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ABSTRACT 

 
Rotating machinery vibration analysis involves a convolute mixture because of the propagation medium, 
and the signals recorded by sensors in an industrial application are often disrupted by the environment. 
Deconvolution is a signal processing method for convolution of vibration sources, spectral kurtosis is a 
statistical tool which can indicate the presence of series of transients and their locations in the frequency 
domain in strong noise case. In this paper, we propose an approach for the two characteristics based on 
blind deconvolution and spectral kurtosis. First the two methods blind deconvolution and spectral kurtosis 
are reviewed, and then puts forward the combination of the two methods to extract the fault feature from 
multi-sources convolution and strong noise in rotating machinery vibration, Finally apply the combination 
method to a bearing failure test, the test results show good performance for extraction of fault features in 
rotating machinery vibration. 
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1. INTRODUCTION  
 

Rotating machine is one of the most important 
equipments in industrial applications, such as 
bearings, gears. Their unexpected failures may 
endanger normal machine operation and 
productivity, it may cause significant economic 
losses. Vibration signal is easy to gather and is 
highly correlative with working conditions of 
rotating machines, because of these advantages, 
vibration analysis is usually used for condition 
monitoring and fault diagnosis.  

In past decades, many classic methods have been 
proposed to extract fault feature from vibration 
signal, such as time-domain analysis, frequency-
domain analysis, high-order cumulant spectrum 
analysis, short-time Fourier transform(STFT)[1], 
wavelet transformation[2-4], etc. Recently, several 
new method were proposed to increase the pattern 
of vibration signal processing such as empirical 
mode decomposition(EMD)[5], local mean 
decomposition(LMD)[6], etc. Rotating machinery 
vibration has its characteristics: the multi-vibration 
sources are convoluted with each other, the 
background noise is strong.  

Rotating mechanical system are complex, and 
the vibration source are more than one, the 
propagation path of vibration is complex too, the 
signal is to be convoluted with each other. Because 

of the complexity of machine working condition 
and system structure, consider reducing the effect 
caused by the superposition of time-delay at 
transmission, many research use blind 
deconvolution[7-9] processing method for 
enhancing and extracting the fault features.  

As a commonly used method on the fault 
diagnosis in strong noise case, resonance 
demodulation[10] has its limits: the selection of 
band-pass filter parameters depends on the 
operator’s experience and historical data, it need to 
try lots of times, that is cost lots of time at the 
system with several rotating components. Spectral 
kurtosis[11,12] can determine the best band-pass 
filter parameters automatically, combined with 
spectral analysis, it can do a better job in fault 
diagnosis. 

 In this paper, we propose a method to detect the 
rolling bearing fault based on blind deconvolution 
and spectral kurtosis. We pretreatment the signal 
with blind deconvolution to enhance the impulse 
signal, then design the best band-pass filter by 
calculating spectral kurtosis and analyze the filtered 
signal by using spectral analysis. 

 

 

 



       Journal of Theoretical and Applied Information Technology 
30th September  2012. Vol. 43 No.2 

                                                                  © 2005 - 2012 JATIT & LLS. All rights reserved.                                                                                                                                      

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
262 

 

2. NEW APPROACH THEORY  

2.1.  Blind Deconvolution 
When the bearing is rolling, the damage place of 

the component will generate impulse intermittently, 
which delivered to sensor by a unknown channel. 
Assume the measured signal is the output signal 
which is the response about a input signal pass 
through an unknown linear time-invariant system. 
Once the system is described by a linear filter, the 
output signal is the convolution about input and the 
impulse response of the filter. The blind 
deconvolution is only use the measured signal of 
the unknown system, based on an optimization 
criterion and the assumption about source input 
signal such as independent and identically 
distributed non-Gaussian signal, remove the effects 
of convolution, extract or estimate the source signal. 

1)Mathematical Description 
Assume the measured signal, was generated by 

an unknown input signal passed by an unknown 
linear time-invariant filter: 

 ( ) ( ) ( )i
i

x k a s k i n k
+∞

=−∞

= − +∑  (1) 

Where ,ia i−∞ < < +∞ is the impulse response 

sequence of convolution filter. Assume the source 
input signal ( )s k is a non-Gaussian sequence, the 

noise ( )n k is a zero-mean Gaussian random signal. 

They are statistically independent of each other.   
The goal of the blind deconvolution task is to 

extract an estimate of the source signal sequence 

( )s k from the measured sequence ( )x k using a 

linear filter of the form: 
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 ( ) ( )y k cs k≈ − ∆  (3) 

Where ( ) ,0lb k l L< < are the coefficients of the 

system and L  is a filter length parameter. c  is a 
scalar constant and ∆  is appositive integer delay. 
Figure 1 indicates the structure of the blind 
deconvolution task. 

 

Figure 1：Block Diagram Of The Blind 
Deconvolution Task. 

In this model, we assumed a causal finite-
impulse-response filter for the deconvolution model. 
FIR models are ideal candidates for adaptive filters, 
as they are both computationally simple and 
bounded-input-bounded-output stable for bounded 
coefficients. 

2)Blind deconvolution algorithm 
Paper[13] extended H-J algorithm to the 

situation of time delay and convolution mixing. 
Paper[14] proposed the method about multi-channel 
blind deconvolution based on high-order cumulant 
and high-order spectrum. Blind system parameter 
identification and blind convolution can be 
executed at the same time by using recursive eigen 
decomposition. Paper[15] gave a adaptive method 
about how to separate convolution mixing signal 
blindly, by using 4 order cumulant or 4 order 
moment function. 

Considering the relationship between blind 
convolution and blind signal separation, paper[16] 
proposed a blind convolution algorithm extended 
by fast fixed-point algorithm[17] based on contrast 
function. Based on the principle of max kurtosis, it 
doesn’t need to select the step size parameter when 
calculating, and the convergence speed is fast. In 
this paper, we use this algorithm to deconvolution. 
The updates of this algorithm for N-sample block 
of complex-value data are as follow: 

Step 1: Pre-whitening. Whitening the measured 
signal using a whitening filter. 

 ( ) ( )
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Where ,0ip i M< < are the coefficients of the 

filter, M  is the order of the filter.  
Step 2: Initialize the coefficients of the 

deconvolution filter ( )0lb .Let vector ( )0b  of 

norm 1. 
Step 3: Set the number of iterations. Update the 

coefficients of ( )lb k . 

Step 4 : The update algorithm is as follow: 
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Step 5: 1k k= + ,back to step 4,Calculating, until 
k  equal to the number which had been set at step 3. 

A remarkable property of this algorithm is that a 
very small number of iterations, usually 5-10, seem 
to be enough to obtain the maximal accuracy 
allowed by the sample data. 

2.2.  Spectral Kurtosis 

Spectral kurtosis(SK) was introduced by 
Dwyer[18] at first, as a statistical tool which “can 
indicate not only non-Gaussian components in a 
signal, but also their locations in the frequency 
domain”. Dwyer initially used it as a complement 
to the power spectral density, and demonstrated 
how it efficiently supplements the latter in 
problems concerned with the detection of transients 
in noisy signals. The basic thought of spectral 
kurtosis is: compute the kurtosis at each frequency, 
according the value to find out the transients signal 
which is hidden in the original signal, and 
determine the band of transients signal hidden. 
Antoni did a deep research about spectral kurtosis 
at paper[11,12], proposed a formalization of the SK 
by means of Wold-Cramer decomposition of 
“conditionally non-stationary” processes. It finally 
proposed a short-time Fourier-transform-based 
estimator of the SK which helps to link theoretical 
concepts with practical applications. 

1) Definition of the SK 
Considering the Wold-Cramer decomposition of 

non-stationary signal, define ( )Y t  as the system 

response of signal ( )X t , ( )Y t  can be presented as 

follow:  

 ( ) ( ) ( )2 , ;fiY t e H t f w dX fπ+∞

−∞
= ∫  (10) 

Where ( ), ;H t f w is the time-varying transfer 

function of the system, which can be interpreted as 
the complex envelope of signal ( )Y t at 

frequencyf .  Because of it’s a random function, 

the shape of the envelope is determined by time-

varying variable w . 
We consider the case of transfer function is 

conditioned to a given outcomew  , the process has 
time-dependent statistics. Specifically, define the 

2n-order instantaneous moment ( )2nYS ,t f , which 

measures the strength of the energy of the complex 
envelope at time t  and frequencyf : 
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With non-stationary processes it is necessary to 
investigate how the time-frequency structure 
behaves on the average, i.e. by ensemble averaging 

on many outcomes w . So define spectral moments 
to convey the information as: 

 ( ) ( ){ }2nY 2nYS S ,f E t f�  (12) 

Of particular interest for characterizing non-
stationary processes, which has been shown are 
likely to be non-Gaussian, are the spectral cumulant. 
Indeed, spectral cumulant of order 2n more or equal 
than 4 have a interesting property of being non-zero 
for non-Gaussian processes. Define the fourth-order 
spectral cumulant as: 
 ( ) ( ) ( )2

4Y 4Y 2YC =S -2S ,   0f f f f ≠  (13) 

It can be seen, the stronger the non-Gaussianity 
of signal, the greater the spectral cumulant. 
Therefore, the energy-normalized fourth-order 
spectral cumulant will give a measure of the peak 
of the probability density function of the process at 
frequencyf . Define SK as: 

 ( ) ( )
( )
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2) Application of SK at fault diagnosis in bearing 

The vibration model of rolling element bearing 
can be presented as: 

 ( ) ( ) ( )Z t X t N t= +  (15) 

Where ( )Z t is the measured signal, ( )X t is the 

fault signal which is needed to detect, and ( )N t is 

the noise. ( )X t  is the system structure resonance 

caused by instantaneous impact, so it can be 
presented like the model as follow: 

 ( ) ( )k k
k

X t X h t τ= −∑  (16) 

Where ( )h t is the impulse response caused by 

single impact. kX  and kτ present the amplitude and 

the time of occurrence of the impulse respectively. 
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According the property proposed at paper[14], 
assume the noise follows the gauss distribution, the 
spectral kurtosis is: 

 ( ) ( )
( ) 2

, 0
1

X
Z

K f
K f f

fρ
= ≠

+  

 (17) 

Where ( ) ( ) ( )2N 2XS / Sf f fρ = is noise-signal 

ratio. ( )ZK f is a function about frequency f ,it is 

approximation equal to ( )XK f at the band where 

signal-noise ratio is high. Compute the SK value of 
the whole band we can find out the greatest kurtosis 
and the frequency band corresponding. It is useful 
for design a band-pass filter to fault diagnosis. 

Antoni introduced the concept about kurtogram. 
Kurtogram is a function about frequency f and 

short-time Fourier transform window lengthwN . 

The frequency and window length which maximize 
the SK, is the central frequency of the band f and 

the bandwidth  2 /s wf N� . Paper[19] proposed a 

fast kurtogram algorithm based on multi-resolution 
filter bank. And the concept about kurtogram in it is 
presented as a function relate to frequency f and 

bandwidth f∆ . There is a dyad ,f f∆ maximize 

the SK, the kurtogram is used to present the SK 
value at plane ,f f∆ .  The computation in this 

paper is used by this algorithm.  
 

3. EXPERIMENTAL RESULTS AND 
ANALYSIS 

The bearing experiments in the study were 
carried out on vibration test system YVS-2, which 
has some faults in outer-race with cylindrical 
rolling bearing typed N203. Table 1 shows the 
parameter of N203. The rotation speed was 1750 
round per minute, the sampling frequency was set 
to 32768Hz. Theoretically the fault feature 
frequency is 117.4Hz. 

Table I:  Parameter Of Bearing N203. 

Number of 
roller 

Roll 
diameter 

Inside 
diameter 

10 5.5mm 17mm 

Outside 
diameter 

Thickness 
Pitch 
diameter 

40mm 12mm 28.5mm 

The sampling is showed as Figure 2, (a)(b) are 
time-domain waveform and the frequency spectrum 
respectively. 

 

Figure 2：Time-domain Frequency-domain of the 
sampling. 

Figure 3 and figure 4 show the fast kurtogram of 
the sampling and the spectrum of the signal which 
filtered by the best band-pass filter, respectively. As 
figure 3 shows, the amplitude of the spectrum, 
which band corresponding to the max kurtosis, is 
not clear. As figure 4 shows, the fault feature 
frequency is complex,  which has several feature 
frequency and their harmonic, it is hard to 
recognize the fault frequency.  

Figure 5 shows the time-domain waveform and 
frequency spectrum after blind deconvolution 
operation. Figure 6 shows the fast kurtogram of the 
signal after blind deconvolution operation. Figure 7 
shows the spectrum of the signal which filtered by 
the best band-pass filter, after blind deconvolution 
operation. By compared figure 3 and figure 6, the 
value of max kurtosis increased significantly: the 
max kurtosis value is 147.3 in figure 3, and the max 
kurtosis value is 2578.3 in figure 6. As figure 7 
shows, the fault feature frequency is 117.4Hz and 
its harmonic, which just right relate to the outer-
race fault frequency. 

 
4. CONCLUSION 
 

This paper proposes an approach for convolution 
of multi-vibration sources and strong noise in 
rotating machinery vibration. The approach 
includes blind deconvolution and Spectral kurtosis 
method. Through the bearing failure experiment, 
the proposed approach could detect the fault feature 
frequency obviously, which shows good application 
potential for distinguishing the failure types in 
rotatory machine. 
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Figure 3：The kurtogram of the sampling. 

 

Figure 4：The spectrum of fault feature frequency 
with spectral kurtosis. 

 

Figure 5：Time-domain waveform of the sampled 
data after deconvolution operation. 

 

Figure 6：The kurtogram of the sampling after 
deconvolution operation. 

 

Figure 7：The spectrum of fault feature frequency 
with spectral kurtosis after deconvolution operation. 
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