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ABSTRACT

In this paper, the problem of stability for netwedkcontrol systems (NCSs) is investigated. Consider
both the time-varying network-induced delay andadadcket dropouts, NCSs are transformed into tipica
linear systems with interval time-varying delay.sBd on the obtained model, a new delay-dependent
stability criteria in terms of linear matrix inediti@s (LMIs) is provided by constructing a novéme-
dependent Lyapunov-Krasovskii functional. The taghihtegral inequalities are used to deal withdtuess-
product terms arose from the time derivative of tyapunov-Krasovskii functional for obtaining much
less conservative result. Compared with some pusvimes, the proposed method introduces fewerxmatri
variables and has less conservatism. A numeriGahele is provided to demonstrate the effectivenaess

the benefits of the proposed method.
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1. INTRODUCTION new Lyapunov-Krasovskii functional. Zhang [6]
made use of the information both the lower, upper
As is well known, networked control systemsbounds and the middle point of the time-varying
(NCSs) are widely used in various fields due telelay to obtain a less conservative stability cidte
their low costs, flexible architecture, simplerthan previous results. Nevertheless, the critdiila s
installation and efficiency. Nevertheless, thdeave room for improvement.
introduction of a network brings some new
challenges such awetwork-induced delay and data
packet dropouts which may result in the instabilit
and poor performanceAll of these will make
system analysis and synthesis more difficult.

In this paper, we are concerned with the problem
of stability for NCSs with the effects of both
Yetwork-induced delay and data packet dropouts.
We also adopt the same method as the above
mentioned to consider NCSs as systems with

Recently, the issue oSftability analysisfor interval time-varying delay.A new type of
networked control systems has receive@ugmented delay-dependebyapunov-KrasovskKii
considerable attentiofi-6]. As pointed out by Yue functional is introduced in which the lower bound
[1], NCSs are typical systems with interval time-of the delay is partitioned. A new improved
varying delay. Thus, the existing results aboustability criteriais derivedwithout introducing any
systems with interval time-varying delay can bdree-weighting matrices. Finally, a numerical
applied directly to deal with the problems of NCSsexample is provided to illustrate the effectiveness
The idea has been adopted widely for stabilitpf the proposed method.

analysis of NCSs [4-6]. Park [2] calculated the P ;
maximum allowable delay bound (MADB) by . l;lqt;atmn. T(:le;(;t?gon used :]hroug(;jhout the p?per
using Moon inequality for NCSs. Wu [8] gained g Tairly standard. enotes then— dimensional

result with less conservatism through introducindruclidean space and tife>0means thalP is real
free-weighting matrix method.Fridman [11] Symmetric and positive definiteR(Z) denote the
proposed a descriptor model and given the delaget of real numbers (integers). The superscript
dependent stability conditions in terms of LMIs.' T 'stands for the inverse and transpose of matrix.
The works of Liu [3] investigated the stability for The symmetric elements of the symmetric matrix
NCSs with constant delay. Yue [4] studied thewill be denoted byl

design of robusH_ controllers for uncertain NCSs

by introducing some slack matrix variables. Jiang
[5] presentedH , stabilization criterion by using a

e —
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» Continuous Plant By defining 7(t)=t-ih , tO[i,h+7,,i,,h+
v T..) k=1,2.., system (4) is rewritten as the
Actuatol Sensc following continuous system with interval time-
7} varying delay:
A X(t) = Ax(t) + BKx(t = 7(t)), 5)
= Network | X(t) = @A), tU[-ry,-7,]
A
where r(t) is piecewise-linear such that
Controllert © [«

4 SZ-k SZ-(t)S(ik+1_i|<)h+rl<+1sTM (6)

m

Figure 1: Atypical network control system . o . .
with derivative 7(t) =1 for tZi,h+r7, and 7(t) is
discontinuous at the poirtt=i,h+7, .

2. PROBLEM FORMULATION ) .
To establish our results, we introduce the

Consider the following system through a networl0!lowing lemmas.

which is shown ".1 Fi%l: Lemma 1[9] For any constant matrd O R™",
X(t) = AX(t) + Bu(t) (1) W =W >0, scalarg >0, and vector function
where x() DR" , u(t) DR™ are the system state y.[_g 0] . R"such that the following integration

vector and the_ contrc_)lled input vectok, B are the s well defined, then it holds that
constant matrices with appropriate dimensions. By

.
considering the communication delay between _JJ" )'(T(m)\/\/)'((m)dms{ X(t) }
the sensor and the controller and the t-o X(t-o0)
communication delayr® in the controller, the W W x()
following control law is employed for the system(1) [ . —W}L(t _0)}

(2) Lemma 2[12] Supposev, < y(t)<vy,, where
y(: R, (orZ,) - R (orZ,), then, for any constant
where h is the sampling period anK is a matrix =, ,=,and® of appropriate dimensions, the

ult) = Kxt-7r;° -7,)
tO{kh+7rS+73, k=1,2---

controller gain. following matrix inequality
Substituting (2) into (1), yields O+ (Mt) - 1)=, + (V. — ¥(1)=,<0 holds, if and
X(t) = AX(t) + BKx(kh) - only it ©+(y, =11)=,<0,0+(y, ~p)=, <0
tOfknh+r,,(k+)h+r,,,), k=1,2-- Lemma 3[15] Given any square matrices

Q=Q", M andE , then underF"(t)F(t)<1 ,
Q+MF()E+E'F'(t)M" <0 is obtained if a

. constant £ >0 makeQ+&MMT +£"ETE<O0.
Using the method as [4], the system (3) can be

modified as (4) which considered the data packet

dropout. 3. NEW STABILITY CRITERIA
X(t) = AX(t) + BKx(i, h)
tOfih+7,ih+7.), k=12

wherer, =77 +7, +7,7, 7% is the communication
delay between the controller and the actuator.

(4) In this section, we consider stability for
system(5). By constructing a novel Lyapunov-
Krasovskii functional and using tighter integral
inequalities to deal with cross-product terms, we
have the following result.

Assumel The sensor is clock-driven, the Thoagrem 1 For
controller and actuator are event-driven.

where i, 0{1,2,--} .Throughout this paper, the
following assumptions are needed.

some given constants
O<r, <1, , system (5) subject to (6) is
Assume2 i, >i,, k=1,2---. asymptotically stable, if there exist real symmetri
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matrices P>0 , Q>0 , Q,>0 , R>0
R,>0,2>0, Z,>0, H>0 of appropriate
dimensions such that the following linear matrixtime derivative ofV/(x) with respect tat along the
inequalities hold trajectory of system (5), yields

ziz[nmi QT¢}<O'U:1’2) @ V(%) = 2x" (t)P[AX(t) + BKx(t - 7(t))]
"” R - -D 0~ (-D)

appropriate dimensionsg = Tu ;T”‘ . Taking the

*

2

[ 2
where¢:I (Z,+2,)+(ry —1,)°H —ZXT(t—ié”)QiX(t—i—;)
Q=[A BK 0 0 0 ( )
M=-[0 1 0 - 0 qTH +ZXT(t—rm—(i—1)J)Rx(t—rm—(i—1)0)
[o1 o-1od —ixT(t—rm—iJ)Rx(t—rm—ia)
n,=-[o 1 0 0 0 -I]'H E
[0 1 00 0 -] +(T—m)22)‘<T(t)Zi)’<(t)
and 2 s
M, PBK 2z 0 0 0] oy (YUY g (92 x(9)ds
* M, O H 0 H ZIZ:;I“
*x M Z, 0 +(7y ~7,,)* X (OHX()

- (- 1,)[ :’“ T (9Hx(s)ds

9)

N Applying lemmal, the following inequalities hold:

0
* * * |_|44 O
N
* * * * *

with M, = PA+ATP+Q, -

N =-2H Ty [V (92 i(dss
My =-Q+Q,-2,-Z, =
n,=-Q,+R-2Z,-H . T, ' . T,
xt-(@i-1)-—= Xt-@G-9)-=
Mo <-R+R, o [Xt-(-D) {—zi zi} (t-G(-1)
Moo =—H -R, A ae-i 4 X(t-i2)
Proof. Constructing a Lyapunov-KrasovsKii (10)
functional for the system (5) as Using the similar method as [9], the following
V(x)= X' (t)Px(t) equality is obtained
T =Ty .
+i-[t—.(zl-—l)7 X (8)Q x()ds (7, —rm)j X' (s)Hx(s)ds
i=1 tfl—m
{0
t-1,—(i-1)o T :_(T _T(t))j T(S)HX(S)dS
+Z [, X (9Rx(9)ds 8)
-(r(t)-1,) j K (S)Hx(s)ds  (11)
" --p'm et o .
+7Z;I7 * [ X (9Zx(5)dsd0 -7(t) j " X7 (SHX(S)ds
ry =1)[ " [ K (9HX(s)dsde -(r()-1,) j o, K" (S)HX(S)ds
where Applying lemmal, yields

P>0,Q>0,Q,>0,R>0,R, >0,Z>0,
Z,>0,H>0are real symmetric matrices of

129



Journal of Theoretical and Applied Information Technology

15 September 2012. Vol. 43 No.1 N
© 2005 - 2012 JATIT & LLS. All rights reserved- AT
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195
r(t)
~(, 1)K (HK(ds< som+aipa+rm O
T, =T
12 M m
xt-r@)T[-H H [xt-rty] 12 ,(t) -1, ; (17)
xt-ry) | | * -H][ xt-7y) =T 7. =, 1<
and if and only if i lities(18hold
IT'ana only IT iInequallties old.
~(r(t)-1.) j K" (S)HX(s)ds <
N+N +Q"¢Q<0 (i=1,2) (18)

{x(t—rm)}{—H H}{x(t—rm)} (13)
xt-r)] |+ -H][xt-x(t)

Sincer(t)-r, <71, -, , the following inequality

holds:
~, ~7()) f_’j”: £ (HK(ds
L) J' -1 )X (9HX(s)ds
TM -7,

T(t) J‘

t=7(t)

< Tu —r(t) Xt-r,) [-H
S, T [ XE-T) | | ¢

() -r, )x ()Hx(s)ds

H }[ x(t—rm)}
—H ][ Xt-7()

(14)
similarly,
~®-7,)f K (9HK(9ds
< r(t)—rm[x(t—r(t))} [—H H} (15)
Ty — X(t-r1,) -H

X(t—7(t))
{x(t =Ty )}

Now, define an augmented state vector
(0 =) X(t-7(0) (=) x(t-7,)
X(t-r,-0) x(t-1,) 1

Considering (14)-(15), the time derivatiVéx,)
can be expressed as follows:

V)< én+aTga+ a0,
Ty -7
r(t) T, t (16)
—"M,)E()
M m
Applying Lyapunov stability theory, ¥(x)<O0,
then the system(33 asymptotically stable
Applying lemma2, we can sethe following
matrix inequality holds,

Using Schur complement, the above matrix
inequalities are equivalent to the matrix ineqiedit
(7) in Theoreml.

Theoreml is proofed.

Consider the following class of norm-bounded
uncertain linear time-varying delay system:

X(t) = (AHIA)X(t) + (B +HIB)Kx(t — r(t))

X(t) = (1), t0[-1,,,~7,,]
where, we supposeA and B have parameter

perturbations a@sAandB which are in the form
of

(19)

[DA OB]=DF()[E, E] (20)

where D | E, ,
appropriate dimensions and (t)OR™ is an

unknown time-varying matrix function satisfying
FT(t)F(t)<I, Ot. It is assumed that all the

elements ofF (t) are Lebesgue measurable.

E, are constant matrices of

Theorem 2 The uncertain system (19) subject to
the linear fractional norm-bounded uncertainty
(20)for given constants 0<7, <7, is

asymptotically stable, if there exist real symneetri
matricesP>0,Q,>0,Q,>0, R >0, R,>0,
Z,>0, Z,>0,H >0 of appropriate dimensions
and constantsg >0 ( i=1,2 )such that the
following linear matrix inequalities hold

5 &M E
* —gl 0 [<0 (=12) (21)
* * _gl

where Z, is defined in (7),
M=[D'P 0 0 0 0 0 D'¢]
E=[E EK 0 0 0 0 (

Proof. In LMI (8), replace the system matrices
A and B with A+DF(t)E, B+ DF(t)E,
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Applying the Lyapunov stability theoryif the 5. CONCLUSION
following matrix inequalities hold,

S+MFME+E'TFT()MT <0 (i =1,2) (22) The stability problem has been investigated for
NCSs with both network-induced delay and data
the  uncertain closed-loop system(19) is packet dropouts. A new delay-dependent stability
asymptotically stable. Applying lemma 3, the aboveriteria has been derived, which improves some
matrix inequalities hold if and only if there exist previous ones in that it has fewer matrix variables
constantss; > 0such that the following inequalities and less conservatism. Then a numerical example
hold: has been provided to demonstrate the effectiveness
of the proposed method.
S +eEMMT+¢7ETE<O (i=1,2) (23)
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