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ABSTRACT 
 

The Compute Unified Device Architecture (CUDA) is a brand new parallel processing platform making use 
of the unified shader design of the most current Graphics Processing Units (GPUs) from NVIDIA. In this 
paper, we apply this revolutionary new technology to implement the sound speed optimization (SSO) with 
image texture analysis for medical ultrasound imaging. The sum and difference histogram of parallel 
texture mask production is also presented. This SSO method achieves 77ms for a group of alternative sound 
velocities that are from 1400 to 1700m/s every 10m/s a sample image with the size of 256 × 512, about 45 
times faster than the CPU implementation. Testing results from GPU and CPU are compared in terms of 
decision results and program runtime with different image size. 
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1. INTRODUCTION  
 

Ultrasound imaging has been a valuable tool in 
medical diagnosis for a long time. In ultrasound 
imaging systems, the sound speed is a very 
important parameter for beamforming procedure 
and usually considered as a constant, typically 1540 
m/s in human tissue [1]. However, the actual speed 
of sound in human body covers 1.42 mm/s (in 
breast fatty tissue) to about 3.70 mm/s (in bone); 
furthermore, the same tissue of different patients 
might have different speeds of sound. If the system 
pre-set sound velocity is away from the true one in 
the tissue too much, the shift of structure position 
and loss of image contrast will appear up, which 
causes small mis-registrations of image location. 
Therefore, sound speed optimization in ultrasound 
imaging system is of great importance. Though 
researchers have proposed many algorithms in 
phase aberration correction, most of these 
algorithms require very high complexities both in 
process time and memory storage which make a 
real-time application impractically on the general 
CPU of a PC. 

Many researchers are interested in phase 
aberration correction produced by mis-matching 
local tissue velocity with pre-set one. Jochen F. 
Krücker et al. [2] have proposed a way to estimate 
the sound speed in a region of interest (ROI) by 
obtaining views of that area from different views 
and quantifying the relative geometric distortions 

between these different directions using image 
registration. And one method to correct unknown 
phase aberration in the coherent imaging systems is 
present in [3], which uses the area-wise average 
speckle brightness as a quality factor. It is known 
that image texture is an important characteristic for 
the image analysis. Haralick (1973) defined a set of 
texture parameters to quantify the image texture 
properties that can be qualitatively evaluated as 
having one or more of the properties of fineness, 
coarseness, smoothness, and so on [4]. With this 
analysis tool, Du and Liu give out a method to find 
the best sound speed by the image texture 
parameters which is a function of trial sound speeds 
[5]. Useful as these methods, there share a same 
withdraw, the time consumed in computation is too 
high to satisfy the need of the real time ultrasound 
imaging system. 

Recently, the revolutionary of computing 
platform has come up with faster parallel processors 
developed. Especially, the general purpose GPU 
overwhelms Multi-core CPUs for image processing 
due to its unique benefits, such as lighter thread, 
lower synchronization time consumption, more 
powerful computing capability, and so on. The 
CUDA technique released by NVIDIA provides 
efficient methods to solve complex computation 
problems on the brand new GPUs with the 
capability of general purpose computing [6]. 



Journal of Theoretical and Applied Information Technology 
 15 September 2012. Vol. 43 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                              www.jatit.org                          E-ISSN: 1817-3195 

 
59 

 

The main purpose of this study focuses on the 
design and implementation of parallel algorithms 
for sound speed optimization using image texture, 
which is mainly, based on CUDA performance 
features, such as the memory selection strategy, 
applicable thread structure, parallel histogram 
produced and so on. These parallel algorithms are 
suitable for CUDA platform and implement in GPU 
hardware that meet the requirements of real time 
system. 

The organization of the paper is as follows: Part 
A of Section II introduces the analysis of the sound 
speed optimization with image texture used in the 
ultrasound imaging system. In part B of Section II, 
we represent a GPU-based way for this method. 
Testing results are show in Section III. Conclusions 
and future directions are represented in Section IV.  

2. METHOD 
 
2.1 Sound Speed Optimization On Ultrasound 

imaging system with image texture. 
In ultrasound imaging system, there could be a 

defocusing on image that leads to degradation in 
image quality, if the system pre-set speed of sound 
is away from the actual one in the analysis area. 
There is an idea to find the best speed of sound by 
creating a function of trial sound speeds with the 
image qualities. Therefore, we analyze the impact 
of mismatched sound speed first and then give out 
the sound speed optimization method with image 
textures. 

2.1.1  The impacts of mismatched speed of 
sound on imaging qualities 

In the ultrasound imaging system, the time delays 
(both TX and RX) is essential for the electronic 
focusing. They are used to make the pulse signals 
of each element arrive at a designated position in 
phase. These delay curves can be set to each 
transducer element in a format of time-of-flight 
computed by using a pre-setting speed of sound, 
e.g., 1540 m/s. For a linear or phased array, the time 
delay needed for the element i to focus at (x0, z0) 
can be represented as: 
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Where c0 is the pre-setting speed of sound, xi is 
the position of the element i in the active aperture. 
From (1), one can see the delay curves are depend 
on the assumed speed of sound, which may cause 
the focus point shifted, when the actual speed of 
sound doesn’t equal to the assumed one. Moreover, 
when the speed of sound of the actual area is 
smaller than the assumed speed of sound, the actual 

focal depth will be deeper than the designated 
position. Therefore, when the assumed time delay 
could not always be fit for the transducer elements, 
the mismatched acoustic velocity will cause a very 
imperfect focus.  

More specifically, the focus length zfl on the 
displayed image in ultrasound imaging system can 
be computed as follows: 
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From the above equation, a shift for the focus 

length of the displayed image will be present when 
the pre-setting speed of sound is not close to the 
actual one in the medium. The actual focus length 
ztrue should locate at  

 0
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                (3) 
Eqn. (2) and (3) demonstrate that detail 

resolution in the ultrasound image is reduced using 
the mismatched speed of sound.  

Based on the above discussion, we can see 
mismatched speed of sound would produce a shift 
in axial direction which will involve confusion 
regions in ultrasound image; especially the 
decimation of pulse-echo signal for display would 
exaggerate the degradation of detail resolution. The 
edge of tissue structure in ultrasound image will be 
blurred and the contrast will be also reduced.  

2.1.2 Sound speed optimization with textures 
analysis 

Image texture is a term that refers to properties 
that represents the surface of an object, so they can 
be used to describe the focus quality with some 
sound velocities. In statistical texture analysis, 
Unser’s sum and difference histograms approach is 
an approximate the two-dimensional texture 
parameters for texture discrimination [7].  

In this paper, we choose the image texture 
energy, mean and contrast as the focus quality 
factors. Texture Mean represents the intensity of 
local region. The better the focus quality is, the 
greater it is; Texture Energy can measure image 
homogeneity. The more homogeneous the image, 
the larger the value is.  The other texture contrast 
is a measure of local image variations. High 
contrast textures are characterized by large edge 
magnitudes. It means the clearer boundaries and the 
higher resolution images, the greater value. The 
texture features with sum and difference histogram 
method are defined as follow: 
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respectively. And Card refers to the number of 
elements of a set and yk, l = i means that the 
intensity at the position (k, l) is equal to the grey 
level of i. 

After giving out the definition of image texture, 
the procedure of sound speed optimization is as 
follows:  

� Preset a group of alternative sound velocities, 
and select a range in the displayed image. The 
selected rows should cover enough bins 
located at different resolution cells axially to 
increase the signal-to-noise ratio (SNR) for 
further averaging. Generally, the range should 
include the focus area. 

� Obtain the ultrasound images produced by the 
group of sound velocities. 

� Compute the textures in the selected range. In 
this paper, we use multiple analysis windows 
for texture calculations and then average them 
for high precision. 

� Then the image quality factor is now defined 
as the triple of image textures. 

� After normalization these image quality 
factors, we find the best one by weighting the 
triple of image textures for the corresponding 
trial speed of sound. 

2.2 CUDA -Based Algorithm 
There are four parts in our sound speed 

optimization method, embracing one necessary data 
transformation and three main GPU procedures: 
data acquisition, texture computation based on the 
sum and difference histograms, quality factors 
normalization and the optimized sound speed 
make-decision. The flowchart of this algorithm is 
shown in Figure.1. 

2.2.1 Data acquisition 
In our sound speed optimization method, we set a 

group of candidates firstly. And then use the digital 
ultrasound scanner built by Saset Healthcare Inc to 

obtain the corresponding images. Unlike the 
traditional CPU processing, the image data must be 
transferred from main memory to graphics memory 
in order to utilize the GPU platform. It’s really 
extra time consumption for our GPU-based 
algorithm. To abate this extra cost and to achieve 
the high memory bandwidth, the choice of memory 
type for both host and device end is considered. 

 
Figure 1 Flowchart of sound speed optimization 

processing 

In the host end, there are two types of main 
memories in host end, that’s page memory and 
page-locked memory. The page-locked memory 
bandwidth is nearly 2 times higher than the page 
memory due to our actual tests. CUDA 2.3 or 
higher provide four kinds of page-locked memories 
with some special features. The write-combing 
memory frees up L1 and L2 cache resources, 
making more cache available to the rest of the 
application. In addition, write-combining memory 
is not snooped during transfers across the PCI 
Express bus, so it is suitable for the memory that 
the host only writes to; the default one is without 
the proprieties mentioned above. We use the 
write-combing memory to storage our image data. 

In the device end, we put the data into the global 
memory, as the brand new GPU architecture Fermi 
provides the L1 and L2 cache for the graphics 
memory that improves the bandwidth much more. 
Note that if the GPU device is below CUDA2.0, the 
image data had better be put into texture memory 
for high bandwidth. 

2.2.2  Texture computation 
In the texture analysis, the key computation is to 

build the sum and the difference histograms. It is 
data dependence for producing one global 
histogram, as each bin can be set by multiple 
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different position indexes with the same image 
pixels. Obvious, it is possible to distribute the 
computation process between multiple execution 
threads by subdividing the input data to create the 
sub-histograms and then merging them into a single 
global histogram. This naive and direct idea should 
be adapted following several constraints of GPU 
processing. 

In the procedure of histogram producing, it is 
sequential to access to the data, but it is random 
(data-dependence) to modify the histogram bins. In 
order to achieve the high memory bandwidth, 
shared memory will be the most optimal storage for 
the sub-histogram. In the GPU device below 2.0, it 
is not possible to create the sum and different 
histogram for image data, for they need 512 bins 
while there is not enough shared memory for them. 
In the Fermi device (above 2.0), it has four times 
shared memory than the previous device. Thus it is 
possible to implement the sum and different 
histogram creation. 

The warp (it is the smallest execution unit for 
GPU threads, 32 threads) shares the same memory 
range. We give out one method to produce the 
sub-histograms in thread warps and resolve the 
thread collisions. This method mainly includes the 
three steps: 

� Each thread reads the previous value of the 
histogram bin. The most significant bits of the 
count are masked and replaced with the tag of 
the current thread. Then each thread writes the 
incremented bin back to the sub-histogram in 
the shared memory. Besides, the tag is stored 
in the 5 most significant bits of the histogram 
counters and only 5 bits are required for thread 
warp. 

� When each thread in the warp receives unique 
data values, there are no collisions at all, and 
no extra actions are needed. But, when two or 
more threads colliding to write to the same 
location, the hardware performs shared 
memory write combining the results in the 
acceptance of the tagged bin from any one 
thread, and the rejection from the other 
pending threads. After the write attempt, each 
thread reads from the same shared memory 
location. The threads were able to write their 
bin, exit the loop and stay idle waiting for 
remaining threads in the warp. The warp will 
stop until all the threads exit the loop 

� Each warp uses its own sub-histogram to 
produce the final histogram by merging it into 
the global memory. 

After producing the sum and difference 
histogram, we can compute the three image textures 
in parallel. 

2.2.3 Normalization 
The key step for normalization is to obtain the 

maximum of parameters (energy, contrast and 
mean). To reduce the runtime of finding the 
maximum, one parallel method using Fan-in 
method on CUDA is proposed, and also utilizes the 
share memory, including the follow steps. 

First, set the number of times the threads need to 
be synchronized. Here, we use 3 rounds to carry 
this on, twice thread-synchronization for each block 
and once kernel-synchronization for all blocks. 

Second, let each thread find the first local 
maximum from the subdivision of data, then put it 
in the share memory and wait other threads in the 
same block. 

Third, let any thread in every block finds the 
second local maximum from data of each thread 
block which have existed in share memory, and 
write it back to the global memory. Since it cannot 
be synchronized between different blocks before 
kernel stopped, another kernel must start to finish 
the last round. 

Finally, a single thread is assigned to find the 
final maximum, in order to facilitate later 
normalization using many thread blocks, actually, 
not a single champion for all threads but one for a 
thread block, which is placed in the share memory. 
As GPU spends its transistors on ALUs, redundant 
computation is more efficient than accessing global 
memory repeatedly. 

Two GPU passes do the first and second round of 
the maximum of the three textures, respectively. 
The maximum of all the three texture can be 
obtained in another kernel, which also finishes the 
normalization using the three maximum of all the 
textures. 

2.2.4  Decision-making 
To finish the decision-making, one can weigh the 

three factors using the preset coefficients from 
experiments, and then use the maximum of the 
weighting results to be the final output. On CUDA, 
we can use one GPU pass to weigh the factors and 
the function cublasIsamax to get the maximum of 
the non-zero vector [8].  

3. RESULTS AND DISCUSSION 
 

The software environment used Windows 7 and 
NVDIA CUDA v.4.0. The hardware environment 
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comprised an AMD Althlon (tm) IIX2 240 CPU 
running at 2.81GHz and coupled to 2 GB of RAM, 
and an NVIDIA GTX 560 GPU running at 1.645 
GHz with 14 multiprocessors and 1 GB memory. 
The results produced by CPU platform were 
calculated with general C code, without using any 
instruction extensions. 

The test images are phantom images obtained 
from a digital ultrasound scanner built in our lab. 
Figure2(a) shows the speckle image obtained from 
1540 m/s and (b) from 1700 m/s. Use a matched 
system sound speed, the speckle image of 
Figure2(a) is better than Figure2(b) in terms of 
speckle size around the focal region. Figure3(a) 
shows the point target image obtained from 1540 
m/s and (b) from 1700 m/s. It’s clear that a right 
system sound speed of 1540 m/s has better image 
quality of Figure. 3(a) compared with the right one 
of 1700m/s, Figure3(b). And the factors show the 
consistence with the image qualities. 

The performances of the CPU-based and 
GPU-based implementations are compared in Table 
I. The program runtime of the whole sound speed 
optimization processing in milliseconds from 
different image sizes and demonstrates that our 
CUDA-based implement will speed up this 
algorithm 45 times compared with that on the CPU 
platform in the same situation. Besides, the time 
delay is hidden and the GPU occupancy increase, as 
the image data size growing up. So the bigger data 
size is, the higher speedup is, before GPU resource 
is fully used.  

Table.1 Performance Comparison 

Image 
Size 
(pixel) CPU(ms) 

GPU(m
s) 

Speedup 
Rate 

128 × 
128×30 628.64 15.57 40.37 

128 × 
256×30 1254.32 28.80 43.55 

256 
×256×30 2506.44 55.44 45.21 

 

4. CONCLUSION 
 

In the GPU implement, the sound speed 
optimization with image texture can be used for the 
real time ultrasound imaging system. Our tests 
demonstrate that the results of the decision-making 
by using GPU processing is the same as that on 
CPU; while the GPU implementation offers 

increased by more than 45 times. Above all, 
CUDA-enabled GPU could well suit for delivering 
high-speed image processing algorithms, like the 
computational intensive image texture analysis. 

 
(a) 1540m/s(true) 

 
(b)1700m/s(false) 

 

 
(c) factors from CPU 

 

 
(d) factors from GPU 

 
Figure 2 Speckle Image And Quality Factors 
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(a) 1540m/s(true) 

 
(b)1700m/s(false) 

 

 
(c) factors from CPU 

 

 
(d) factors from GPU 

 
Figure 3 Point target image and quality factors 
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