
Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

58

SOUND SPEED OPTIMIZATION USING IMAGE TEXTURE
ON CUDA

1 XINGWU HE, 2HUAGUO YIN, 3HONGLIN ZHOU AND 4XIA ZHANG
1 Department of Electronics and Information Chengdu Vocational College of

Agricultural Science and Technology Chengdu, China

E-mail:1 hexw981@126.com, 2xingwuHe@126.com

ABSTRACT

The Compute Unified Device Architecture (CUDA) is a brand new parallel processing platform making use
of the unified shader design of the most current Graphics Processing Units (GPUs) from NVIDIA. In this
paper, we apply this revolutionary new technology to implement the sound speed optimization (SSO) with
image texture analysis for medical ultrasound imaging. The sum and difference histogram of parallel
texture mask production is also presented. This SSO method achieves 77ms for a group of alternative sound
velocities that are from 1400 to 1700m/s every 10m/s a sample image with the size of 256 × 512, about 45
times faster than the CPU implementation. Testing results from GPU and CPU are compared in terms of
decision results and program runtime with different image size.

Keywords: Phase Aberration; Sound Speed Correction; Image Texture; Parallel Processing; GPU

1. INTRODUCTION

Ultrasound imaging has been a valuable tool in
medical diagnosis for a long time. In ultrasound
imaging systems, the sound speed is a very
important parameter for beamforming procedure
and usually considered as a constant, typically 1540
m/s in human tissue [1]. However, the actual speed
of sound in human body covers 1.42 mm/s (in
breast fatty tissue) to about 3.70 mm/s (in bone);
furthermore, the same tissue of different patients
might have different speeds of sound. If the system
pre-set sound velocity is away from the true one in
the tissue too much, the shift of structure position
and loss of image contrast will appear up, which
causes small mis-registrations of image location.
Therefore, sound speed optimization in ultrasound
imaging system is of great importance. Though
researchers have proposed many algorithms in
phase aberration correction, most of these
algorithms require very high complexities both in
process time and memory storage which make a
real-time application impractically on the general
CPU of a PC.

Many researchers are interested in phase
aberration correction produced by mis-matching
local tissue velocity with pre-set one. Jochen F.
Krücker et al. [2] have proposed a way to estimate
the sound speed in a region of interest (ROI) by
obtaining views of that area from different views
and quantifying the relative geometric distortions

between these different directions using image
registration. And one method to correct unknown
phase aberration in the coherent imaging systems is
present in [3], which uses the area-wise average
speckle brightness as a quality factor. It is known
that image texture is an important characteristic for
the image analysis. Haralick (1973) defined a set of
texture parameters to quantify the image texture
properties that can be qualitatively evaluated as
having one or more of the properties of fineness,
coarseness, smoothness, and so on [4]. With this
analysis tool, Du and Liu give out a method to find
the best sound speed by the image texture
parameters which is a function of trial sound speeds
[5]. Useful as these methods, there share a same
withdraw, the time consumed in computation is too
high to satisfy the need of the real time ultrasound
imaging system.

Recently, the revolutionary of computing
platform has come up with faster parallel processors
developed. Especially, the general purpose GPU
overwhelms Multi-core CPUs for image processing
due to its unique benefits, such as lighter thread,
lower synchronization time consumption, more
powerful computing capability, and so on. The
CUDA technique released by NVIDIA provides
efficient methods to solve complex computation
problems on the brand new GPUs with the
capability of general purpose computing [6].

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

59

The main purpose of this study focuses on the
design and implementation of parallel algorithms
for sound speed optimization using image texture,
which is mainly, based on CUDA performance
features, such as the memory selection strategy,
applicable thread structure, parallel histogram
produced and so on. These parallel algorithms are
suitable for CUDA platform and implement in GPU
hardware that meet the requirements of real time
system.

The organization of the paper is as follows: Part
A of Section II introduces the analysis of the sound
speed optimization with image texture used in the
ultrasound imaging system. In part B of Section II,
we represent a GPU-based way for this method.
Testing results are show in Section III. Conclusions
and future directions are represented in Section IV.

2. METHOD

2.1 Sound Speed Optimization On Ultrasound

imaging system with image texture.
In ultrasound imaging system, there could be a

defocusing on image that leads to degradation in
image quality, if the system pre-set speed of sound
is away from the actual one in the analysis area.
There is an idea to find the best speed of sound by
creating a function of trial sound speeds with the
image qualities. Therefore, we analyze the impact
of mismatched sound speed first and then give out
the sound speed optimization method with image
textures.

2.1.1 The impacts of mismatched speed of
sound on imaging qualities

In the ultrasound imaging system, the time delays
(both TX and RX) is essential for the electronic
focusing. They are used to make the pulse signals
of each element arrive at a designated position in
phase. These delay curves can be set to each
transducer element in a format of time-of-flight
computed by using a pre-setting speed of sound,
e.g., 1540 m/s. For a linear or phased array, the time
delay needed for the element i to focus at (x0, z0)
can be represented as:

))((
1

0
2
0

2
0

0
i zzxx

c i −+−=τ
 (1)

Where c0 is the pre-setting speed of sound, xi is
the position of the element i in the active aperture.
From (1), one can see the delay curves are depend
on the assumed speed of sound, which may cause
the focus point shifted, when the actual speed of
sound doesn’t equal to the assumed one. Moreover,
when the speed of sound of the actual area is
smaller than the assumed speed of sound, the actual

focal depth will be deeper than the designated
position. Therefore, when the assumed time delay
could not always be fit for the transducer elements,
the mismatched acoustic velocity will cause a very
imperfect focus.

More specifically, the focus length zfl on the
displayed image in ultrasound imaging system can
be computed as follows:

 2

c
=z 0

fl
τ

 (2)
From the above equation, a shift for the focus

length of the displayed image will be present when
the pre-setting speed of sound is not close to the
actual one in the medium. The actual focus length
ztrue should locate at

 0

1fl
true c

cz
=z

 (3)
Eqn. (2) and (3) demonstrate that detail

resolution in the ultrasound image is reduced using
the mismatched speed of sound.

Based on the above discussion, we can see
mismatched speed of sound would produce a shift
in axial direction which will involve confusion
regions in ultrasound image; especially the
decimation of pulse-echo signal for display would
exaggerate the degradation of detail resolution. The
edge of tissue structure in ultrasound image will be
blurred and the contrast will be also reduced.

2.1.2 Sound speed optimization with textures
analysis

Image texture is a term that refers to properties
that represents the surface of an object, so they can
be used to describe the focus quality with some
sound velocities. In statistical texture analysis,
Unser’s sum and difference histograms approach is
an approximate the two-dimensional texture
parameters for texture discrimination [7].

In this paper, we choose the image texture
energy, mean and contrast as the focus quality
factors. Texture Mean represents the intensity of
local region. The better the focus quality is, the
greater it is; Texture Energy can measure image
homogeneity. The more homogeneous the image,
the larger the value is. The other texture contrast
is a measure of local image variations. High
contrast textures are characterized by large edge
magnitudes. It means the clearer boundaries and the
higher resolution images, the greater value. The
texture features with sum and difference histogram
method are defined as follow:

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

60

Energy:
∑ ∑i j ds jPiP 22)()(

Contrast:
∑ j d jPj)(2

Mean:
∑i s iiP)(

2

1

Where Ps and Pd are defined by

}|),{(),;(,, iyylkCardddiP
yx dldklkyxs =+= ++

and

}|),{(),;(,, iyylkCardddiP
yx dldklkyxd =−= ++

respectively. And Card refers to the number of
elements of a set and yk, l = i means that the
intensity at the position (k, l) is equal to the grey
level of i.

After giving out the definition of image texture,
the procedure of sound speed optimization is as
follows:

� Preset a group of alternative sound velocities,
and select a range in the displayed image. The
selected rows should cover enough bins
located at different resolution cells axially to
increase the signal-to-noise ratio (SNR) for
further averaging. Generally, the range should
include the focus area.

� Obtain the ultrasound images produced by the
group of sound velocities.

� Compute the textures in the selected range. In
this paper, we use multiple analysis windows
for texture calculations and then average them
for high precision.

� Then the image quality factor is now defined
as the triple of image textures.

� After normalization these image quality
factors, we find the best one by weighting the
triple of image textures for the corresponding
trial speed of sound.

2.2 CUDA -Based Algorithm
There are four parts in our sound speed

optimization method, embracing one necessary data
transformation and three main GPU procedures:
data acquisition, texture computation based on the
sum and difference histograms, quality factors
normalization and the optimized sound speed
make-decision. The flowchart of this algorithm is
shown in Figure.1.

2.2.1 Data acquisition
In our sound speed optimization method, we set a

group of candidates firstly. And then use the digital
ultrasound scanner built by Saset Healthcare Inc to

obtain the corresponding images. Unlike the
traditional CPU processing, the image data must be
transferred from main memory to graphics memory
in order to utilize the GPU platform. It’s really
extra time consumption for our GPU-based
algorithm. To abate this extra cost and to achieve
the high memory bandwidth, the choice of memory
type for both host and device end is considered.

Figure 1 Flowchart of sound speed optimization

processing

In the host end, there are two types of main
memories in host end, that’s page memory and
page-locked memory. The page-locked memory
bandwidth is nearly 2 times higher than the page
memory due to our actual tests. CUDA 2.3 or
higher provide four kinds of page-locked memories
with some special features. The write-combing
memory frees up L1 and L2 cache resources,
making more cache available to the rest of the
application. In addition, write-combining memory
is not snooped during transfers across the PCI
Express bus, so it is suitable for the memory that
the host only writes to; the default one is without
the proprieties mentioned above. We use the
write-combing memory to storage our image data.

In the device end, we put the data into the global
memory, as the brand new GPU architecture Fermi
provides the L1 and L2 cache for the graphics
memory that improves the bandwidth much more.
Note that if the GPU device is below CUDA2.0, the
image data had better be put into texture memory
for high bandwidth.

2.2.2 Texture computation
In the texture analysis, the key computation is to

build the sum and the difference histograms. It is
data dependence for producing one global
histogram, as each bin can be set by multiple

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

61

different position indexes with the same image
pixels. Obvious, it is possible to distribute the
computation process between multiple execution
threads by subdividing the input data to create the
sub-histograms and then merging them into a single
global histogram. This naive and direct idea should
be adapted following several constraints of GPU
processing.

In the procedure of histogram producing, it is
sequential to access to the data, but it is random
(data-dependence) to modify the histogram bins. In
order to achieve the high memory bandwidth,
shared memory will be the most optimal storage for
the sub-histogram. In the GPU device below 2.0, it
is not possible to create the sum and different
histogram for image data, for they need 512 bins
while there is not enough shared memory for them.
In the Fermi device (above 2.0), it has four times
shared memory than the previous device. Thus it is
possible to implement the sum and different
histogram creation.

The warp (it is the smallest execution unit for
GPU threads, 32 threads) shares the same memory
range. We give out one method to produce the
sub-histograms in thread warps and resolve the
thread collisions. This method mainly includes the
three steps:

� Each thread reads the previous value of the
histogram bin. The most significant bits of the
count are masked and replaced with the tag of
the current thread. Then each thread writes the
incremented bin back to the sub-histogram in
the shared memory. Besides, the tag is stored
in the 5 most significant bits of the histogram
counters and only 5 bits are required for thread
warp.

� When each thread in the warp receives unique
data values, there are no collisions at all, and
no extra actions are needed. But, when two or
more threads colliding to write to the same
location, the hardware performs shared
memory write combining the results in the
acceptance of the tagged bin from any one
thread, and the rejection from the other
pending threads. After the write attempt, each
thread reads from the same shared memory
location. The threads were able to write their
bin, exit the loop and stay idle waiting for
remaining threads in the warp. The warp will
stop until all the threads exit the loop

� Each warp uses its own sub-histogram to
produce the final histogram by merging it into
the global memory.

After producing the sum and difference
histogram, we can compute the three image textures
in parallel.

2.2.3 Normalization
The key step for normalization is to obtain the

maximum of parameters (energy, contrast and
mean). To reduce the runtime of finding the
maximum, one parallel method using Fan-in
method on CUDA is proposed, and also utilizes the
share memory, including the follow steps.

First, set the number of times the threads need to
be synchronized. Here, we use 3 rounds to carry
this on, twice thread-synchronization for each block
and once kernel-synchronization for all blocks.

Second, let each thread find the first local
maximum from the subdivision of data, then put it
in the share memory and wait other threads in the
same block.

Third, let any thread in every block finds the
second local maximum from data of each thread
block which have existed in share memory, and
write it back to the global memory. Since it cannot
be synchronized between different blocks before
kernel stopped, another kernel must start to finish
the last round.

Finally, a single thread is assigned to find the
final maximum, in order to facilitate later
normalization using many thread blocks, actually,
not a single champion for all threads but one for a
thread block, which is placed in the share memory.
As GPU spends its transistors on ALUs, redundant
computation is more efficient than accessing global
memory repeatedly.

Two GPU passes do the first and second round of
the maximum of the three textures, respectively.
The maximum of all the three texture can be
obtained in another kernel, which also finishes the
normalization using the three maximum of all the
textures.

2.2.4 Decision-making
To finish the decision-making, one can weigh the

three factors using the preset coefficients from
experiments, and then use the maximum of the
weighting results to be the final output. On CUDA,
we can use one GPU pass to weigh the factors and
the function cublasIsamax to get the maximum of
the non-zero vector [8].

3. RESULTS AND DISCUSSION

The software environment used Windows 7 and
NVDIA CUDA v.4.0. The hardware environment

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

comprised an AMD Althlon (tm) IIX2 240 CPU
running at 2.81GHz and coupled to 2 GB of RAM,
and an NVIDIA GTX 560 GPU running at 1.645
GHz with 14 multiprocessors and 1 GB memory.
The results produced by CPU platform were
calculated with general C code, without using any
instruction extensions.

The test images are phantom images obtained
from a digital ultrasound scanner built in our lab.
Figure2(a) shows the speckle image obtained from
1540 m/s and (b) from 1700 m/s. Use a matched
system sound speed, the speckle image of
Figure2(a) is better than Figure2(b) in terms of
speckle size around the focal region. Figure3(a)
shows the point target image obtained from 1540
m/s and (b) from 1700 m/s. It’s clear that a right
system sound speed of 1540 m/s has better image
quality of Figure. 3(a) compared with the right one
of 1700m/s, Figure3(b). And the factors show the
consistence with the image qualities.

The performances of the CPU-based and
GPU-based implementations are compared in Table
I. The program runtime of the whole sound speed
optimization processing in milliseconds from
different image sizes and demonstrates that our
CUDA-based implement will speed up this
algorithm 45 times compared with that on the CPU
platform in the same situation. Besides, the time
delay is hidden and the GPU occupancy increase, as
the image data size growing up. So the bigger data
size is, the higher speedup is, before GPU resource
is fully used.

Table.1 Performance Comparison

Image
Size
(pixel) CPU(ms)

GPU(m
s)

Speedup
Rate

128 ×
128×30 628.64 15.57 40.37

128 ×
256×30 1254.32 28.80 43.55

256
×256×30 2506.44 55.44 45.21

4. CONCLUSION

In the GPU implement, the sound speed
optimization with image texture can be used for the
real time ultrasound imaging system. Our tests
demonstrate that the results of the decision-making
by using GPU processing is the same as that on
CPU; while the GPU implementation offers

increased by more than 45 times. Above all,
CUDA-enabled GPU could well suit for delivering
high-speed image processing algorithms, like the
computational intensive image texture analysis.

(a) 1540m/s(true)

(b)1700m/s(false)

(c) factors from CPU

(d) factors from GPU

Figure 2 Speckle Image And Quality Factors

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

(a) 1540m/s(true)

(b)1700m/s(false)

(c) factors from CPU

(d) factors from GPU

Figure 3 Point target image and quality factors

REFERENCES:

[1] G. D. Ludwig, "The velocity of sound through

tissues and the acoustic impedance of tissues",
J. Acoust. Soc. Am, Vol. 22, 1950, pp. 862–866.

[2] J. F. Krucker, J. B. Fowlkes and P. L. Carson,
"Sound speed estimation using automatic
ultrasound image registration", IEEE Transl. on
ultrasonics, ferroelectric, and frequency
control, Vol. 51, No. 9, September 2004.

[3] R.M. Haralick, K. Shanmugan, and I. Dinstein,
“Texture features for image classification,”
IEEE Trans. Syst. Man, Cybern., Vol.SMC-8,
Nov, 1973, pp:610-621.

[4] R.M. Haralick, K. Shanmugan, and I. Dinstein,
“Texture features for image classification,”
IEEE Trans. Syst. Man, Cybern, Vol.SMC-8,
Nov, 1973, pp.610-621.

[5] H. Du and D. C. Liu, “Simulation of sound speed
optimization in the ultrasound system,”
CBME2007 Chinese Biomedical Engineering
Conference(Chinese), 2007.

[6] CUDA Programming Guide, version 4.0,
NVIDIA Co., Santa Clara, CA, 2011.

[7] M. Unser, “Sum and difference histograms for
texture classification”, IEEE Trans. Pattern
Anal. Mach. Intell., Vol. PAMI-8, No.1,
January, 1986, pp.118-125.

[8] NVIDIA: CUBLAS Library. version 4.0,
NVIDIA Co., Santa Clara, CA, 2011

