
 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

306

SOFTWARE TEST AUTOMATION - THE GROUND
REALITIES REALIZED

PRAKASH.V, SENTHIL ANAND .N BHAVANI.R

Assistant Professor, Department of Computer Applications, SASTRA University
Assistant Professor, Department of Computer Applications, SASTRA University

Assistant Professor, Department of Computer Science, PRIST University

E- mail: prakash125@gmail.com, nsanand73@gmail.com, bhavprax@gmail.com

ABSTRACT

Test automation has always been looked upon as a magic formula to improve the quality processes of
products/applications right from the day when first commercial product/application was made. But when
one actually starts automating the testing, the ground realities are realized. Defining the scope of
automation and selection of right tool for automation are over-whelming in the first place. And even if
these teething troubles are overcome, the automation tool developed is usually inefficient as lots of
important considerations are over-looked.
This paper aims at the following it suggest the solution of the above mentioned issues, It suggests best
practices to be followed while doing the automation. It also aims at organizations who consider automating
their testing process. It analyses the key factors to be considered in selecting a tool for automation.

Keywords: Testing, Software testing, Test Automation

1. INTRODUCTION

For achieving better quality products and
a long-lasting solution for reduced costs
Automation is the only savior. But these aims are
achieved only when certain best practices are
followed before and while developing the
automation suite. Fig I shows the software testing
life cycle

Fig 1. The software Testing Life cycle

Howard Fear has aptly stated, "Take care with test
automation. When done well, it can bring many

benefits. When not, it can be a very expensive
exercise, resulting in frustration” [3].
More often than not, after automating the testing
of a product, the automation team finds the
automation tool more of a headache because of the
unplanned and thoughtless approach adopted while
developing the tool. Generally, lots of effort is
spent in developing the tool, only to discover that
the tool is limited in scope, lacks user-friendliness
and requires frequent re-work every now and then.
And if sufficient care is exercised and proper
practices are followed before and while
automating the same product/application, the
resulting automation tool not only saves time and
effort, but is also a sheer beauty in itself because
of the amount of user-friendliness, flexibility,
reusability and extensibility it ensures. Let us,
therefore, discuss what all needs to be taken care
of before going for test automation and also while
actually doing the automation[1].

2. AUTOMATION WHEN?

Fig 2 shows the various software
automation activities. Lots of effort has to be spent
even before you actually start with automation [4].

 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

307

It needs to be ensured that following things have
been taken care of: -

Fig 2. The software Test Automation

2.1 Stability Of The Product/Application Is

Ensured:
The first thing that needs to be ensured is

that the product/application is fairly stable in terms
of functionality. Even if it is slated to incorporate
new features, the new features should not disturb
the existing functionality. There is no sense in
automation the testing of a product that is
supposed to change functionality-wise.
Besides, the error messages generated by the
product/application should remain consistent
across different releases. If the testing is GUI-
based, then it needs to be ascertained that the
future releases of the product would not be
undergoing GUI changes which might prove
critical for the automation suite.

2.2 Interface To Be Tested Has Been Identified:
 Three different interfaces a product might
have are command line interfaces (CLIs),
application-programming interfaces (APIs), and
graphical user interfaces (GUIs). Some may have
all three, but many will have only one or two.
These are the interfaces that are available to you
for your testing. By their nature, APIs and
command line interfaces are easier to automate
than GUIs. Find out if your product has either one;
sometimes these are hidden or meant for internal
use only. After this, you need to decide which
interface’s testing has to be automated.

Some relevant points are: -

GUI test automation is more difficult than test
automation of the other two interfaces.
This is because firstly, GUI test automation will
invariably require some manual script writing.
Secondly, there will always be some amount of
technical challenge of getting the tool to work with
your product. Thirdly, GUI test automation
involves keeping up with design changes made to
a GUI. GUIs are notorious for being modified and
redesigned throughout the development process.

• Despite the reasons for not depending on
GUI test automation as the basis for
testing your product functionality, the
GUI still needs to be tested, of course,
and you may choose to automate these
tests. But you should have additional tests
you can depend on to test core product
functionality that will not break when the
GUI is redesigned. These tests will need
to work through a different interface: a
command line or API.

• In order to simplify the testing of an API,
you may want to bind it to an interpreter,
such as TCL or Perl or even Python. This
enables interactive testing and should also
speed up the development cycle for your
automated tests. Working with API’s may
also allow you to automate unit tests for
individual product components.

2.3 Scope Of Automation Has Been Defined:
Before setting out to automate the testing

of your application/product, it is essential to define
the scope/intended coverage of the automation
tool.
The scope may encompass functionality testing,
regression testing or simply acceptance testing.
You can even select to automate the testing of
certain particular features or certain selective test
cases of different features [4].

2.4 Individual Test Cases To Be Automated

Have Been Identified:
Automation suite should be looked upon

as a baseline test suite to be used in conjunction
with manual testing, rather than as a replacement
for it. It should aim at reducing the manual testing
effort gradually, but not doing away with manual
testing altogether. But the fact is automation can
assist testers but it cannot replace the manual
testing effort. What machines are good at and
humans are slow at should be chosen for
automation[3]. Setting realistic and achievable

 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

308

goals in early stages of test automation is a crucial
factor for achieving success at long-terms. So,
even after defining the scope of the automation
tool in terms of acceptance/regression testing, etc,
it needs be made sure that following kinds of test
cases are eliminated from the scope of automation:
-

• Test cases that are long and complicated
and require manual
inspection/intervention in between.

• Test cases that take tremendous amount
of time in automation and it is difficult to
ensure re-usability even if they are
automated.

• Test cases pertaining to usability testing.
Usability testing means testing in a true
end-user environment in order to check
whether the system is able to operate
properly in accordance with the exact set
of processes and steps applied by the
end-user, including user's interface and
system convenience estimation[2]. It’s
very important to include the right test
cases in the suite. If the selection of test
cases for the automation suite is not
meticulous, you might end up
discovering nothing really important
about the software you are testing even if
you develop a highly robust and reliable
test suite.

2.5 Test Cases Have Been Fine-Tuned:
The test cases need to be fine-tuned for

automation. The expectation level from the test
cases for automating is widely different from the
expectation from manual testing point-of-view.

The salient features that need to be taken care of
include: -

Manual regression tests are usually documented so
that each test picks up after the preceding test,
taking advantage of any objects or records that
may already have been created. Manual testers can
usually figure out what is going on. A common
mistake is to use the same approach with
automated tests. But because of this approach, a
failure in one test will topple successive tests.
Moreover, these tests also cannot be run
individually. This makes it difficult to use the
automated test to help analyze legitimate failures.
So, it is advised to revamp the test cases so as to
make them independent. Each test case should
setup its test environment[3].

The test cases need to be equipped with proper
test-data. E.g. – If there is a test case for
uploading of a file, then it should explicitly tell
which file to upload. If there is a test case for
creating a folder with invalid characters, then it
should state which characters to use for creating
the folder. Such fine-tuning of the test cases before
starting automation ensures reduction in the actual
time for developing the tool. It also guarantees that
the tool actually executes the test cases in a way
that checks the desired functionality.

2.6 The Right Tool Has To Be Decided:

There are hundreds of automation tools
available in the market. A careful effort has to go
into deciding which tool would be most suitable
for automating the testing of your
product/application. Following criteria would be
useful in making the decision:

1. Is the automation suite required to work
on different platforms? If platform
independence is required, the demands on
the automation suite will be very high.
E.g. – If the suite has to support different
flavors of Unix, it might be suitable to go
for platform independent things like perl,
etc.

2. If the testing to be automated is GUI-
based, it might be preferable to use a tool
like SilkTest, WinRunner, Rational
Robot, etc. But every tool will have its
own technical limitations that prevent
efficient automation. So, it is necessary to
monitor and evaluate the necessary
testing tools for critical interfaces of the
application that is under automation.

3. Sometimes, it might be best to develop a
scripting tool using a suitable scripting
language instead of going for the ready-
made tools available in the market. This
is especially preferable when the testing
is on the server side.

2.7 The Right Mode (Script Recording/Script

Development) Has Been Decided:
Most of the GUI automation tools have a

feature called ‘record and playback’ or, ‘capture
replay’. Using this feature, you execute the test
manually while the test tool sits in the background
and remembers what you do. It then generates a
script that you can run to re-execute the test. Script
development, on the other hand, implies writing
the scripts for running the test cases in the
language used by the tool. Script development is

 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

309

akin to programming in a language like C or C++,
but the purpose is to execute the test cases in an
automated style. If you are going for GUI test
automation, then points worth-considering while
making a sane
decisions are:

1. Record and Playback approach which is
commonly available in all automation
testing tools for the creation of test scripts
and test suites are easy to develop but
difficult to maintain.

2. Error recovery cannot be incorporated by
just recording a test script.

3. In data driven tests, achieving reusability
of test scripts will be very limited.

4. Creation of test data and integration of
them with test scripts is the most time
consuming part. When a function is coded
for the same purpose with data input file,
maximum re-usability and ease is
ensured.

More often than not, it will be required to strike a
careful balance between the two modes, instead of
using one of the two modes. Using the recording
mode alone will render the automation suite non-
reusable and using the scripting mode alone will
require more investment of effort and time.
Though a middle path will be suggested generally,
it might be worthwhile spending some time to
decide the right mode or right mix of modes as per
the application/product under consideration.
Most of the further discussion will be useful only
when the right mix is adopted or scripting is
followed altogether.
All in all, the suggested steps to be followed
before starting with automation can be depicted in
the figure below: -

Fig 3. The pre automation Stage Cycle

3. AUTOMATION HOW?

After taking care of the above

stipulations, the right direction has been identified
and now the stage is all set to go for automation
full-fledged. But in order to reach the destination,
a lot more attention needs to be paid to. So, here
we go: -

3.1 Following Proper Test Scripting Standards:

Automated testing involves a mini-
development cycle. So, proper coding standards
for test scripts should be prepared. Checklists
should be developed for review of test scripts. On
the whole, all the software practices followed in
the development of an application or a product,
which is applicable to the development of the
automation suite, should be put in place. Whatever
tool is chosen, ultimately, a tool will be only as
good as the process being used to implement the
tool.

3.2 Identifying Common Steps And Converting
Them Into Functions:

At the outset, the steps common amongst
different test cases should be identified and
converted in the form of functions. Such functions
can be placed in a common file, from where they
can be called by different test cases by passing
suitable parameters as per the need. This will
encourages re-usability of code and save effort and
time. Besides, these functions can be used again
when newer test cases are added to the automation
suite at a later stage.

3.3 Identifying Other Peripheral Functions:

After the functions as stated above have
been identified, it is advisable to identify the
peripheral functions that will be required by all the
test cases in general. E.g. – A separate function for
writing into log files can be written. This function
can take the error message, severity level of the
error message and the path and name of the log file
as the input parameters. Depending on the
requirements, more of such reusable functions can
be identified. Such functions will simplify and
streamline the process of test script development
in the long run.

3.4 Providing Room For Extensibility:

The automation suite should be written in
a manner such that additional test cases can be
added to it. The additional test cases may cater to
testing enhanced functionality of an existing
feature as well as testing new features incorporated

 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

310

in the application/product. The suite should have
such architecture that it is extensible both in terms
of being able to add more functions and also in
terms of being able to add more test cases by
calling the existing/new functions.

3.5 Generating Proper Logs:

A common problem is what to do when
automated tests fail. Failure analysis is often
difficult. Was this a false alarm or not? Did the test
fail because of a flaw in the test suite, a mistake in
setting up for the tests, or an actual defect in the
product? Hence, it is required that the suite should
generates logs of its own. But a good automation
suite with ambiguous logging messages is worse
than manual testing. Few points that need to be
taken care of from logging point-of-view are: -
An ideal automation suite should explicitly check
for common setup mistakes before running tests
and generating detailed logs of its own. And
logging needs to be as user friendly as possible [2].
The logging should be done in a manner that
facilitates statistical analysis of the results.
This implies that the log file should have the
results in such a format such that can be processed
by parsing, and useful statistics can be generated.

3.6 Independence Of Selective Execution:

The scripts should be written/arranged in
such a manner that they provide the independence
of executing individual test cases or at least test
cases belonging to the same module. This is
important when the need is not to execute the
entire suite, but to verify particular bugs.

3.7 Signal-Handling And Clean Exit On Abrupt

Termination:
It needs to be ensured that the suite does

all the clean up when terminated abruptly,
consciously or unconsciously, by the user. It may
be required by the script to handle the
termination/kill signal for a while so as to get the
time for cleanup (and may be, complete the
currently executing test case, if the suite desires).
Such signal handling is extremely important in
some particular cases. E.g. - When an automation
suite is run through command line on a Unix
terminal as a foreground process and the user does
a Ctrl-D in order to stop the suite for whatever
reasons. The suite might have changed some
configuration files or properties files before it
received the signal. So, if the changes are not
reverted back before the termination of the suite,
then things will go for a toss.

3.8 Self-Sufficiency In Individual Test Cases:
Test cases should not be dependent on

preceding test cases for execution. If there is
dependency on test cases occurring before in the
sequence, then the subsequent test cases will fail
without any reason. If at all such dependence is
unavoidable, the error message in the log file,
when such test cases fail because of the failing of
preceding test case, should be explanatory enough.

3.9 Equipped With Test Data:

The automation suite should be equipped
with all the test data required by the different test
cases. The test data may consist of simple data
input as required by the test cases to supply
parameters to the functions for testing different
conditions like numeric input, alpha-numeric
input, non-alpha-numeric input, etc. It may as well
consist of specific files to be supplied to the test
cases to test particular functionality of the
application/product. The automation suite has to
be accompanied with such test data and this test
data has to be prepared for the suite with precision.
Example: - A particular feature of the
application/product may have to be tested with
files of different sizes, say 0 bytes, 64 KB, 1MB,
30 MB, etc. So, the suite requires having the files
precisely of these sizes only. All such files may be
kept in a particular folder from where the suite
picks them up. The regular input data, which is
required by the functions as parameters can be
supplied through the input data files. The
individual test cases may parse the parameters to
be supplied to the test cases while reading them
from the input data files. The tools available in the
market support different types of file to be used as
data input files. Example: - Win Runner uses excel
sheets for reading data, while SilkTest uses .dat
files [4].

3.10 Dynamic Generation Of Names For

Temporary Files And Input Data:
Sometimes, the automation suite would

require creating certain temporary files. If the suite
does not delete the temporary files created by
itself, then they will get over-written in the next
run of the suite. Besides, if a file by the same name
exists even before the first run of the suite, then
that file may get over-written in the first run itself.
The consequence will be even worse if the write
permission is not there on the already existing file.
The script will fail to over-write also in such a case
and the test case might eventually bombard.
Similar problems are faced when the suite contains
positive test cases like creating a folder with a

 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

311

given name. If the suite does delete this folder
created as a part of the clean-up process, the test
cases fails unnecessarily when the suite is run
again with the test case trying to create a folder
with the same name [4].
A solution to all such problems is to dynamically
generate the names for temporary files and all such
input data at the run time. This way the names will
not conflict with those of the existing files and
fresh data. Such dynamic generation of names can
be accomplished by several ways. One typical way
of generation can be stripping the microsecond
part of the current time and appending it to a
name. This way there will be an extremely rare
probability (10 to the power of –6, to be precise)
that a conflict in the names will take place.

3.11 Cleaning-Up:

It has to be ensured that the automation
suite brings the application/product back to the
original state it was in before the suite executed. If
any configuration or properties file was changed
for the execution of some test case, then the
changes must be reverted back. If the suite
generates some temporary files, they should be
deleted by the suite towards the end.

3.12 Incorporating User-Friendliness:

The automation suite should be as user-
friendly as possible. Some basic points for
ensuring user-friendliness are: -

1. The user should have freedom to put the
test data files anywhere on the m/c.

2. The suite can be run from anywhere on
the m/c.

3. It can be installed anywhere on the m/c.
4. Once it is run, the suite should not require

any manual intervention till completion.
The

user should be able to run the suite unattended. For
incorporating such user-friendliness, the suite
needs to be designed in a proper way. A
separate configuration file can be created that
contains all the variables that the user might want
to change. E.g. – The user might want the log files
to be generated on the desktop instead of a hard-
coded path. The user might as well want the suite
to pick-up the test data/files from a directory of his
choice. All such entities can be placed in the
configuration file in the form of variables that the
user can change easily. The suite can read these
variables from the configuration files every time it
is run. If such a design is used, all that the user
would need to do before running the script is to
change the configuration file as per his needs.

Thus, the user will get a tremendous amount of
flexibility and independence.

3.13 Developing An Efficient Error Recovery

Routine:

Error Recovery routine enables the test
suite to run continuously without any intervention.
The function of this is to anticipate errors, make a
decision on the corrective action, record the error
and proceed further with next test, if possible. E.g.
– If an unexpected termination of application
under test happens, the routine should be able to
realize the interruption and restart the application.
This prevents reporting wrong defects after a test
suite execution. In brief, this will ensure that
failures in test execution are effectively confined,
interpreted and allows suite to run continuously
without failures. Without such an error recovery
system, automated test suite runs will never take
off. Manual presence will become a necessity
during test suite execution.

4. TEST SCRIPTS FOR TEST DATA SETUP

AND CLEANING UP:

If the automation suite does not take care
of test data setup, it will have to be done manually
by the user, which reduces the fun of test
automation. This becomes all the more important
when test data setup requirements are huge and as
a result, the whole exercise become highly time
consuming. Hence, an ideal automation suite
should incorporate dedicated scripts for test data
set-up. These scripts are then being executed
before any other functionality test can be done on
the product. E.g. – When the application/product
in focus is an ERP suite or banking software, the
test data setup part itself may take 3-4 man-days of
effort. With the automation in place for this setup,
the effort is reduced drastically. Similarly, scripts
for cleaning-up should also be incorporated in the
automation suite [4].
Such scripts will aim at bringing the application to
the ground state it was in before the automation
suite was run, i.e., they will undo all the changes
that any test cases in the suite brought about while
executing. E.g. – If there is a test cases for creating
a folder, then the clean-up action will delete this
folder.

5. TESTING THE TEST SCRIPTS:

Test scripts should be tested before they are
used in a test suite. Testing of all test scripts

 Journal of Theoretical and Applied Information Technology
30th September 2012. Vol. 43 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

312

should be made in test automation activity.
Adequate tests need to be accomplished for each
test script. When test error simulation and
rectification is difficult and time consuming
process, reporting false errors can cost more and
defeat the objective. The goal for the automation
team has to be that a test program should never
report a false problem [5]. All scripts should satisfy
the following criteria: -

1. When given a valid input, they produce
the correct output.

2. When given an invalid input, they
correctly and gracefully reject the input.

3. Do not hang or crash, given either valid
or invalid input.

6. CONCLUSION:

Test automation is a great idea. But it is
not a magic wand. Proper time and effort has to be
spent for the development of the test automation
suite. And the key is to follow the right processes.
In eagerness to achieve fast results, the desirable
processes are compromised. And that is the reason
why, more often than not, it only promises and
raises hopes, but simply fails to deliver.

REFERENCES:

[1]. Bach, James. 1996. “Test Automation Snake

Oil.” Windows Technical Journal,(October).
http://www.satisfice.com/articles/test_automat
ion_snake_oil.pdf.

[2]. Success with Test Automation by Bret
Pettichord (bret_pettichord@bmc.com)

[3]. Howard Fear on Test Automation by Howard
Fear (hsf@pageplau.com)

[4]. Automated Testing: A Practical Approach for
ERP product by Kishore
C.S.(cs@rsi.ramco.com).

[5]. Yongxiang Hu , “The Application and
Research of Software Testing on Agile
Software Development” , IEEE International
Conference on E-Business and E-Government
(ICEE), 2010.

