
Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

AN APPROACH TO DESIGN INCREMENTAL PARALLEL
WEBCRAWLER

DIVAKAR YADAV1, AK SHARMA2, SONIA SANCHEZ-CUADRADO3, JORGE MORATO4

1Assistant Professor, Department of Computer Science & Engg. and IT, JIIT, Noida (India)
2Professor and Dean, Department of Computer Science & Engg., YMCA University, Faridabad (India)

3, 4 Associate Professor, Department of Computer Science & Engg., UC3, Madrid (Spain)

Email: 1dsy99@rediffmail.com, 2ashokkale2@rediffmail.com, 3ssanchec@ie.inf.uc3m.es,
4jorge@kr.inf.uc3m.es

ABSTRACT

World Wide Web (WWW) is a huge repository of interlinked hypertext documents known as web pages.
Users access these hypertext documents via Internet. Since its inception in 1990, WWW has become many
folds in size, and now it contains more than 50 billion publicly accessible web documents distributed all over
the world on thousands of web servers and still growing at exponential rate. It is very difficult to search
information from such a huge collection of WWW as the web pages or documents are not organized as books
on shelves in a library, nor are web pages completely catalogued at one central location. Search engine is basic
information retrieval tool, used to access information from WWW. In response to the search query provided
by users, Search engines use their database to search the relevant documents and produce the result after
ranking on the basis of relevance. In fact, the Search engine builds its database, with the help of WebCrawlers.
To maximize the download rate and to retrieve the whole or significant portion of the Web, search engines run
multiple crawlers in parallel.

Overlapping of downloaded web documents, quality, network bandwidth and refreshing of web documents
are the major challenging problems faced by existing parallel WebCrawlers that are addressed in this work. A
Multi Threaded (MT) server based novel architecture for incremental parallel web crawler has been designed
that helps to reduce overlapping, quality and network bandwidth problems. Additionally, web page change
detection methods have been developed to refresh the web document by detecting the structural, presentation
and content level changes in web documents. These change detection methods help to detect whether version
of a web page, existing at Search engine side has got changed from the one existing at Web server end or not.
If it has got changed, the WebCrawler should replace the existing version at Search engine database side to
keep its repository up-to-date

Keywords: World Wide Web (WWW), Uniform Resource Locator (URLs), Search engine, WebCrawler,
Checksum, Change detection, Ranking algorithms.

1. INTRODUCTION

About 20% of the world’s population use Web
[28] which is increasing exponentially day by day
and a large majority thereof uses web search engines
to find information. Search engines consist of three
major components: indexer, query processor and
crawlers. Indexer processes pages, decides which of
them to index and builds various data structures
(inverted index, web graph etc) representing the

pages. Query processor processes user queries and
returns matching answers in an order determined by
ranking algorithms. Web Crawlers are responsible to
maintain indexed database for search engines which
are used by the users indirectly. Every time one
searches the internet using a service such as Google,
Alta Vista, Excite, Lycos etc, he is making use of an
index that is based on the output of WebCrawlers.
WebCrawlers, also known as spiders, robots, or
wanderers are software programs that automatically

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

traverse the web [4]. Search engines use it to find
what is on the web. It starts by parsing a specified
web page and noting any hypertext links on that page
that point to other web pages. They recursively parse
those pages for new links.

The size of WWW is enormous and there are no
known methods available to find its exact size, but it
may be approximated by observing the indexes
maintained by key search engines. In 1994, one of
the first web search engine, the World Wide Web
Worm (WWWW) had an index of 110,000 web
pages and web accessible documents [1]. Google, the
most popular search engine had 26 million web
pages indexed in 1998 that by 2000 reached one
billion mark and now it indexes around 50 billion
web pages [2]. Similar is the case with other search
engines too. So major difficulty for any search
engine is to create the repository of high quality web
pages and keep it up-to-date. It is not possible in time
to create such a huge database by a single
WebCrawler because it may take moths or even more
time to create it and in mean time large fractions of
web pages would have been changed and thus not so
useful for end users. To minimize down load time
search engines execute multiple crawlers
simultaneously known as parallel WebCrawlers [4,
8, 26].

The other major problem associated with any web
crawler is refreshing policies used to keep indexes of
web pages up to date with its copy maintained at
owner’s end. Two policies are used for this purpose.
First policy is based on fixed frequency and the
second on variable frequency [6]. In fixed frequency
scheme all web pages are revisited after fixed
interval (say once in 15 days) irrespective of how
often they change, updating all pages in the
collection of WebCrawler whereas in variable
frequency scheme, revisit policy is based on how
frequently web documents change. The more
frequently changing documents are revisited in
shorter span of time where as less frequently
changing web pages have longer revisit frequency.

The aim of this paper is to propose a design for
parallel WebCrawler and change detection
techniques for refreshing web documents in variable
frequency scheme. The crawling scheme, discussed
in this paper for parallel WebCrawler, is such that the
important URLs/documents are crawled first and
thus the fraction of web that is visited is more
meaningful and up-to date. This paper is divided as
follows: Section 2 discusses related work on parallel
WebCrawlers and page refreshment techniques.

Section 3 discusses about the proposed design
architecture for parallel WebCrawler. Section 4
discusses about the proposed change detection
algorithms and finally section 5 concludes the work
along with some future directions followed by
references.

2. RELATED WORKS

Though most of the popular search engines
nowadays use parallel/distributed crawling schemes
but not many literatures are available on it because
they generally do not disclose the internal working of
their systems.

Junghoo Cho and Hector Garcia-Molina [3]
proposed architecture for parallel crawler and
discussed fundamental issues related with it. It
concentrated mainly on three issues of parallel
crawlers namely overlap, quality and communication
bandwidth. In [9] P Boldi et all have described about
UbiCrawler: a scalable fully distributed web crawler.
The main features mentioned are: platform
independence, linear scalability, graceful
degradation in the presence of faults, an effective
assignment function based on consistent hashing for
partitioning the domain to crawl and complete
decentralization of every task. In [10] authors have
discussed about design and implementation of
distributed web crawler. In [5] Junghoo Cho et all
have discussed about order in which a crawler should
visit the URLs in order to obtain more important
pages first. This paper defined several important
metrics, ordering schemes and performance
evaluation measures for this problem. Its results
show that a crawler with a good ordering scheme can
obtain important pages significantly faster than one
without it.

Another major problem associated with web
crawler is dynamic nature of web documents. No
methods till date are known that may provide the
actual change frequencies of web documents because
changes in web pages follow Poisson process [7] but
few researchers [6, 11-14] have discussed about its
dynamic nature and change frequency. According to
[27] it takes approximately 6 months for a new page
to be indexed by popular search engine. Junghoo
Cho and H G Molina [6] have performed some
experiments to find the change frequencies among
web pages mainly from .com, .netorg, .edu and .gov
domains. After observing the web pages from these
four domains for 4 continuous months, it was found
that web pages from .com domain change at highest
frequency and .edu and .gov pages are static in

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

nature. In [14] the authors have discussed
analytically as well as experimentally about the
effective page refresh policies for web crawlers.
According to it the freshness of a local database S
with N elements at time t is given as F(S: t) = M/N
where M (<N) are up-to-date elements at time t. This
paper also proposed a metric, age to calculate how
old a database is.

Papers [12, 15-23, 25, 29] discuss about the
methods for change detection in HTML and XML
documents. In [12] researchers of AT & T and
Lucent technologies, Bell laboratories have
discussed details about the internet difference search
engine (AIDE) that finds and displays changes to
pages on World Wide Web. In [15] Ling Liu et all
have discussed about WebCQ: a prototype system
for large scale web information monitoring and
delivery. It consists of four main components: a
change detection robot that discovers and detects
changes, a proxy cache service that reduces
communication traffic to the original information
servers, a personalized presentation tool that
highlights changes detected by WebCQ sentinels and
a change notification service that delivers the fresh
information to the right users at right times. Ntoulas
[16] collected a historical database for the web by
downloading 154 popular web sites (e.g., acm.org,
hp.com and oreilly.com) every week from October
2002 until October 2003, for a total of 51 weeks. The
experiments show that significant fractions (around
50%) of web pages remain completely unchanged
during the entire period of observation. To measure
the degree of changes, it computed the shingles of
each document and measured the difference of
shingles between different versions of web
documents. Fretterly [23] performed a large crawl
that downloaded about 151 million HTML pages.
Then it was attempted to fetch each of these 151
million HTML pages ten more times over a span of
ten weeks during Dec. 2002 to Mar. 2003. For each
version of documents, checksum and shingles were
computed to measure the degree of change. The
degree of change was categorized into 6 groups:
complete change, large change, medium change,
small change, no text change, and no change.
Experiments show that about 76% of all pages fall
into the groups of no text change and no change. The
percentage for the group of small change is around
16% while the percentage for groups of complete
change and large change is only 3%. The above
results are very supportive to study the change
behaviors of web documents. The paper suggests that
incremental method may be very effective in
updating web indexes, and that searching for new

information appearing on the web by retrieving the
changes will require a small amount of data
processing as compared to the huge size of the web.

3. PROPOSED ARCHITECTURE OF

PARALLEL CRAWLER AND CHANGE

DETECTION METHODS

The proposed crawler (see Figure 1) has a client
server based architecture consisting of following
main components:

• Multi Threaded server
• Client crawlers
• Change detection module

The Multi Threaded (MT) server is the main
coordinating component of the architecture. On its
own, it does not download any web document but
manages a connection pool with client machines
which actually download the web documents.

The client crawlers collectively refer to all the
different instances of client machines interacting
with each other through server. The number of
clients may vary depending on the availability of
resources and the scale of actual implementation.

 Change detection module helps to identify
whether the target page has changed or not and
consequently only the changed documents are stored
in the repository in search/insert fashion. Thus the
repository is kept up-to-date having fresh and latest
information available at Search engine database end.

3.1 Multi Threaded (MT) Server

The Multi Threaded server is the main
coordinating component of the proposed architecture
(see Figure 2), directly involved in interaction with
client processes ensuring that there is no need for
direct communication among them.

The sub-components of MT server are:
• URL dispatcher
• Ranking module
• URL distributor
• URL allocator
• Indexer
• Repository

3.1.1 Url Dispatcher

The URL dispatcher is initiated by seed URLs. In
the beginning, both unsorted as well as sorted URL
queues [see Figure 2] are empty and the seed URL
received from user is stored in sorted URLs queue
and a message called distribute_URLs is sent to URL

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

distributor. URL distributor selects the seed URL
from the sorted queue and puts it in first priority list
(P_list 1) as shown in Figure 2. URL allocator picks
the URL from priority list and assigns it to client
crawler to download web document. After
downloading the document, the client crawler parses
it to extract the embedded URLs within it and stores
the web document and corresponding URLs in
document and URL buffer. Every URL, retrieved by
the URL dispatcher from document and URL buffer,
is verified from repository before putting it in the
unsorted queue, to know whether it has already been
downloaded or not. If it is found that the URL is
already downloaded and the corresponding
document exists in the repository then the retrieved
URL is discarded and not stored in unsorted queue.
By doing this, URL dispatcher ensures that the same
URL is not used multiple times to download its
corresponding document from WWW and thus it
helps to save network bandwidth. URL dispatcher
keeps all new URLs in the queue of unsorted URLs
in the order they are retrieved from the buffer and
sends rank_URL message to ranking module. This
process is repeated till the queue of sorted URLs
becomes empty.

3.1.2 Ranking Module

After receiving Rank_URLs message from the
dispatcher, the ranking module retrieves URLs from
the unsorted queue and computes their priority. For
computing priority of the URLs to be crawled, it
considers both their forward as well as back link
counts where forward link count is the number of
URLs present in the web page, pointing to other web
pages of WWW and back link count is the number of
URLs from search engine’s local repository pointing
to this URL. The forward link count is computed at
the time of parsing of the web pages. However, to
estimate the number of back link count, the server
refers to its existing database and checks as to how
many pages of current database refer to this page.
Once the forward and back link counts are known,
the priority (Pvalue) is computed using the following
developed formula.

 Pvalue = FwdLk – BkLk ------------------ (1)
 Where, Pvalue = priority value
 FwdLk = forward link counts
 BkLk = back link counts

URLs having higher difference between FwdLk
and BkLk are assigned higher Pvalue. Initially, the
forward link count holds higher weightage as there

are no or very few URLs pointing to current URLs,
as the database is still in a nascent stage but as the
database of indexed web pages grows, the weightage
of back link count gradually increases. This results in
more number of URLs having lower Pvalue and thus
more URLs holding lower priority. This is important
since it is not desired to assign high priority to a page
which is already downloaded and update it very
frequently as indicated by the high BkLk value but
we do want to prioritize addition of new pages to our
repository of indexed pages, which has a nil BkLk,
but high FwdLk as it leads to a higher number of
pages. A similar ranking method is discussed in [5]
in which only back link counts are considered. After
calculating priority, the ranking module sorts the list
in descending order of priority, stores them in the
sorted queue and sends signal to URLs distributor.

This method is particularly useful as it also gives
weightage to current database and builds a quality
database of indexed web pages even when the focus
is to crawl whole of the Web. It works efficiently in
both, when the database is growing or in maturity
stage. Also, the method works well for broken links
i.e. the URLs having zero value for forward link.
Even if it is referred from pages in the database,
priority will always be negative resulting in low
priority value.

The advantage of above ranking method over
others is that it does not require the image of the
entire Web to know the relevance of an URL as
“forward link counts” are directly computed from the
downloaded web pages where as “back link counts”
are obtained from in-built repository.

3.1.3 Url Distributor

URLs distributor retrieves URLs from the sorted
queue maintained by the ranking module.
Sometimes, a situation may arise wherein highly
referenced URL with a low forward link counts, may
always find itself at the bottom in the sorted queue of
URLs. To get rid of such situations, the URLs list is
divided into three almost equal parts on the basis of
priority in such a way that top one-third of the URLs
are sent to p_list1, middle one-third are sent to
p_list2 and bottom one-third are sent to p_list3 from
where the URL allocator assign them to the
respective client crawlers, as shown in Figure 2.

For example, if the queue of unsorted URLs
contains URLs list as shown in Table 1 then after
calculating the ranking of URLs, same are divided in
three lists as shown in Table 2. From the Table 2 one

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

can see that the number of back link count is zero for
all URLs as no links from the local repository of
search engines are pointing to them, being the
repository in initial state and is almost empty.

Table 1: Unsorted URLs list received from client crawlers

URL
Forward

Link count
Back
link

count

Priority
value

(Pvalue
)

http://www.jiit.ac.in 20 0 20
http://www.jiit.ac.in/jiit/fi
les/RTI.htm

18 0 18

http://www.jiit.ac.in/jiit/fi
les/department.htm

11 0 11

http://www.jiit.ac.in/jiit/fi
les/PROJ_SPONS.htm

4 0 4

http://www.jiit.ac.in/jiit/fi
les/curri_obj.htm

3 0 3

http://www.google.co.in/ 40 0 40
http://www.rediffmail.co
m

79 0 79

http://www.gmail.com 65 0 65
http://www.yahoo.com 155 0 155

http://www.ugc.ac.in/ 60 0 60
http://www.ugc.ac.in/org
n/regional_offices.html

21 0 21

http://www.ugc.ac.in/poli
cy/fac_dev.html

13 0 13

http://www.ugc.ac.in/poli
cy/payorder.html

52 0 52

http://www.ugc.ac.in/poli
cy/modelcurr.html

60 0 60

http://www.ugc.ac.in/insi
de/uni.html

15 0 15

http://www.ugc.ac.in/con
tact/index.html

5 0 5

http://www.ugc.ac.in/insi
de/fakealerts.html

16 0 16

http://www.ugc.ac.in/org
n/directory.html

53 0 53

Table 2: URLs after sorting on basis of Pvalue and
assigned in respective lists

URL Forwar
d Link
count

Back
link

count

Pval
ue

P_l
ist

http://www.yahoo.com 155 0 155 1
http://www.rediffmail.c
om

79 0 79 1

http://www.gmail.com 65 0 65 1
http://www.ugc.ac.in/ 60 0 60 1
http://www.ugc.ac.in/po
licy/modelcurr.html

60 0 60 1

http://www.ugc.ac.in/po
licy/payorder.html

52 0 52 1

http://www.ugc.ac.in/or
gn/directory.html

53 0 53 2

http://www.google.co.in
/

40 0 40 2

http://www.ugc.ac.in/or
gn/regional_offices.html

21 0 21 2

http://www.jiit.ac.in 20 0 20 2
http://www.jiit.ac.in/jiit/
files/RTI.htm

18 0 18 2

http://www.ugc.ac.in/in
side/fakealerts.html

16 0 16 2

http://www.ugc.ac.in/in
side/uni.html

15 0 15 3

http://www.ugc.ac.in/po
licy/fac_dev.html

13 0 13 3

http://www.jiit.ac.in/jiit/
files/department.htm

11 0 11 3

http://www.ugc.ac.in/co
ntact/index.html

5 0 5 3

http://www.jiit.ac.in/jiit/
files/PROJ_SPONS.htm

4 0 4 3

http://www.jiit.ac.in/jiit/
files/curri_obj.htm

3 0 3 3

3.1.4 Url Allocator

The basic function of URL allocator is to select
appropriate URLs from sub-lists (P_list1, P_list 2,
P_list3) and assign them to client crawlers for
downloading the respective web documents.
According to the ranking algorithm discussed above,
P_liast1 contains higher relevant URLs but we
cannot completely ignore the P_list2 & P_list3.
P_list 2 contains the URLs which either belongs to a
web document having higher forward and backward
link counts or both forward link count and back link
count are less for these URLs. Similarly P_list3
consists of mostly those URLs which have higher
back link count value and less forward link count.
Therefore, to avoid complete ignorance for URLs
present in these both lists (P_list1 & P_list2), the
strategy used is such that for every 4 URLs selected
from p-list1, 2 URLs from p-list2 and 1 URL from
p-list3 are assigned to client crawlers for
downloading.

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

Figure 2: Architecture of Multi threaded server

3.1.5 Indexer

Indexer module retrieves web documents and
corresponding URLs from document and URL
buffer. The documents are stored in repository in
search/insert fashion and corresponding index is
created for them. The indexes created for the
documents mainly consist of keywords present in the
document, address of document in repository,
corresponding URL through which the web
document was downloaded, checksum values and so
many other information. Later, all these indexed
information for web documents help to produce
appropriate result when users fire search query using
search engine as well as to detect whether the current
downloaded version is same or changed from its
previous version existing in the repository.

3.1.6 Repository

It is centrally indexed database of web pages,
maintained by server which later may be used by
search engines to answer the queries of end users.
The incremental parallel crawler maintains index of
complete web documents in the repository along
with other information. The efficiency by which the
repository is managed affects the search results. As
users need most relevant results for a given search
query the repository and corresponding information
maintained for these documents play a major role
apart from ranking algorithm to produce the result.

3.2 Client Crawlers

Client crawlers collectively refer to all the
different client machines interacting with the server.
As mentioned earlier, there are no inter client crawler
communications, all types of communications are
between the MT server and an individual client
crawler. In Figure 1 these client crawlers are
represented as C-crawler 1, C-crawler 2 and so on.
The detailed architecture of a client crawler is shown
in Figure 3.

These client crawlers are involved in actual
downloading of the web documents. They depend on
MT server (URL allocator) for receiving URLs for
which they are supposed to download the web pages.
After downloading the web documents for the
assigned URLs, a client crawler parses and extracts
all URLs present in it and puts them back to
document and URL buffer from where they are
extracted by change detection module as well as
URL dispatcher. After performing preprocessing on
the received URLs, they are assigned to client
crawlers for further downloading. This whole
process continues till no more URLs to be crawled
are left.

 Following are the main components of a client
crawler:

• URL buffer
• Crawl Worker

3.2.1 Url Buffer

It stores URLs temporarily which are assigned to
the client crawler by URL allocator for downloading
the corresponding web documents. This is
implemented as simple FIFO (first in first out) queue.
The crawl worker retrieves URLs from this queue
and starts its downloading process.

 Queue of sorted URLs

URL
Dispatcher

Ranking module

Indexer

Repositor
y

 URL
 Distributor

Add URLs in
Receiving Order

Queue of
Unsorted urls

Divide URLs in sub lists

Retrieves URLs

Select URLs

 Assign URLs to client crawlers

URL Allocator

 Receives

Get the required
data

Put URLs after sorting
based on priority

 R
a

n
k_

U
R

Ls
 D

istrib
u

te
_

U
R

Ls

 P
_

lis
t1

P
_

lis
t-

2

 P
_

lis
t-3

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

3.2.2 Crawl Worker

Crawl worker is major component of the client
crawler in proposed architecture of incremental
parallel web crawler. Working of the whole process
of the crawl worker may be represented by the
following algorithm:

Crawl_worker ()
{
Start
 Repeat

 Pickup a URL from the URL buffer;
Determine the IP address for the host name;
Download the Robot.txt file which carries
downloading permissions and also specifies
the files to be excluded by the crawler;
Determine the protocol of underlying host like
http, ftp, gopher etc;
Based on the protocol of the host, download
the document;
Identify the document format like .doc, .html,
or .pdf etc;
Parse the downloaded document and extract
the links;
Convert the URL links into their absolute
URL address;
Add the URLs and downloaded document in
“document and URL buffer”;

 Until not empty (URL buffer);
 End

 }

Figure 3: Architecture of client Crawler

 After downloading the web documents for
assigned URLs, the crawl worker parses its contents
with the help of parser for the following further
applications:
• Each page has a certain number of links present in
it. To maintain the index of back link count, each link
on that page is stored in repository along with its
source/parent URL in which it appears. The client
crawler sends the pair of values (link, parent_URL)
to the repository/database. When the same link
reappears on some other page, only the name of
parent URL is required to be added to the link
indexer to the already existing value of the link.
• The crawl worker also extracts all the links present
on a web page to compute the number of forward
links counts which it sends to the URL dispatcher
which are later used by ranking module to compute
relevance of uncrawled URLs based on which they
are further redistributed among client crawlers for
further downloading as discussed in section 3.1.2 to
3.1.4.
• Another motive behind parsing the contents of
web pages is to compute the page updating
parameters such as checksum etc. that are used by
change detection module to check whether the web
page has been changed or not.

After parsing, all downloaded web documents are
stored in document and URL buffer associated with
MT server. After keeping the documents in the
document and URL buffer, crawl worker sends
extract URLs & web page message to change
detection and extract URLs message to MT server
(URL dispatcher). After receiving the message, the
change detection module and URL dispatcher,
extract the web documents along with URLs and
other relevant information from the buffer.

The client crawler machines are robust enough to
be able to handle all types of web pages appearing on
the web and to handle the pages, which are not
allowed to be crawled [4]. It also automatically
discards URLs that are referenced but do not exist
any more on WWW.

3.3 Change Detection Module

The change detection module identifies whether
two versions of a web document are same or not and
thus helps to decide whether the existing web page in
the repository should be replaced with changed one
or not. Methods for detecting structural and content
level changes in web documents have been proposed.
There may be other types of changes also like

 Client
 Crawler

Document
and URL
Buffer

 Sends Request
 to Web Server

Fetch URLs

 D
o

w
n

lo
a

d

 w

e
b

Change
Detection
Module

URL
buffer

 Crawl worker

R
e

tr
ie

ve
 U

R
Ls

 Send web pages

 Multi Threaded
 Server

WWW

Messag
e Data flow

E

xt
ra

ct
 U

R
Ls

 E
xt

ra
ct

 U
R

Ls
 a

n
d

W

e
b

p

a
g

e
s

A
ssig

n
 U

R
Ls

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

behavioral, presentation etc. It may not always be
required to test both types of changes at the same
time. The latter one i.e. content level change
detection may be performed only when there are no
changes detected by structural change detection
methods or the changes detected are minor. The
details about proposed methods for change detection
are being discussed in the section 4.

3.4 Comparison of Proposed Architecture with
Existing Architecture of Parallel
WebCrawler

The architecture has been implemented as well as
tested for about 2.5 million web pages from various
domains. The results obtained thereof establish the
fact that the proposed incremental parallel web
crawler does not have problem of overlapping and
also downloaded pages are of high quality, thereby,
proving the efficiency of ranking method developed.
The performance of proposed incremental parallel
web crawler is compared with that of existing
parallel crawlers [3]. The summary of the
comparison is as shown in Table 3. The proposed
web crawler’s performance was found to be
comparable with [3].

Table 3: comparison with existing parallel crawler
architecture

Featu
res

Existing Parallel
Crawler

Incremental parallel
web crawlers

Central
Coordi
nator

No central server. It
works in distributed
environment.

It has central
coordinator in the form
of MT server as it
works on client server
principle.

Overla
pping

Have overlapping
problem associated as
individual crawler do
not have global image
of downloaded web
documents.

As MT server assigns the
URLs to be crawled to
client crawlers and it has
global image of
crawled/uncrawled URLs
and thus, significantly
reduces the overlapping.

Quality
of Web
pages

Being distributed
coordination, it may
not be aware about
others collection, so it
decreases the quality of
web pages
downloaded.

URLs are provided by
server to client crawlers on
the basis of priority so high
priorities pages are
downloaded and thus high
quality documents are
available at Search engine
side.

Priority
calculat
ion

The crawlers compute
priority of pages to be
downloaded based on
local repository which
may be different if
computed on global

In our approach all web
pages after downloading
are sent back to server
along with embedded
URLs, the priority is
computed based on global

structure of web pages information.

Scalabi
lity

Architecture is scalable
as per requirement and
resources

It may also be scaled up
depending upon resource
constraints

Networ
k
bandwi
dth

Due to problem of
overlapping more
networks bandwidth is
consumed in this
architecture.

Due to reduction in
overlapping problem,
network bandwidth is also
reduced at the cost of
communication between
MT server and client
crawlers.

4. CHANGE DETECTION MODULE

In this section, novel mechanisms are being
proposed that determine whether a web document
has been changed from its previous version or not
and by what amount. The hallmarks of the proposed
mechanisms are that changes may also be known at
micro level too i.e. paragraph level. Following 4
types of changes may take place in a web documents
[24]:

1. Structural Changes
2. Content level or semantic changes
3. Presentation or cosmetic changes
4. Behavioral changes

Sometimes the structure of web page is changed
by addition/deletion of tags. Similarly,
addition/deletion/modification in the link structure
can also change the overall structure of the document
(see Figure 4).

Content level or semantic changes refer to the
situation where the page’s contents are changed from
reader’s point of view (see Figure 5).

(a) Initial version

(b) Changed version

Figure 4: Structural changes in versions of a web page

<html><body> <p>-------------------------- -- </p>
<p><big>---------------------------------------</big></p>
<p><i>--

<u>--------------------------------</u>
</i></p></body></html>

<html> <body>
<p>------------ </p>
<p><big>---------------------------------------</big></p>
<p>
--

</p>

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

 (a)

 (b)
Figure 5: Content/semantic changes (a) Initial version (b)

Changed version of a web page

Under the category of presentation or cosmetic
changes only the document’s appearance is modified
whereas the contents within document remain intact.
For example, by changing HTML tags, the
appearance of document can change without altering
its contents (see Figure 6).

 (a)

(b)
Figure 6: Presentation/cosmetic changes (a) Initial

Version (b) Changed version

Behavioral changes refer to modifications to the
active components present in a document. For
example, web pages may contain scripts, applets etc
as active components. When such hidden
components change, the behavior of the document
gets changed. However, it is difficult to catch such
changes especially when the codes of these active
components are hidden in other files.

So, in order to keep the repository of search

engines up-to-date it is mandatory to detect the
changes that take place in web documents. In the
following sections, mechanisms are being proposed
that currently identify content and structural changes.
The structural change detection methods are also
efficient to detect the presentation level changes as
these changes occur due to
insertion/modification/deletion of tags in the web
documents.

4.1 Proposed Methods for Change Detection

This section is divided in two parts: first part
discusses the mechanisms that detect structural
changes whereas second part discusses the content
level change detection mechanisms. It may be noted
that content level change detection may be
performed only when either there are no changes at
structural level or the changes at structural level are
minute, thereby saving computational time.

4.1.1 Methods for Detecting Structural Changes

Following two separate methods have been
designed for the detection of structural changes
occurring within a document:
• Document tree based structural change detection

method, and
• Document fingerprint based structural change

detection method.

4.1.1.1 Document Tree Based Structural Change
Detection Method

This method works in two steps. In the first step
document tree is generated for the downloaded web
page while in the second step, level by level
comparison between the trees is performed. The
downloaded page is stored in the repository in
search/insert fashion as given below:
Step 1: Search the downloaded document in the

repository.
2. If the document is found then compare both the

versions of the document for structural changes
using level by level comparison of their respective
document tree.

 3. Else store the document in the repository.

Generation
of the tree is based on the nested structures of tags
present in the web page. After parsing the
downloaded web page, parser extracts all the tags
present in it. Then tags are arranged in the order of
their hierarchical relationship and finally document
tree is generated with the help of tree generator. All

<html> <head> <title> this is page title </title> </head>
<body> <center>Times of India News 19-Oct-2009
</center>
Delhi, Hurriyat talks can't succeed without us: Pak
China wants better Indo-Pak ties, denies interference
Ties with China not at India's expense: US
Sachin slams 43rd Test ton; completes 30,000 runs

<html> <head> <title> this is page title </title> </head>
<body> <center>Times of India News 19-Oct-2009
</center>

India-Lanka 1st Test ends in a draw
Maya asked to increase Rahul's security
Ties with China not at India's expense: US
Sachin slams 43rd Test ton; completes 30,000 runs

<html> <body>
<p>India-Lanka 1st Test ends in a draw </p>
<p>Maya asked to increase Rahul's security
</p>
<p> Ties with China not at India's expense: US
</body> </html>

<html><body>
<p style="background-color:#00FF00">
<u>India-Lanka 1st Test ends in a draw</u>
</p>
<p style="background-color: rgb(255,255,0)">
<u>Maya asked to increase Rahul's security</u></p>
<p style="background-color:yellow">
<u>Ties with China not at India's expense: US
</u></p>

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

the tags which are nested at the same level in the web
page should be at the same level in document tree
too. Each node in the document tree, representing a
tag, consist many fields which keep various
information about the tag. The structure of a node of
the document tree is as given below:

Where:
• Tag_name: This field of node structure stores the

name of tags.
• Child: This field contains information about the

children of each node.
• Level_no: This field contains the level number at

which the nodes appear in the constructed
document tree.

• No_of_siblings: This field in a node structure
contains total number of nodes present at that
level.

For example, consider the document tree given in
Figure 8, generated for the initial version of a web
page as shown in Figure 7 whose tag structure is
shown in Figure 11 (a). Let’s assume that later on
some structural changes occurred in the web page as
shown in Figure 9 whose tag structure is shown in
Figure 11 (b) and the resultant document tree for the
changed web page is as shown in Figure 10. A level
by level comparison of the two trees is carried out
and the result obtained thereof has been tabulated in
Table 4. The Table contains a listing of number of
nodes/siblings at different levels. From Table 4, it
can be concluded that number of nodes have changed
at level 3, 4 and 5 indicating that the document has
changed.

Figure 8: Document tree for initial version of web page

 Figure 7: Initial version of web page

Figure 9: Changed version of web page

Tag_name Child Level_no No_of_siblings

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

Figure 10: Document tree for changed version of web
page

(a)

 (b)
Figure 11: HTML tag structure of (a) Initial version (b)

Changed version of web pages

Table 4: Level structure using BFS for above initial and
modified tree

Level_n
o

No. of siblings in
initial web page

No. of siblings in
changed web page

1 1 1
2 2 2
3 7 8
4 7 5
5 1 0

For further details about the changes, such as how

many tags have been added/deleted and at what level
in the document tree etc, the remaining fields of the
node structure may be used. The details generated for
the document trees (Figure 8 & Figure 10) are as
shown in Table 5. After analyzing the document tree

method for structural change detection many

inferences as tabulated in Table 6 are drawn.

Table 5: Node wise attribute details of the initial and the
modified tree using level order traversing

Attributes For initial
version

For changed
version

Level_no 1, 2, 2, 3, 3, 3, 3, 3,
3, 3, 4, 4, 4, 4, 4, 4,
4, 5

1, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 4, 4, 4, 4, 4

Tag_name Html, Head, Body,
Title, Center,
Center, Center,
Center, P, H2, H1,
B, Br, H3, Br, Br,
Center, B

Html, Head, Body,
Title, Center, Center,
Center, Center,
Center, P, H2, H1, B,
Br, B, H3

Child 2, 1, 6, null, 1, 2,
null, 1, 3, null,
null, null, null,
null, null, null,1,
null

2, 1, 7, null, 1, 2, null,
1, 1, null, null, null,
null, null, null, null

Table 6: Inferences on structural changes

 Change detected Inference drawn
No sibling added/deleted
at any level

No structural change between the
two version of the document

Leaf siblings
added/deleted

Minor changes between the two
version of the document

Siblings having children
added/deleted

Major change has occurred*

*This detection helps in locating the area of major
change within documents

The document tree based structural change detection
method is efficient and guarantees to detect the
structural changes perfectly if the constructed tree
represents the true hierarchical relationship among
tags.

4.1.1.2 Document Fingerprint Method for
Structural Change Detection

This method generates two separate fingerprints in
the form of strings for each web document based on
its structure. To generate the fingerprint, all opening
tags present in the web page are arranged in the order
of their appearance in the web document whereas all
closing tags are discarded. The first fingerprint
generated, contains the set of characters appearing at
first position in the tag in the order they appear in the
web page whereas the second fingerprint contains the
characters appearing at last position in the tag for all
tags in the order they appear in the web page. For
single character tags, same characters are repeated in
both the fingerprints.

For example, if the initial version of a web page is
as shown in Figure 12 and later it gets changed as
shown in Figure 13, the tag structures of the two

<Html> <Head><Title>-----------------</Title> </Head>
<Body> <Center><h1>-------------------</h1> </Center>
<Center>-------------------------- </Center>
<Center>-----------------------</Center>
<Center> <h3>----------------------</h3> </Center>
<p>---------------------------------------

--
<Center>-----------------------------------</Center
>
</p> <h2>----------------------------------</h2>
</Body> </Html>

<Html> <Head><Title>------------------</title>
</head> <Body> <Center><h1>------------</h1>
</Center>
<Center>----------------------- </Center>
<Center>----------------------------
---------------</Cente
r>
<Center>--------------------------------------</Cente
r>
<Center><h3>--------------</h3></Center>

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

versions are as shown in Figure 14 and Figure 15
respectively. Applying the above scheme, Table 7 is
generated. Comparing the fingerprint1 of the both
versions it may be concluded that the web page gets
changed as its fingerprint gets changed. The
comparison of fingerprint2 of both web pages, are
required to add surety to the method as the
comparison for fingerprint1 may fail in the unlikely
case of tags starting with some character being
replaced with another tags starting with the same
character.

 Figure 12: Initial version of web page

Figure 13: Changed version of web page

Figure 14: Tag structure for initial version

Figure 15: Tag structure for changed version

Table 7: Fingerprints for versions of web page using

document fingerprint method

Versio
n

Fingerprint1 Fingerprint2

Initial hhtbtttpittttttipbfpfbfb
bbbfbuulpfbfaflpfafp

ldeyerdpgrddrddgpbtptrt
rrrrtrlliptbtatiptatp

Change hhtbtttpittttttipbfuulpf
bfaflpfbfaflpfbfaflpfbf
af

ldeyerdpgrddrddgpbtllip
tbfatiptbtatipfbtatiptbtat

4.1.1.3 Comparison between Document Tree

Based and Fingerprint Based Structural
Change Detection Methods

Though both methods discussed for detecting
structural changes perform efficiently to detect the
changes even at minor level but based on certain
parameters such as time/space complexity etc, their
performance is compared as given in Table 8.

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

Table 8: Comparison between document and fingerprint
based methods

S.
No.

Document tree based
method

Document Fingerprint
based method

1 This method performs
well and is able to
detect structural
changes even at the
minute level.

This method is also able
to detect changes even at
the minute level.

2 Special attention is
required to handle the
presence of optional
tags in the web
document as it
becomes difficult to
maintain the nested
structure among tags.

No effects of optional
tags as only opening tags
are considered whereas
all closing tags are
discarded. The
fingerprint generated in
the form of string
contains information
about all opening tags in
their order of appearance
in the document.

3 The presence of
misaligned tag
structures in the web
document may cause
problem while
establishing the true
hierarchical
relationship among tag
structures.

This method also suffers
from the presence of
misaligned tag structure
as it may produce
different fingerprint for
the same structure.

4 Time as well as space
complexity of
document tree based
method is higher. To
create and compare
two trees it consumes
more time as compared
to creation and
comparison of
fingerprints. As each
node of the tree
contains many fields
for keeping various
information about the
tags so it requires more
storage space also for
document tree.

This method is better in
terms of both, time as
well as space complexity
as compared to
document tree based
method. Fingerprints are
in the form of character
strings which require
less storage space.

5 This method helps in
locating the area of
minor/major changes
within a document.

With fingerprint based
method, it is difficult to
locate the area of
major/minor change
within a document.

4.1.2 Methods for Detecting Content Level

Changes

The content level change detection mechanism
may be carried out only after the methods as
discussed in 4.1.1 for structural changes do not
detect any changes. The content level changes can
not be captured by the methods discussed for

structural level changes. Following two different
methods are being proposed for identifying content
level changes:

• Root Mean Square (RMS) based content level
change detection method, and

• Checksum based content level change detection
method.

4.1.2.1 Root Mean Square Based Content Level
Change Detection Method

This method computes Root Mean Square (RMS)
value as checksum for the entire web page contents
as well as for its various paragraphs appearing in the
page. While updating the page in the repository,
comparison between the checksums of both versions
of web pages is performed and in case of an anomaly,
it is concluded that the web page at web server end
has been modified as compared to the local copy
maintained in the repository at search engine end.
Thus the document needs to be updated. Paragraph
checksums help to detect changes at micro level and
help in identifying the locality of changes within the
document.

The following formula has been developed to
calculate the RMS value.

Where a1, a2, --------------, an are the ASCII code of
symbols and n is the number of distinct
symbols/characters excluding the white space
present in the web page.

Consider the two versions of web page from Times
of India news site
(http://timesofindia.indiatimes.com/), taken within
three hours of interval, , dated on 28-10-11 as shown
in Figure 16 and 17 respectively. Their page
checksum (RMS value) using the above method was
computed as shown in Table 9. From the table, it can
be concluded that the content of both versions of the
web page had been changed. The web page, in
continuation, was monitored many times from
28-10-11 to 29-10-11 and the data is recorded in
Table 10. Due to space constraint it is not possible to
include all the monitored web pages.

(2)

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

Table 9: Checksum values for two version of web page

Web
Page

RMS
value of
entire
page

Distinct
symbol
counts

Para-
graphs Distinct

symbol
counts

Paragraph
 RMS

Initial
version

161.176 43

P1 33 355.779

P2 29 346.451

P3 27 325.086

P4 32 261.167

P5 26 154.898

P6 24 168.383

Changed
version

131.122 41

P1 33 356.838

P2 29 317.343

P3 25 291.005

P4 27 168.39

P5 25 177.651

Figure 16: Initial version of the web page

Figure 17: changed version of the web page

Table 10: Checksum Table for different versions of web
page

V.
 No

RMS
of page

Distinct
symbol
counts

Para-
graphs

Distinct
symbol
counts

Paragraph
 RMS

1
161.17

6
43

P1 33 355.779

P2 29 346.451

P3 27 325.086

P4 32 261.167

P5 26 154.898

P6 24 168.383

2
131.12

2
41

P1 33 356.838

P2 29 317.343

P3 25 291.005

P4 27 168.39

P5 25 177.651

3
126.05

3
41

P1 32 381.304

P2 31 288.686

P3 31 266.965

P4 27 160.276

P5 24 163.306

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

4
129.49

51
40

P1 30 364.99

P2 27 341.317

P3 28 260.205

P4 27 166.285

P5 24 162.152

5
121.03

49
35

P1 30 364.55

P2 27 264.664

P3 24 272.749

P4 26 168.091

P5 26 140.293

6 116.56 36

P1 30 346.89

P2 29 284.38

P3 26 242.87

P4 28 142.487

P5 25 148.874

7 116.21 36

P1 29 337.37

P2 29 284.38

P3 26 242.97

P4 28 142.487

P5 25 148.87

Based on the data recorded in Table 10, following
inferences are drawn about the RMS method for
content level change detection:

• It produces unique checksum (RMS value) for
entire web page as well as for paragraph level
contents of a web document.
• The formula developed is capable to detect minor
changes even addition/deletion of few words
accurately.
• Paragraph checksum helps to identify changes at
smaller level i.e. at paragraph level.

• It may be noted that ASCII values have been used
in the formula as each symbol has a unique
representation in ASCII Table and thus leading to no
ambiguity.

Though the above method performs efficiently and
guarantees to detect content level changes among
different versions of web pages but it assigns uniform
weightage to the entire contents of the web document
whereas in real life changes in some contents carry
more weightage than other. For example changes in
main headings of a web document carry more
weightage than any other content change. So keeping
in mind these points the modified checksum based
content level change detection method is being
proposed.

4.1.2.2 Checksum Based Content Level Change
Detection Method

Similar to the previous method, checksum based
content level change detection also produces a single
checksum for entire web page as well as for each
paragraph present in the web document. Paragraphs
level checksum help to know the changes at micro
level i.e. paragraph level. By comparing the
checksums of different versions of a web page, it is
known whether the web page content has been
changed or not.

The following formula has been developed to
calculate the checksum.

Checksum = ∑ I_ parameter * ASCII code *
K-factor ----- (3)

 Where: I_parameter = importance parameter,
 ASCII code = ASCII code of each

symbol (excluding white space)
 K-factor = scaling factor
In the implementation, it was font size which was
considered I_parameter. The purpose of introducing
scaling factor is to control the size of checksum
value. In this work scaling factor was considered as
.0001.

The above method was tested on number of web
documents online as well as offline. One such
example is shown as in Figure 18 and Figure 19 for
two versions of a web document. The checksums for
entire page as well as for different paragraphs present
within document using the above method was
computed as shown in Table 11. From the result
shown in the table, it is clear that different checksums
are produced if the versions of a web document are
not same. By monitoring the paragraphs checksum, it
is clear that the changes occurred only in the first
paragraph (P1) whereas rests are unchanged and the
same is reflected from paragraph checksum recorded
in the table.

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

Figure 18: Initial version of web page

Figure 19: Changed version of the web page

Table 11: Checksum values for web page

Web
page

Checksum
of page

No of
distinct
symbols

Para-
graph

No of
distinct

 symbols

Paragraph
Checksum

Initial
version

586.806 36

p1 30 339.439

p2 29 318.777

p3 26 312.316

p4 28 238.419

p5 25 256.380

Change
d

version
585.671 36

p1 29 340.564

p2 29 318.777

p3 26 312.316

p4 27 238.419

p5 24 256.380

This method was also tested on the same set of web
pages on which previous (RMS based) method was
tested and the results produced are tabulated in Table
12. Monitoring the checksum results recorded in the
table and looking at the corresponding contents of
the web pages, it may be concluded that the method
is efficient and guarantees to detect the content level
changes even if there are minor changes among
different versions of the web document.

Table 12: Checksum values for web page

V.
No

Checksu
m

of page

No of
distinct
symbols

Para-
grap
h

No of
distinct
symbols

Checksu
m

1 625.616 43

p1 33 330.995

p2 29 339.490

p3 27 357.407

p4 32 295.606

p5 26 258.498

p6 24 280.597

2 586.280 41

p1 33 330.914

p2 29 339.495

p3 25 351.344

p4 26 262.969

p5 25 282.021

3 587.837 41

p1 32 353.926

p2 31 321.996

p3 31 309.317

p4 26 262.963

p5 24
282.439

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

24

4 588.829 40

p1 30 346.411

p2 27 366.823

p3 28 312.733

p4 27 263.958

p5 23 274.968

5 607.874 35

p1 30 346.317

p2 27 318.672

p3 24 345.231

p4 26 270.575

p5 26 247.605

6 586.806 36

p1 30 339.439

p2 29 318.777

p3 26 312.316

p4 28 238.419

p5 25 256.381

7 585.671 36

p1 29 340.564

p2 29 318.777

p3 26 312.316

p4 27 238.419

p5 24 256.381

Both, RMS based and checksum based methods have
been compared with well known message digest
algorithms such as MD5 and SHA-X1, used to
calculate checksum for web pages search engine’s
web crawlers. One such result for an input set [31] is
shown in Table 13 and the comparison is made in
Table 14. On seeing the table, it can be observed that
with MD5 and SHA-X1 algorithm, the entire
checksum gets changed at large scale even though a
single character/symbol of the input gets modified,
whereas the checksum produced by the RMS and
checksum based methods, do not get changed at that
large scale on the modification of single
character/symbol in the input set. Even on the
modification of few white spaces, the entire message
digest gets changed in MD5 and SHA-X1 algorithm
whereas it does not affect the checksum produced by
RMS based and checksum based method as white
spaces are not considered while calculating the
checksum.

Table 13: Comparison of results with well known message
digests algorithms

Name
Of

Metho
d

Lengt
h of
messa
ge
digest
(bits)

Initial
Input

Message
digest for
initial
input

Changed
Input

Message
digest for
changed
input

MD5 128 The quick
brown fox
jumps
over the
lazy dog

9e107d9d
372bb682
6bd81d35
42a419d6

The
quick
brown
fox
jumps
over
the
lazy
cog.

e4d909c
90d0fb1c
a068ffad
df22cbd0

SHA-1 160 The quick
brown fox
jumps
over the
lazy dog

2fd4e1c6
7a2d28fc
ed849ee1
bb76e739
1b93eb12

The
quick
brown
fox
jumps
over the
lazy cog

de9f2c7f
d25e1b3a
fad3e85a
0bd17d9b
100db4b3

SHA-2
24

224 The quick
brown fox
jumps
over the
lazy dog

730e109b
d7a8a32b
1cb9d9a0
9aa2325d
2430587d
dbc0c38b
ad911525

The
quick
brown
fox
jumps
over the
lazy cog

fee755f4
4a55f20f
b3362cdc
3c493615
b3cb574e
d95ce610
ee5b1e9b

SHA-2
56

256 The quick
brown fox
jumps
over the
lazy dog

d7a8fbb3
07d78094
69ca9abc
b0082e4f
8d5651e4
6d3cdb76
2d02d0bf
37c9e592

The
quick
brown
fox
jumps
over the
lazy cog

e4c4d8f3
bf76b692
de791a17
3e053211
50f7a345
b46484fe
427f6acc
7ecc81be

SHA-5
12

512 The quick
brown fox
jumps
over the
lazy dog

07e547d9
586f6a73
f73fbac0
435ed769
51218fb7
d0c8d788
a309d785
436bbb64
2e93a252
a954f239
12547d1e
8a3b5ed6
e1bfd709
7821233f
a0538f3d
b854fee6

The
quick
brown
fox
jumps
over the
lazy cog

3eeee1d0
e11733ef
152a6c29
503b3ae2
0c4f1f3c
 da4cb26f
1bc1a41f
91c7fe4a
b3bd8649
4049e201
c4bd5155
 f31ecb7a
3c860684
3c4cc8df
cab7da11
c8ae5045

Root
Mean
Square
Based
method

No
fixed
length
messa
ge
digest

The quick
brown fox
jumps
over the
lazy dog

127.329 The quick
brown fox
jumps
over the
lazy cog

129.820

Checks
um
Based
method

No
fixed
length
messa
ge
digest

The quick
brown fox
jumps
over the
lazy dog

43.356 The
quick
brown fox
jumps
over the
lazy cog

43.344

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

Table 14: Performance comparison of proposed methods
with well known message digests methods

S No MD5/SHA-1,224,256,51
2

Methods developed

1 These message digest
algorithms produce fixed
length checksum codes
which are larger in size.

It does not produce
fixed length
checksum and also
the length of
checksum produced
are smaller

2. It considers whole
contents present in the
input. E.g. even white
spaces are counted in
input data. So even on
insertion/deletion of white
spaces, the checksum
entirely gets changed.

The contents such as
those which are
enclosed within tags
as well as white
spaces are not
considered.

3 There is restriction on the
input size of data e.g. in
MD5 input data should
not be greater than 264
bits. Similar is the case
with others also.

There is no
restriction on the
input size of data.

4 These methods are very
sensitive. The complete
checksum generated gets
changed even on
changing of single
characters in the I/P set.
So no conclusion can be
drawn about the amount
of change on the basis of
checksum.

Only little changes
occur in the final
checksum if input
data gets changed at
micro level i.e. by
few characters.
On seeing the
checksum, the
amount of change in
two versions of
documents may be
estimated..

5 It is more suitable for
cryptographic
application.

It is not suitable for
cryptographic
application but
suitable for change
detection.

6 They generate single
checksum for whole web
page. So no idea may be
drawn about changes at
micro level i.e. paragraph
level within documents.

They generate
checksum for whole
page as well as for
individual
paragraphs present
in the web page. So
with these methods,
changes at micro
level too i.e.
paragraph level may
be identified too.

In brief, the methods proposed for structural as well
as content level change detection may be
summarized as follows:

• Though document tree based structural change
detection method efficiently identifies the
structural changes but its time and space
complexity is high. If nesting of tag structures is
misaligned then it becomes very difficult to handle
the situation while constructing the document tree.

Though some mechanism has been proposed [30]
to handle the misaligned tags but its performance
is still questionable.

• There is no impact of optional as well as
misaligned tags in the performance of document
fingerprint based method for structural change
detection, as it considers the opening tags only and
discards all closing tags. Its performance is also
better in terms of space and time complexity as it
requires less space to store the fingerprint which is
in the form of string, than to store document tree.
Generation and comparison of fingerprint is much
easier than tree.

The change detection module was integrated in the
incremental parallel web crawler architecture as
shown in Figure 1. It was observed that the methods
discussed above for both structural and contextual
changes are performing efficiently and guarantee to
detect the changes. We also tested the above method
offline separately on individual web pages and
observed the similar performance.

5. CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this paper, the complete work done is divided in
to two parts. In the first part a novel architecture for
incremental parallel crawlers has been proposed
whereas in second part methods have been
developed which detect whether two versions of a
web document have been changed thereby helping to
refresh the web documents to keep the repository
up-to-date at Search engines side.

The novel architecture proposed for incremental
parallel web crawler, helps to solve the following
challenging problems which are still faced by almost
every Search engine while running multiple crawlers
in parallel for downloading the web documents for
its repository.

• Overlapping of web documents
• Quality of downloaded web documents
• Network bandwidth/traffic

5.1.1 Overlapping of Web Documents

Overlap problem occurs when multiple crawlers
running in parallel download the same web
document multiple times due to the reason that one
web crawler may not be aware of another having
already downloaded the page.

In the proposed architecture the entire
downloading process of web documents is

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

performed under the coordination of Multi Threaded
server and therefore no URLs have been assigned
simultaneously to more than one client crawler
executing in parallel. By applying this approach,
server has the global image of the entire downloaded
web documents and thus, overlapping problem is
reduced.

5.1.2 Quality of Downloaded Web Documents

The quality of downloaded documents can be
ensured only when web pages of high relevance are
downloaded by the crawlers. Therefore, to download
such relevant web pages by earliest, multiple
crawlers running in parallel must have global image
of collectively downloaded web pages.

In the proposed architecture the ranking algorithm
developed, computes the relevance of the URLs to be
downloaded on the basis of global image of the
collectively downloaded web documents. It
computes relevance on the basis of the forward link
count as well as back link count whereas the existing
method is only based on back link count. The
advantage of the proposed ranking method over
existing one is that it does not require the image of
the entire Web to know the relevance of a URL as
“forward link count” is directly computed from the
downloaded web pages where as “back link count” is
obtained from in-built repository.

5.1.3 Network Bandwidth/Traffic

In order to maintain the quality, the crawling
process is carried out using either of the following
approaches.

• Crawlers can be generously allowed to
communicate among themselves or

• They can not be allowed to communicate
among themselves at all.

In the first approach network traffic will increase
because crawlers communicate among themselves
more frequently to reduce the overlap problem
whereas in second approach, if they are not allowed
at all to communicate then as a result same web
document may be downloaded multiple times
thereby consuming the network bandwidth. Thus,
both approaches put extra burden on the network
traffic.

The proposed architecture helps to reduce the
overlapping and because all communications take
place through MT Server, there is no direct
communication requirement among client crawlers.
Both of the above facilities help in reducing network
traffic significantly.

 5.1.4 Change detection Methods for Refreshing
Web Documents

In the second part of the work, the change
detection methods have been developed to refresh
the web document by detecting the structural,
presentation and content level changes.

The structural change detection methods also help
in detecting presentation changes as well, as the
presentation of web documents gets modified
through insertion/deletion/modification of the tag
structure.

Two different schemes, document tree based and
document fingerprint based have been developed for
structural change detection. The document tree
based scheme works efficiently and guarantees to
detect structural changes. Apart from providing
details about the structural changes within
documents, it also helps in locating the area of
major/minor change as well. For instance, the
information about at what level how many nodes
have been inserted/deleted is also reported. In
document fingerprint based scheme, two separate
fingerprints in the form of strings are generated on
the basis of web pagetag structure. Time and space
complexity in document tree based scheme is higher
than the fingerprint based scheme. Generation and
comparison of fingerprints in the form of strings,
require less time than to generate and compare two
trees. Also, the space required to store the node
details (as node consists of multiple fields) in the
document tree is high in comparison to space
required to store fingerprints. Though fingerprint
based scheme is efficient in terms of space and time
complexity, it also guarantees to detect structural
changes even at micro level but the details about the
changes can not be reported, for which document
tree based scheme is better.

Similar to structural change detection scheme, two
different schemes, Root Mean Square based and
Checksum based have been developed for content
level change detection. Both schemes are based on
ASCII principle of symbols and both generate
checksum for entire web page and also for different
paragraphs. The checksum for entire web page helps
to draw the picture about content level changes at
page level whereas through paragraph checksum,
changes at micro level i.e. paragraph level can be
detected. Though, both the schemes are efficient and
guarantee to detect changes at micro level also but
the former scheme considers changes in contents
uniformly whereas the later scheme assigns different

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

weightage to different contents present in the web
page based on font size of the contents.

5.2 Future Work

The work done in this paper can be extended with the
following list of possible future research issues with
respect to incremental parallel web crawler:

• Behavioral changes have not been discussed and
have been left for future work.

• Ideally, changes in the link of an image hyperlink
can be detected through the structural change
detection methods discussed but in case the image
itself is replaced or modified then that can not be
detected using the methods discussed.

• The architecture along with change detection
methods can be synchronized with the frequency
of change of web documents to get better results,
as web documents from various domains change at
different intervals.

REFERENCES:

[1] Brin, Sergey, and Page, Lawrence, “The
Anatomy of a large scale hyper textual web
Search Engine”, In Proceedings of the Seventh
World-Wide Web Conference, 1998.

[2] Maurice de Kunder, “Size of the World Wide
Web”, available at:
http://www.worldwidewebsize.com (accessed
May 10, 2012).

[3] Cho, Junghoo, and Garcia-Molina Hector,
“Parallel Crawlers”, Proceedings of the 11th
international conference on World Wide Web
WWW '02”, Honolulu, Hawaii, USA. ACM
Press, pp.124 – 135, 2002.

[4] Robots exclusion protocol. Available at:
http://info.webcrawler.com/mak/projects/robots
/exclusion.html

[5] Cho, Junghoo, Garcia-Molina, Hector, and Page
Lawrence, “Efficient crawling through URL
ordering”, Proceedings of the 7th World-Wide
Web Conference, pp. 161-172, 1998.

[6] Cho, Junghoo, Angeles, Los, and Garcia-Molina,
Hector, “Effective Page Refresh Policies for
Web Crawlers”, ACM Transactions on
Database Systems, Volume 28, Issue 4, pp. 390
– 426, December 2003.

[7] Jones, George, “15 World-Widening Years”,
InformationWeek, Sept 18, 2006 Issue.

[8] Berners-Lee, Tim, “The World Wide Web: Past,
Present and Future”, MIT USA, Aug 1996,
available at:

http://www.w3.org/People/Berners-Lee/1996/p
pf.html.

[9] Berners-Lee, Tim, and Cailliau, CN, R.,
“WorldWideWeb: Proposal for a Hypertext
Project” CERN October 1990, available at:
http://www.w3.org/Proposal.html.

[10] Berners-Lee, Tim, Cailliau, CN, R., Groff, J-F,
and Pollermann, B., CERN, "World-Wide Web:
The Information Universe", published in
Electronic Networking: Research, Applications
and Policy, Vol. 2 No 1, Meckler Publishing,
Westport, CT, USA, 1992.

[11] Berners-Lee, Tim, and Cailliau, CN, R., “World
Wide Web” Invited talk at the conference:
Computing in High Energy Physics 92, France,
23027, Sept 1992.

[12] Berners-Lee, Tim, Cailliau, CN, R., Groff, J-F,
and Pollermann, B., CERN, "World-Wide Web:
An Information Infrastructure for High-Energy
Physics", Proceeding of Artificial Intelligence
and Software Engineering for High Energy
Physics, La Londe, France, published by World
Scientific, Singapore, January 1992.

[13] CHO, A., J., Garcia-Molina Hector, Paepcke,
A., and Raghvan, S., “Searching the Web”.
ACM Transactions on Internet Technology,
Vol. 1, No. 1, pp. 2–43, August 2001.

[14] Bar-Yossef, Z., Berg, A., Chien, S., and Weitz,
J. F. D., “Approximating aggregate queries
about web pages via random walks”, In
Proceedings of the 26th International
Conference on Very Large Data Bases, 2000.

[15] Bharat, K. and Border, A., “Mirror, mirror on
the web: A study of host pairs with replicated
content”, In Proceedings of the Eighth
International Conference on the World-Wide
Web, 1999.

[16] Bharat, K., Border, A., Henzinger, M., Kumar,
P., and Venkatasubramanian, S., “The
connectivity server: fast access to linkage
information on the Web”, Computer Network
ISDN Syst. 30, 1-7, 469–477, 1998.

[17] Lawrence, S. and Giles, C., “Searching the
World Wide Web”, Science 280,98–100, 1998.

[18] Douglas C. Engelbart, “Augmenting Human
Intellect: A Conceptual Framework”. Summary
Report AFOSR-3223, October 1962.

[19] Smith, L.S. and Hurson, A., R., “A Search
Engine Selection Methodology”, Proceeding of
the International Conference on Information
Technology: Computers and Communications
(ITCC’03), pp.122 – 129, April 2003.

[20] Sharma, A.K., Gupta, J.P., Agarwal D.P.,
“Augmented Hypertext Documents suitable for

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

parallel crawlers”, Proceeding Of
WITSA-2003, a National workshop on
Information Technology Services and
Applications, New Delhi, Feb 2003.

[21] Saeid, Asadi and Hamid, R. Jamali, “Shifts in
Search and Future Engine Development: A
Review of Past, Present Trends in Research on
Search Engines”, Webology, Volume 1,
Number 2, December, 2004.

[22]Page, Lawrence; Brin, Sergey; Motwani,
Rajeev, and Winograd, Terry, “The PageRank
Citation Ranking: Bringing Order to the Web”,
Technical Report, Stanford University InfoLab,
1999.

[23] Cho, Junghoo, Garcia-Molina, Hector, “The
Evolution of the Web and Implications for an
Incremental Crawler”, Proceedings of the 26th
International Conference on Very Large Data
Bases, pp. 200 – 209, 2000.

[24] Francisco-Revilla, L., Shipman, F., Furuta, R.,
Karadkar, U. and Arora, A., “Managing Change
on the Web”, In Proceedings of the 1st
ACM/IEEE-CS joint conference on Digital
libraries, pp. 67 – 76, 2001.

[25] P. De Bra, G.-J. Houben, Y. Kornatzky, and R.
Post, “Information retrieval in distributed
hypertexts”, Proceedings of RIAO'94,
Intelligent Multimedia, Information Retrieval
Systems and Management, New York, NY,
1994.

[26] Hersovici, M., Jacovi, M., Maarek, Y., Pelleg,
D., Shtalheim, M. and Ur Sigalit, “The
Shark-Search Algorithm – an application:
tailored web site mapping”, Computer
Networks and ISDN systems, Special Issue on
7th WWW conference, Brisbane, Australia,
30(1-7), 1998.

[27] Salton, G. and McGill, M.J., “Introduction to
Modern Information Retrieval”, Computer
Series. McGraw-Hill, New York, NY, 1983.

[28] Pinkerton, B., “Finding what people want:
Experiences with the WebCrawler”, Proceeding
of the First World Wide Web Conference,
Geneva, Switzerland, 1994.

[29] Heydon, A. and Najork, M., “Mercator: A
scalable, extensible Web crawler”, World Wide
Web, 2(4):pp. 219–229, 1999.

[30] Wang, Ziyang, “Incremental Web Search:
Tracking Changes in the Web”, PhD
dissertation, 2007.

[31] “MD5, SHA-1, 224, 256 etc”, available at:
http://en.wikipedia.org/wiki/MD5 .

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

 Refresh URLs Queue

 User

Change
detection
module

C-crawler _1

C-crawler _2

C-crawler _n

 Client Crawlers

 Add /Index Web
 Pages/URLs

Document and URL Buffer

 Extract URLs

Queue of sorted
URLs

 Multi Threaded Server

URL Dispatcher

Ranking
module

Indexer

 Repository

URL
Distributor

Add
URLs

Queue of unsorted URLs

 Select URLs

 D
ivid

e
 U

R
Ls in

 su
b

 lists

Seed URL

 D
istrib

u
te

_
U

R
Ls

 Rank_URLs

 P_list-1

 P_list-2

 P_list-3

URL
Allocato

r

C
ra

w
l W

e
b

 P
a

g
e

s

 Message

Data flow
 WWW

Figure 1: Architecture of Incremental Parallel WebCrawler

