 
range of operating conditions change, the more 
experiments should be done further.  
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