
Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

THE SPECIFICATION OF QUALITY OF SERVICE IN OPEN
DISTRIBUTED PROCESSING: FORMALISM USED IN

MECHATRONIC SYSTEM

YOUSSEF BALOUKI, ABDESSAMED BALOUKI

1Dep of Mathematics & Computer Science, University HASSAN 1ER Morocco
2Dep of Mechanical Engineering, University SULTANE MOULAY SLIMANE Morocco

E-mail: 1 balouki.youssef@gmail.com, 2balouki@gmail.com

ABSTRACT

The paper discusses two approaches for designing mechatronic systems. the first one is based on using
Reference Model for open Distributed Processing (RM-ODP), to specify any kind of mechatronic systems,
RM-ODP is a reference model in computer science, which provides a co-ordinating framework for the
standardization of open distributed processing (ODP), whereas in the second phase , we introduce Event-B
method to formalize and verify mechatronics system. We explore the benefits provided by using the proof
construction approach to define the protocol of negotiating QoS requirements When Mechatronic
components in different clusters interact. In this context, we investigate the support for the specification of
Quality of Service (QoS) in Event-B, when modelling mechatronic systems in ODP Engineering viewpoint.

Keywords: Mechatronic systems, RM-ODP, QoS Requirements, Event B, Rodin platform.

1. INTRODUCTION

UML (unified modelling language) is widely used
in designing complex and reliable computer
science. In mechatronic it provides means for
capturing system requirements and for the visual
modelling and design of systems on a high level of
abstraction [37-40]. However, there is no widely
agreed approach to the structuring of such
specifications. This adds to the cost of adopting the
use of UML for Mechatronic systems specification,
hampers communication between system
developers and makes it difficult to relate or merge
system specifications where there is a need for a
structuring framework if it is to be managed
successfully. The purpose of the Reference Model
for Open Distributed Processing (RM-ODP) is to
define such a framework. Used The RM-ODP [1-4]
in Mechatronic systems provides a framework
within which support of distribution, networking
and portability can be integrated. It defines a
framework comprising five viewpoints, viewpoint
language, ODP functions and ODP transparencies.
The five viewpoints, called enterprise, information,

computational, engineering and technology provide
a basis for the specification of ODP systems.
We used the meta-modelling approach [8] [9] to
define syntax of a sub-language for the QoS-aware
Engineering viewpoint specifications. We defined a
UML/OCL [12][13] meta-model semantics for
structural constraints on Engineering language [10].
We also used the same met-modelling and
denotational approaches for behavioral concepts in
the foundations part and in the Engineering
language [11] [14]. Furthermore, for modelling
Mechatronic systems correctly by construction, the
current testing techniques [15] [16] are not widely
accepted and especially for the Mechatronic
Engineering viewpoint specifications. In this paper,
we use the event-B formalism as our formal
framework for developing distributed systems.
Event B is a method with tool support for applying
systems in the B method. Hence we can benefit
from the useful formalism for reasoning about
distributed systems given by refinement techniques
and from the tool support in B. [17] [18] [19] [20]
In this context, we developed the QoS negotiation
process using manager function, with event B. Thus
was performed in a stepwise manner from abstract

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

specification to concrete implementation using
superposition refinements. The correctness of each
step is proved in order to achieve a reliable system.
The tools assist the development process by
generating the proof obligations needed. These
proof obligations can then be proved with the
automatic or the interactive proover of the tool. The
Rodin Platform for Event-B provides effective
support for refinement and mathematical proof [21]
[22].
In this work we are presenting one possibility to
integrate RM-ODP, to specify any kind of
mechatronic systems, In the second section we will
introduce the mapping between engineering
viewpoint in ODP and Mechatronic engineering.
Then we will describe and specifies the process of
negotiation QoS in Mechatronic Engineering by
using trader function. In the fourth we use event B
as refinement support to specify this process of
negotiation. Then we present the Rodin platform as
tool of proving initial and refinement models. A
conclusion ends the paper.

2. MECHATRONIC ENGINEERING

VIEWPOINT

2.1 ODP Engineering Language

An engineering specification includes the definition
of mechanisms and functions required to support
distributed interaction between objects in an ODP
system. It defines concepts for describing the
infrastructure required to support selective
distribution transparent interactions between
objects, and rules for structuring communication
channels between objects and for structuring
systems for the purposes of resource management.
The engineering viewpoint describes the
distribution of processing performed by the
system to manage the information and
provide the functionality. In the
engineering language, the main concern is
the support of interactions between
computational objects. The concepts and
rules are sufficient to enable specification
of internal interfaces within the infrastructure,
enabling the definition of distinct conformance
points for different transparencies and the
possibility of standardization of a generic
infrastructure into which standardized transparency
modules can be placed. The engineering language
is used to define a model for distributed systems
infrastructure.

2.2 From Engineering Language To
Mechatronic Construct

The fundamental entities described in the
engineering viewpoint are objects and channels.
Objects in the engineering viewpoint can be divided
into two categories—basic engineering objects
(corresponding to objects in the computational
specification) and infrastructure objects (a protocol
object). A channel corresponds to a binding or
binding object in the computational specification.
The engineering language deals with the basic
engineering objects and with various other
engineering objects which support them. It relates
these objects to the available system resources by
identifying a nested series of groupings. The basic
units of structure are: cluster, cluster manger,
capsule, nucleus object, and node.
We used the meta-modelling approach to define
mapping between engineering language and
Mechatronic domains. One way to do this mapping
is to find both the functional structure and the
implementation structure and then relate the
bounded artifacts to each other. Table 1 shows an
overview of the mapping from the engineering
language concepts to mechatronic artifacts covering
the subset of the structures introduced in this paper.

Table 1– engineering language concepts to mechatronic

artifacts mapping overview
 Engineering
Language
Concept

Mechatronic Construct

Control PID connector/sensor/actuator
Node Calculateur
Capsule Address space
Cluster basic objects forming a simple

unit
Engineering
Objects

Mechatronic objets / Modules
d’un programmes

Engineering
Interfaces

input capture card// output
capture card

nucleus Operating System
Stubs connectors
Chanal Connexion the mechatronic

objects
Protocol objet communications interface/

system bus

3. QOS IN MECHATRONIC ENGINEERING

A generic framework has been refined in order to
be used in two particular areas: communications
based on architectures compliant with the OSI

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

reference model and distributed object-based
applications compliant with the RM-ODP
standards. This last particularization has been
adopted as the conceptual base for the scope of this
paper. One of the items identified in the work
developed by ISO/ITU-T regarding QoS [5] [6] [7]
in ODP is the need for a QoS language capable of
representing all the QoS information related to all
viewpoints specification ODP system. This is the
concrete QoS problem this paper focuses on. It
presents a QoS language that is compliant with the
QoS concepts of the ISO/ITU-T QoS framework
and that can be used for the application-level QoS
Mechatronic Engineering specification. This QoS
language is expressed by event B in order to take
advantage of the support tools such as Rodin
platform.[21][22] The QoS statements in the
mechatronic system specification are those that
relate to objectives and responsibilities of the ODP
system in its environment. In general, these
statements express QoS requirements, which are
taken to include requirements on the system from
the outside world (its user requirements), as well as
the guarantees or claims its designers make in order
to meet the user requirements. QoS requirements
are associated with Engineering objectives and
responsibilities. These will correspond to
requirements expressed on the Engineering objects
and their interactions

3.1 The QOS Mechatronic Object Model

We illustrate how automated trading function is
used to specify QoS when modelling mechatronic
systems in the Engineering viewpoint. We
investigate end-to-end quality of service (QoS) and
highlight that QoS provision has multiple facets and
requires complex agreements between Mechatronic
objects, Cluster, calculateur and channel . The
Quality of service may be specified in a contract or
measured and reported after the event (Fig 1).

Fig.1: Modelling QoS Activity in Mechatronic

Engineering.

In this QoS Engineering object model, QoS
management activities are driven by a manager
object that is responsible to obey the system
constraints that are in force on objects interactions
while filling roles for responding user requirements
QoS management would be used as the following
stages of an activity:
• A priori the QoS requirements may be built into
the system configuration by system design;
• Before initiation the QoS requirements can be
conveyed to an automated trading (manager).
before an activity is initiated
• At the initiating the activity the QoS requirements
can be negotiated between a PC-computer (server
channel) and the automated trading (manager).
• During the activity the QoS requirements may
change during the period of the activity due to
changed requirements, detected performance loss,
explicit indications from the server objects or
explicit indication from one or more object clients;
• After the activity, possibly to carry out trend
analysis, contract analysis, performance
monitoring, etc. In an Engineering specification, an
interaction is defined when it’s necessary to define

 Manager

Interaction

Client Channel

EngineeringObject

1 .. 1

- fille

*

1

1 .. 1 ..

1

1

1

1

1

- 0 ..

1

Rol

1

*

ServerChannel

1 ..
1 ..

Stub

QoS Migration

QoS Recovry

QoS Cloning

QoS Deactivation

Constraint QoS Activity

1.. *

require

QoS Type

QoS Characteristics

-derived
-base

0..1

1.. *

Binder

Channel

communications interface

System Bus Switches Drivers
connectors

Mechatronic object

Automated
trading

Depends
of
object 1.. *

PC-computer

Depends of
object

1.
. *

1

Client’s
computer

1.. *

Connexion of mechatronic
objects

Depends of
Mechatronic
objects

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

the objectives of the Engineering objects
interacting. Such QoS definition include definition
of: The Engineering objects interacting, The
purpose of the interaction and ODP system
functions (migration, recovery, cloning,
reactivation).

3.2 Negotiation Qos In Client-To-Server

Communication To Reach Qos Agreement

The concept of QoS negotiation between
engineering objects includes the automated trading
(Trader) object between them. In general, the
mechanisms of three-party negotiation are used,
including Client’s computer (client), server and a
trader. We define two negotiation mechanisms
between three parties:
• The first mechanism uses a single parameter and
allows the negotiation from a proposed maximum.
In this paper we focus on this mechanism of
negotiation.
• The second mechanism allows the parties to
specify the ranges in which they are able to operate
and they can agree on a limit, a value or a threshold
within a range (Bounded negotiation).
3.3 Bounded negotiation
1) The Client’s computer (client) user specifies a
desired operating range, providing a lower limit L
and an upper limit U, where L≤ U.
2) The executive PC-computer (server) could refuse
the request if it knows that cannot satisfy the user.
If the PC-computer (server) does not refuse the
request but cannot operate over the full range
proposed by Client’s computer (client), it could
determine a new value U ' for the upper limit,
which is worse than the proposed value U, L≤ U’ ≤
U (the Pc-reciever (server) could also choose to
work internally to a higher quality but does not
report this fact to the trader). The PC-computer
(server) does not alter the value of the lower limit
L. The new upper limit U ' and lower limit are
provided to traders.
3) The trader could refuse the request, if accepted,
it could select a value V belonging to range defined
by L and U, ‘L≤ V≤ U ‘. The value V is returned to
the Manager.
4) The Pc-reciever (server) leaves the V value
unchanged.
5) The V value is selected and returned to the
Client channel, it is the value of agreement.This
mechanism is illustrated in Figure 2.

Fig.2. QoS bounded parameter negotiation

4. SPECIFYING QOS NEGOTIATION WITH

EVENT B

4.1 Informal Presentation Of The Qos Single

Parameter Negotiation Protocol

The QoS single parameter negotiation can
be represented in the diagram of figure 3
where the events (Client_snd, Server_snd,
Trader_snd, Client_rcv, Server_rcv,
Trader_rcv) are supposed to represent the
various phases we have just described as
indicated by the arrows:

Fig. 3. Schematic view of the QoS negotiation
protocol in Mechatronics systems
Protocol we have described the normal behaviour
of the protocol, where channel and Automated
trading (manager) Engineering object negotiate
successfully a QoS value. We shall also describe
below a degraded behaviour, where the two objects
fail to achieve this QoS value.

Client’s
computer

PC-
computer

U

V

U’

L

Channel

V

Automated trading

Calculator

Connexion of
mechatronic objects

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

4.2 Requirement Document

The requirement document which we propose now
is far less precise than the previous informal
explanations we have given. It does not propose an
implementation. It essentially consists in explaining
what kind of believe each Engineering object may
have at the end of the protocol: the QoS is
negotiated by the manager of the channel:Listen

1 The system is negotiating QoS between

Engineering objects
2 The final QoS value is published by

Automated trading (Manager)

3 The first QoS value is required by Client’s
computer

4 The final QoS value is approved by

Switches Drivers binder object.
5 Client’s computer and server might either

believe if the QoS value is conformably

negotiated or failed
6 When the QoS value is published by

Automated trading (manager), the Switches

Drivers (Binder) and PC-computer (server)

believe that the QoS value has been

negotiated successively. Otherwise, they

believe that negotiation failed.
7 If the binder refuse QoS value, the

negotiation is aborted

4.3 Refinement Strategy

Before engaging in development of such a system,
it is profitable to clear identify what our design
strategy will be. This is done by listing the order in
which we are going to take account of the various
requirements we proposed in the requirement
document of the previous section. Here is our
strategy for constructing the QoS bounded
negotiation protocol:
* We started with very simple model allowing us to
taking account of requirements (2,3) concerned
with the maximum and minimum value of QoS .
* In the first refinement, we take account of
requirements 4 to 6 telling us that the QoS value is
negotiated by the Client’s computer (client) and

the PC-computer (server) and approved by the
Automated trading
* In the last refinements, we introduce the channel
between Client’s computer (client) and PC-
computer (server). A channel is a configuration of
stubs, binders, protocol objects and interceptors
providing a binding between a set of interfaces
basic engineering objects, through which
interaction can occur.

4.3.1 Initial model

The first model contains a partial specification of
the QoS bounded parameter negotiation protocol. It
deals with requirements 1, 2 and 3. The protocol is
executed in one shot.

4.3.1.1 Formalizing the state

The state of our model is made of to parts: the static
part and the dynamic part. The static part
contains the definition and axioms associated with
some constants, the dynamic part contains the
variables which are modified as the system evolves.
The negotiated QoS value is variable typed in
invariants inv0_1 , inv0_2 and inv0_3.

Constants:

Uchannel_max

Lchannel_min

Axm0_1:Uchannel_maxЄ

IR

Axm0_2 :Lchannel_min

Є IR

variables:
Uneg

Inv0_1 : Vnegoc Є IR

Inv0_2 : Uneg <=
Uchannel_max

Inv0_3 : Uneg >
Lchannel_min

4.3.1.2 Formalizing the events

At this stage, we can observe two transitions, which
we shall call events in the sequel. They correspond
to QoS value proposed and even accepted or
refused. The initial value of Uneg is U. the final
value of the protocol must be less than U and
greater than L.

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

Init : Uneg := U

Uchannel_max > 0

Uchannel_min > 0

brp

Ufinal <= U

Ufinal > L

4.3.2 First refinement
We are now going to proceed with a refinement of
initial model. A refinement is more precise model
than initial one. It is more precise but is should not
contradict the initial model. In this refinement, we
introduce the channel. Thus the value of QoS
required by the channel to ensure Liaison reliably
between engineering objects.

4.3.2.1 Refining the state

In this first refinement, we introduce the concept of
status. It is made of three distinct elements:
working, success and failure as shown below.

Constants: working

success

failure

Axm1_1 : working ≠

success

Axm1_2 : success ≠

failure

Axm1_3 : working ≠

failure

We replace the abstract variable V by a concrete
one V_channel indicated in invariant inv1_1. We
introduce the status v_channel and v_sever of the
channel and server one respectively. Such variables
are member of the STATUS as indicated implicitly
in invariants inv1_2, inv1_3 and inv1_4.

Variables:

V_server

v_channel

v_client

Inv1_1 :

0 < Vnegoc <= Vchannel_max

Inv1_2 : v_server = success �

v_channel >= V_server

Inv1_3 : v_client = success ==>

v_client <= v_channel and

v_server >= v_client

Inv1_4:

v_server = failure � v_channel

< v_client or v_server < v_client

Requirement 6 is formalized in inv1_4 where it said
that the client accept when the server does.

4.3.2.2 The events

In this refinements, we introduce many new events
: Client_snd, Server_failure, Server_accept and
Channel_refuse. The four of them clearly refine
skip (since their action are concerned by new
variables), and also maintain invariants inv1_2 and
inv1_3 regarding the status of the channel and
server.
Client_snd
When
 V_client = working
 v_channel = accept
 v_server = accept
Then
 V_client := accept
End

Client_ failure
When
 v_channel = propose
 v_server = failure
Then
 V_client := failure
 End

Server_accept
When
v_channel = accept

Then
 v_server := accept
 End

Server_failure
When
V_client = working
v_channel = failure
Then
v_server := failure
 End

Event brp defined below, is also a new event
refining SKIP, This is clearly a convenient
abstraction but not a final implementation. In fact,
this direct access will be removed in the next
refinement.

Init :
 Vnegoc := P
Vserver_max > 0
Vchannel_max > 0
V_Client:=required
v_channel := prescribed
 v_server := proposed

brp
When
 V_Client ≠ working
 v_server ≠ working
 v_channel ≠ working
Then
 skip
 End

The refinement of event brp must refine its
abstraction, which is a non-deterministic event.

4.3.3 Second refinement

In this refinement, the binder will enter into the
scene by cooperating with client and server objects
in order to negotiate the QoS value. In fact, the
client will not access any more directly the server
value as was the case of the previous refinement,
this will be done by the binder. We then introduce
this binder which is situated between client and
server.

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

4.3.3.1 The state

The state is first enlarged with two variables to be
used by binder Vbinder. A Boolean variable
publish indicated implicitly by inv2_1, and a real
variable Vbinder as indicated in inv2_2, inv2_3 and
inv2_4.

variables:

required
Vbinder

Inv2_1:
required=true ==> Vbinder <= Vchannel_max
Inv2_2 :
Vbinder > 0
Inv2_3 :
 Vbinder <= Vserver
Inv2_3 :
 Vbinder <= Vclient

4.3.3.2 The events

The initialization event is extended in a
straightforward fashion as indicated below. The
Boolean value publish is set to False at the
beginning so that the only two events which can be
fired are the ones described next.

Init :
Vnegoc := P
Vserver_max > 0
V_server := proposed
V_channel:=
prescribed
 required := FALSE

Client_accept
When
V_client = required
 Publish = TRUE
Then
 V_server := accept
 End

Server_accept
When
 V_server :=
proposed
 Publish =
TRUE
Then
 V_client :=
accept
 End

Client_refuse
When
 V_client = required
V_client>> v_channel
 Publish = FALSE
Then
 V_client := refuse
End

Server_refuse
When
 V_server = proposed

V_server>>v_channel
 Publish = FALSE
Then
V_server := refuse
 End

Binder_accept
When
V_server~ =
v_channel
V_client ~ =
V_server
 Publish =
FALSE
Then
V_binder :=
accept
 End

6 CONCLUSION

Used The Reference Model for Open Distributed
Processing (RM-ODP) in Mechatronic systems
provides a framework within which support of
distribution, networking and portability can be
integrated. We used the meta-modelling approach
to define mapping between engineering language
and Mechatronic domains. We developed the QoS
negotiation process using manager function, with
event B. Thus was performed in a stepwise manner

from abstract specification to concrete
implementation using superposition refinements.
The correctness of each step is proved in order to
achieve a reliable system. The Rodin Platform for
Event-B provides effective support for refinement
and mathematical proof.

REFRENCES:

[1].ISO/IEC, ‘’Basic Reference Model of Open

Distributed Processing-Part1: Overview and
Guide to Use, ‘’ISO/IEC CD 10746-1, 1994

[2].ISO/IEC, ‘’RM-ODP-Part2: Descriptive Model,
‘’ ISO/IEC DIS 10746-2, 1994.

[3].ISO/IEC, ‘’RM-ODP-Part3: Prescriptive Model,
‘’ ISO/IEC DIS 10746-3, 1994.

[4].ISO/IEC, ‘’RM-ODP-Part4: Architectural
Semantics, ‘’ ISO/IEC DIS 10746-4, July 1994.

[5].ISO/IEC TR 13243 – Information technology –
Quality of service –Guide to methods and
Mechanisms (November 1999)

[6].ITU-T Recommendation G.1000 -
Communications quality of service: a
framework and Definitions (November 2001)

[7].ITU-T E.860 Framework of a service level
agreement (June 2002)

[8].M. Bouhdadi et al., ‘’A UML-Based Meta-
language for the QoS-aware Enterprise
Specification of Open Distributed Systems’’
IFIP Series, Vol 85, Springer, (2002) 255-264.

[9].Mohamed Bouhdadi and Youssef Balouki.
Semantics of Behavioral Concepts for Open
Virtual Enterprises’. Series: Lecture Notes in
Electrical Engineering, , Vol. 27 .Springer,
2009. p.275-286.

[10]. Youssef Balouki, H. Belhaj and al. Event
B for ODP Enterprise Behavioral Concepts
Specification, Proceedings of the World
Congress on Engineering 2009 Vol I, WCE '09,
July 1 - 3, 2009, London, U.K., Lecture Notes
in Engineering and Computer Science, pp. 784-
788, Newswood Limited, 2009

[11]. Youssef Balouki and Mohamed Bouhdadi.
‘Using BPEL for Behavioral Concepts in ODP
Enterprise Language’, Virtual Enterprises and
Collaborative Networks, IFIP, Vol. 283, pp.
221-232, Springer, 2008

[12]. J. Rumbaugh et al., the Unified Modelling
Language, Addison Wesley, 1999.

[13]. B. Rumpe, ‘’A Note on Semantics with an
Emphasis on UML, ‘’ Second ECOOP
Workshop on Precise Behavioral Semantics,
LNCS 1543, Springer, (1998) 167-188.

[14]. Mohamed Bouhdadi and Youssef Balouki
and El maati Chabbar, ‘Meta-modelling Syntax

Journal of Theoretical and Applied Information Technology
 15 September 2012. Vol. 43 No.1

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

and Semantics of Structural Concepts for Open
Networked Enterprises’, Lecture Notes in
Computer Science, Vol. 4707, pp. 45-54,
Springer, 2007

[15]. Myers, G. The art of Software Testing,
John Wiley &Sons, New York, 1979

[16]. Binder, R. Testing Object Oriented
Systems. Models, Patterns, and Tools, Addison-
Wesley, 1999

[17]. http://www.event-b.org/
[18]. Joochim, T., Snook, C., Poppleton, M. and

Gravell, A. (2010) TIMING DIAGRAMS
REQUIREMENTS MODELLING USING
EVENT-B FORMAL METHODS. In: IASTED
International Conference on Software
Engineering (SE2010), February 16 – 18, 2010,
Innsbruck, Austria

[19]. J.-R. Abrial & S. Hallerstede, Refinement
Decomposition and Instantiation of Discrete
Models: Application to Event-B, Fundamenta
Informaticae, 77(1-2), 2006, 1-28.

[20]. C. Snook & M. Butler, UML-B and Event-
B: an integration of languages and tools. Proc.
IASTED International Conf. on Software
Engineering (SE2008), Innsbruck, Austria,
2008.

[21]. RODIN. Development Environment for
Complex Systems (Rodin). 2009.
http://rodin.cs.ncl.ac.uk/.

[22]. Jean-Raymond Abrial: A System
Development Process with Event-B and the
Rodin Platform. ICFEM (2007) 1-3

[23]. ISO/IEC, “ODP Type Repository
Function”, ISO/IEC JTC1/SC7 N2057, 1999.

[24]. ISO/IEC, “The ODP Trading Function”,
ISO/IEC JTC1/SC21 1995.

[25]. J.-R. Abrial. Tools for Constructing Large
Systems (a proposal). In Rigorous Development
of Complex Fault-Tolerant Systems. M. Butler,
etc. (Eds). LNCS 4157 Springer, 2006

[26]. J.-R. Abrial, M. Butler, S. Hallerstede, L.
Voisin. An Open Extensible Tool Environment
for Event-B. ICFEM 2006

[27]. M.J. Butler and S. Hallerstede The Rodin
Formal Modelling tool. BCS-FACS Christmas
2007 Meeting Formal methods in Industry
London, 2007

[28]. J.-R. Abrial, Tutorial - Case study of a
complete reactive system in Event-B: A
mechanical press controller. Proc. 5th
International Symposium on Formal Methods
(FM’2008), Turku, Finland, 2008.

[29]. D. Cansell, D. Méry & J. Rehm, Time
Constraint Patterns for Event B Development.
Proc. Formal Specification and Development in

B, 7th International Conf. of B (B 2007),
Besancon, France, 2007. 140-154.

[30]. J. Bicarregui, et al, Towards Modelling
Obligations in Event-B. Proc. International
Conf. of ASM, B and Z Users, London, UK,
2008, 181-194.

[31]. E. Letier & A.V. Lamsweerde, Agent-
Based Tactics for Goal-Oriented Requirements
Elaboration. Proc. 24th International Conf. on
Software Engineering (ICSE’02), Orlando,
Florida, USA, 2002, 83-93.

[32]. C. Ponsard & E. Dieul, From
Requirements Models to Formal Specifications
in B. Proc. International Workshop on
Regulations Modelling and their Validation and
Verification (REMO2V’06), Universitaires de
Namur, Luxemburg , 2006, 249-260.

[33]. Abdessamad Balouki, Balouki Youssef,
M.Bouhdadi , S.El Haji- QOS Formal
Specification of Engineering JATIT 7vol 22
No2.

[34]. Mrozek Z. (2002a): Computer-aided design of
mechatronic systems.— Sci. Fasc., Cracow
Univ. of Technol., Series: Electrical and
Computer Eng., No. 1, (in Polish).

[35]. Mrozek Z. (2002b): Design of the
mechatronic system with help of UML
diagrams. — Proc. 3-rd Workshop Robot
Motion and Control, Bukowy Dworek, Poland,
pp. 243– 248.

[36]. Mrozek Z. (2002c): Methodology of using
UML in mechatronic design. — Pomiary
Automatyka Kontrola, No. 1, pp. 25– 28, (in
Polish).

[37]. ZBIGNIEW MROZEK Computer aided
design of mechatronic systems Int. J. Appl.
Math. Comput. Sci., 2003, Vol. 13, No. 2,
255–267

