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ABSTRACT 
 

In this paper, the problem of stability for networked control systems (NCSs) is investigated. Considering 
both the time-varying network-induced delay and data packet dropouts, NCSs are transformed into typical 
linear systems with interval time-varying delay. Based on the obtained model, a new delay-dependent 
stability criteria in terms of linear matrix inequalities (LMIs) is provided by constructing a novel time-
dependent Lyapunov-Krasovskii functional. The tighter integral inequalities are used to deal with the cross-
product terms arose from the time derivative of the Lyapunov-Krasovskii functional for obtaining much 
less conservative result. Compared with some previous ones, the proposed method introduces fewer matrix 
variables and has less conservatism. A numerical example is provided to demonstrate the effectiveness and 
the benefits of the proposed method. 
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1. INTRODUCTION  
 

As is well known, networked control systems 
(NCSs) are widely used in various fields due to 
their low costs, flexible architecture, simpler 
installation and efficiency. Nevertheless, the 
introduction of a network brings some new 
challenges such as network-induced delay and data 
packet dropouts which may result in the instability 
and poor performance. All of these will make 
system analysis and synthesis more difficult. 

 Recently, the issue of stability analysis for 
networked control systems has received 
considerable attention [1-6]. As pointed out by Yue 
[1], NCSs are typical systems with interval time-
varying delay. Thus, the existing results about 
systems with interval time-varying delay can be 
applied directly to deal with the problems of NCSs. 
The idea has been adopted widely for stability 
analysis of NCSs [4-6]. Park [2] calculated the 
maximum allowable delay bound (MADB) by 
using Moon inequality for NCSs. Wu [8] gained a 
result with less conservatism through introducing 
free-weighting matrix method. Fridman [11] 
proposed a descriptor model and given the delay-
dependent stability conditions in terms of LMIs. 
The works of Liu [3] investigated the stability for 
NCSs with constant delay. Yue [4] studied the 
design of robust H∞  controllers for uncertain NCSs 

by introducing some slack matrix variables. Jiang 
[5] presented H∞ stabilization criterion by using a 

new Lyapunov-Krasovskii functional. Zhang [6] 
made use of the information both the lower, upper 
bounds and the middle point of the time-varying 
delay to obtain a less conservative stability criterion 
than previous results. Nevertheless, the criteria still 
leave room for improvement. 

In this paper, we are concerned with the problem 
of stability for NCSs with the effects of both 
network-induced delay and data packet dropouts. 
We also adopt the same method as the above 
mentioned to consider NCSs as systems with 
interval time-varying delay. A new type of 
augmented delay-dependent Lyapunov-Krasovskii 
functional is introduced in which the lower bound 
of the delay is partitioned. A new improved 
stability criteria is derived without introducing any 
free-weighting matrices. Finally, a numerical 
example is provided to illustrate the effectiveness 
of the proposed method. 

Notation: The notation used throughout the paper 
is fairly standard. nR denotes the n − dimensional 
Euclidean space and the 0P > means that P  is real 
symmetric and positive definite. ( )R Z denote the 

set of real numbers (integers). The superscript 
‘ T ’stands for the inverse and transpose of matrix. 
The symmetric elements of the symmetric matrix 
will be denoted by∗ . 
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Figure 1: A typical network control system 

 

2. PROBLEM FORMULATION  
            

Consider the following system through a network 
which is shown in Fig.1: 

( ) ( ) ( )x t Ax t Bu t= +&                   (1) 

where ( ) nx t R∈ , ( ) mu t R∈  are the system state 
vector and the controlled input vector, A , B are the 
constant matrices with appropriate dimensions. By 
considering the communication delay scτ between 
the sensor and the controller and the 
communication delay cτ  in the controller, the 
following control law is employed for the system(1):  

( ) ( )

{ }, 1,2

sc c
k k

sc c
k k

u t Kx t

t kh k

τ τ
τ τ

 = − −
 ∈ + + = L

           (2) 

where h is the sampling period and K is a 
controller gain.  

Substituting (2) into (1), yields 

1

( ) ( ) ( )

 [ , ( 1) ), 1,2k k

x t Ax t BKx kh

t kh k h kτ τ +

= +
 ∈ + + + =

&

L
  (3) 

where sc c ca
k k k kτ τ τ τ= + + , caτ is the communication 

delay between the controller and the actuator.  

Using the method as [4], the system (3) can be 
modified as (4) which considered the data packet 
dropout. 

1 1

( ) ( ) ( )

 [ , ), 1,2
k

k k k k

x t Ax t BKx i h

t i h i h kτ τ+ +

= +
 ∈ + + =

&

L
   (4) 

where {1,2, }ki ⊂ L .Throughout this paper, the 

following assumptions are needed. 

Assume1 The sensor is clock-driven, the 
controller and actuator are event-driven. 

Assume2 1 ,k ki i+ > 1,2k = L . 

By defining ( ) kt t i hτ = − , 1[ ,k k kt i h i hτ +∈ + +   

1)kτ + 1,2k = L , system (4) is rewritten as the 

following continuous system with interval time-
varying delay: 

           
( ) ( ) ( ( )),

( ) ( ), [ , ]M m

x t Ax t BKx t t

x t t t

τ
φ τ τ

= + −
 = ∈ − −

&

        (5) 

where ( )tτ is piecewise-linear such that  

 1 1( ) ( )m k k k k Mt i i hτ τ τ τ τ+ +≤ ≤ ≤ − + ≤       (6) 

with derivative ( ) 1tτ =&  for k kt i h τ≠ + and ( )tτ  is 

discontinuous at the point k kt i h τ= + . 

To establish our results, we introduce the 
following lemmas. 

Lemma 1[9]  For any constant matrix n nM R ×∈ , 
0TW W= > , scalar 0σ > , and vector function 

: [ ,0] nx Rσ− →& such that the following integration 

is well defined, then it holds that 

( )
( ) ( )

( )

( )

* ( )

T
t T

t

x t
x m Wx m dm

x t

W W x t

W x t

σ
σ

σ

σ

−

 
− ≤  − 

−   
   − −   

∫ & &

 

Lemma 2[12]  Suppose  1 2( )tγ≤ ≤γ γ ，where 

( ) : ( ) ( )R orZ R orZγ + + + +⋅ → , then, for any constant 

matrix 1Ξ , 2Ξ andΘ of appropriate dimensions, the 

following matrix inequality  

1 1 2 2( ( ) ) ( ( )) 0t tγ γ γ γΘ + − Ξ + − Ξ < holds, if and 

only if 2 1 1( ) 0γ γΘ + − Ξ < , 2 1 2( ) 0γ γΘ + − Ξ <  

Lemma 3[15] Given any square matrices 
TQ Q= , M and E , then under ( ) ( )TF t F t I≤ , 

( ) ( ) 0T T TQ MF t E E F t M+ + <  is obtained if a 

constant  0ε >  makes 1 0T TQ MM E Eε ε −+ + < .  

 

3. NEW STABILITY CRITERIA 
 
In this section, we consider stability for 

system(5). By constructing a novel Lyapunov-
Krasovskii functional and using tighter integral 
inequalities to deal with cross-product terms, we 
have the following result. 

Theorem 1 For some given constants 
0 m Mτ τ≤ ≤ , system (5) subject to (6) is 

asymptotically stable, if there exist real symmetric 

Continuous Plant 

Actuator 

sct
 

Controller ct  

 

Sensor 

cat
 

Network 
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matrices 0P > , 1 0Q > , 2 0Q > , 1 0R > , 

2 0R > , 1 0Z > , 2 0Z > , 0H > of appropriate 

dimensions such that the following linear matrix 
inequalities hold 

0
*

T
i

i

ϕ
ϕ

 Π + Π Ω
Σ = < − 

, ( 1,2i = )       (7) 

where
2

2
1 2( ) ( )

4
m

M mZ Z H
τϕ τ τ= + + −  

[ ]0 0 0 0A BKΩ =

[ ]
[ ]

1 0 0 0 0

0 0 0 0

T
I I H

I I

Π = − −

−
 

[ ]
[ ]

2 0 0 0 0

0 0 0 0

T
I I H

I I

Π = − −

−
 

and 

11 1

22

33 2

44

55

66

0 0 0

* 0 0

* * 0 0

* * * 0 0

* * * * 0

* * * * *

PBK Z

H H

Z

Π 
 Π 
 Π

Π =  Π 
 Π
 

Π  

 

with 11 1 1
TPA A P Q ZΠ = + + −  

22 2HΠ = −  

33 1 2 1 2Q Q Z ZΠ = − + − −  

44 2 1 2Q R Z HΠ = − + − −  

55 1 2R RΠ = − +  

66 2H RΠ = − −  

Proof. Constructing a Lyapunov-Krasovskii 
functional for the system (5) as 

2 ( 1)
2

1 2

2 ( 1)

1

2 ( 1)
2

1 2

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
2

( ) ( ) ( )

m

m

m

m

m

m

m

M

T
t

t i T
i

t ii

t i T
it i

i

i t Tm
itii

t T
M m t

V x x t Px t

x s Q x s ds

x s R x s ds

x s Z x s dsd

x s Hx s dsd

τ

τ

τ σ

τ σ

τ

τ θ

τ

τ θ

τ θ

τ τ θ

− −

−=

− − −

− −
=

− −

+−=

−

− +

=

+

+

+

+ −

∑∫

∑∫

∑∫ ∫

∫ ∫

& &

& &

 (8) 

where 
0P > , 1 0Q > , 2 0Q > , 1 0R > , 2 0R > , 1 0Z > , 

2 0Z > , 0H > are  real symmetric matrices of 

appropriate dimensions , 
2

M mτ τσ −
= . Taking the 

time derivative of ( )tV x with respect to t  along the 

trajectory of system (5), yields 

2

1

2

1

2

1

2

1

2
2

1

( ) 2 ( ) [ ( ) ( ( ))]

( ( 1) ) ( ( 1) )
2 2

( ) ( )
2 2

( ( 1) ) ( ( 1) )

( ) ( )

( ) ( ) ( )
2

( )
2

T
t

T m m
i

i

T m m
i

i

T
m i m

i

T
m i m

i

Tm
i

i

Tm
i

V x x t P Ax t BKx t t

x t i Q x t i

x t i Q x t i

x t i R x t i

x t i R x t i

x t Z x t

x s Z x

τ
τ τ

τ τ

τ σ τ σ

τ σ τ σ

τ

τ

=

=

=

=

=

= + −

+ − − − −

− − −

+ − − − − − −

− − − − −

+

−

∑

∑

∑

∑

∑

&

& &

& &

2 ( 1)
2

1 2

2

( )

( ) ( ) ( )

( ) ( ) ( )

m

m

m

M

t i

t ii

T
M m

t T
M m t

s ds

x t Hx t

x s Hx s ds

τ

τ

τ

τ

τ τ

τ τ

− −

−=

−

−

+ −

− −

∑∫

∫

& &

& &

       

(9) 

Applying lemma1, the following inequalities hold: 

2 ( 1)
2

1 2

2

1

( ) ( )
2

( ( 1) ) ( ( 1) )
2 2

*
( ) ( )

2 2

m

m

t i Tm
i

t ii

T

m m

i i

i im m

x s Z x s ds

x t i x t iZ Z

Z
x t i x t i

τ

τ
τ

τ τ

τ τ

− −

−=

=

− ≤

   − − − −   − 
    −    − −
      

∑∫

∑

& &

   

(10) 
Using the similar method as [9], the following 
equality is obtained 

( )

( )

( )

( )

( ) ( ) ( )

( ( )) ( ) ( )

( ( ) ) ( ) ( )

( ( )) ( ) ( )

( ( ) ) ( ) ( )

m

M

M

m

m

M

t T
M m t

t t T
M t

t T
m t t

t T
M t t

t t T
m t

x s Hx s ds

t x s Hx s ds

t x s Hx s ds

t x s Hx s ds

t x s Hx s ds

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

τ τ

τ τ

τ τ

τ τ

−

−

−

−

−

−

−

−

−

−

− −

= − −

− −

− −

− −

∫

∫

∫

∫

∫

& &

& &

& &

& &

& &

     (11) 

Applying lemma1, yields 



Journal of Theoretical and Applied Information Technology 
 15 September 2012. Vol. 43 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
130 

 

( )
( ( )) ( ) ( )

( ( )) ( ( ))

( ) ( )*

M

t t T
M t

T

M M

t x s Hx s ds

x t t x t tH H

x t x tH

τ

τ
τ τ

τ τ
τ τ

−

−
− − ≤

− −−    
    − −−    

∫ & &

     (12) 

and 

( )
( ( ) ) ( ) ( )

( ) ( )

( ( )) * ( ( ))

mt T
m t t

T

m m

t x s Hx s ds

x t H H x t

x t t H x t t

τ

τ
τ τ

τ τ
τ τ

−

−
− − ≤

− − −     
     − − −     

∫ & &

     (13) 

Since ( ) m M mtτ τ τ τ− ≤ − , the following inequality 

holds: 

( )

( )

( )

( ( )) ( ) ( )

( )
( ) ( ) ( )

( )
( ( ) ) ( ) ( )

( ) ( )( )

( ( )) * ( ( ))

m

m

m

t T
M t t

t TM
M mt t

M m

t TM
mt t

M m

T

m mM

M m

t x s Hx s ds

t
x s Hx s ds

t
t x s Hx s ds

x t H H x tt

x t t H x t t

τ

τ

τ

τ

τ

τ

τ τ

τ τ τ τ
τ τ
τ τ τ τ
τ τ

τ ττ τ
τ ττ τ

−

−

−

−

−

−

− −

−
= − −

−
−

≤ − −
−

− − −−      ≤      − − −−      

∫

∫

∫

& &

& &

& &
 

(14) 
similarly, 

        

( )
( ( ) ) ( ) ( )

( ( ))( )

( ) *

( ( ))

( )

M

t t T
m t

T

m

MM m

M

t x s Hx s ds

x t t H Ht

x t H

x t t

x t

τ

τ
τ τ

ττ τ
ττ τ

τ
τ

−

−
− −

− − −  
≤    − −−   

− 
 − 

∫ & &

  (15) 

Now, define an augmented state vector 

ξ( )t =[ ( )x t ( ( ))x t tτ− ( )
2
mx t

τ
− ( )mx t τ−  

( )mx t τ σ− − ( )Mx t τ− ]. 

Considering (14)-(15), the time derivative ( )tV x&  

can be expressed as follows: 

1

2

( )
( ) ( )(

( )
) ( )

T M
t

M m

m

M m

t
V x t

t
t

τ τξ ϕ
τ τ

τ τ ξ
τ τ

−
≤ Π + Ω Ω + Π

−
−

+ Π
−

&

       (16) 

Applying Lyapunov stability theory, if ( ) 0tV x <& , 

then the system(5) is asymptotically stable.  

Applying lemma2, we can see the following 
matrix inequality holds, 

1

2

( )
( )(

( )
) ( ) 0

T M

M m

m

M m

t
t

t
t

τ τξ ϕ
τ τ

τ τ ξ
τ τ

−
Π + Ω Ω + Π

−
−

+ Π <
−

             (17) 

if and only if  inequalities(18) hold. 

  0T
i ϕΠ + Π + Ω Ω <   ( 1,2i = )            (18) 

Using Schur complement, the above matrix 
inequalities are equivalent to the matrix inequalities 
(7) in Theorem1.  

Theorem1 is proofed. 

Consider the following class of norm-bounded 
uncertain linear time-varying delay system: 

( ) ( ) ( ) ( ) ( ( ))

( ) ( ), [ , ]M m

x t A A x t B B Kx t t

x t t t

τ
φ τ τ

= + + + −
 = ∈ − −

& � �
 (19) 

where, we suppose A and B have parameter 
perturbations asA� and B� which are in the form 
of  

[ ][ ] ( ) A BA B DF t E E=� �          (20) 

where D , AE , BE are constant matrices of 

appropriate dimensions and ( ) Ri jF t ×∈ is an 

unknown time-varying matrix function satisfying 

( ) ( ) ,TF t F t I t≤ ∀ . It is assumed that all the 

elements of ( )F t are Lebesgue measurable. 

Theorem 2  The uncertain system (19) subject to 
the linear fractional norm-bounded uncertainty 
(20)for given constants 0 m Mτ τ≤ ≤   is 

asymptotically stable, if there exist real symmetric 
matrices 0P > , 1 0Q > , 2 0Q > , 1 0R > ， 2 0R > , 

1 0Z > , 2 0Z > , 0H > of appropriate dimensions 

and constants 0iε >  ( 1,2i = )such that the 

following linear matrix inequalities hold 

            * 0 0

* *

T
i i

i

i

M E

I

I

ε
ε

ε

 Σ
 − < 
 − 

       ( 1,2i = )       (21) 

where iΣ is defined in (7), 

0 0 0 0 0
TT TM D P D ϕ =    

[ ]1 2 0 0 0 0 0E E E K=  

Proof.  In LMI (8), replace the system matrices 
A and B with ( ) AA DF t E+ , ( ) BB DF t E+ . 
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Applying the Lyapunov stability theory, if the 
following matrix inequalities hold, 

( ) ( ) 0T T T
i MF t E E F t MΣ + + <  ( 1,2i = )   (22) 

the uncertain closed-loop system(19) is 
asymptotically stable. Applying lemma 3, the above 
matrix inequalities hold，if and only if there exist 
constants 0iε > such that the following inequalities 

hold: 

1 0T T
i i iMM E Eε ε −Σ + + <  ( 1,2i = )   (23)   

Applying Schur complement, the above matrix 
inequalities are equivalent to the linear matrix 
inequalities (21). This completes the proof. 

 

4. NUMERICAL EXAMPLE 
 

In this section, we use an example to show our 
stability criteria which have fewer matrix variables, 
is less conservative. 

Let us consider the system (5) as follows 

0 1

0 0.1
A

 
=  − 

, 
0

0.1
B

 
=  
 

 

The network-based controller is designed with 

[ 3.75K = − ]11.5− .This example is discussed in [2, 

4-6]. Table1 and Table2 list the maximum 
allowable time bound Mτ for various mτ . It is clear 

that Theorem1 is less conservative than others. 

Table 1: MADB Mτ  for 0mτ =  

[2] [4] [5] [6] Theorem1 

0.0538 0.8871 1.0081 1.0239 1.0240 

Table 2: MADB Mτ  for different mτ  

         mτ  

method 
0.05 0.10 0.15 0.20 

[5] 1.0105 1.0132 1.0161 1.0193 

[6] 1.0274 1.0274 1.0292 1.0310 

Theorem1 1.0314 1.0378 1.0431 1.0475 

 
 

 

5. CONCLUSION 
 

The stability problem has been investigated for 
NCSs with both network-induced delay and data 
packet dropouts. A new delay-dependent stability 
criteria has been derived, which improves some 
previous ones in that it has fewer matrix variables 
and less conservatism. Then a numerical example 
has been provided to demonstrate the effectiveness 
of the proposed method.   
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