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ABSTRACT 

 
Due to highly complex of the grinding mechanism of the ball mill, it is a challenging problem to select the 
informative frequency spectral features of the response signals. High dimensionality and colinearity of the 
frequency spectrum are unfavorable to build the effective mill load model in the wet ball mill. Interval 
Partial Least-Squares Regression (iPLS) is applied to select the feature frequency bands of the shell 
vibration signal and acoustical signal, which are closely relevant to the parameters of ball mill load. 
Redundant or irrelevant frequency spectral variables are removed to improve the complexity of ball mill 
load model and enhance the comprehension of the grinding process using the frequency spectrum features. 
The experimental results have demonstrated that the performance of the mill load models based on feature 
spectrum outperforms the full spectrum model for both the shell vibration signal and acoustical signal. 
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1. INTRODUCTION  
 
Parameters and statuses of the ball mill load are 

very important equipment information and key to 
control the grinding process [1]. They are closely 
related to the production rate, product quality, 
energy consumption in the grinding process[2]. In 
recent years, with the development of sensors, data 
processing and communication technology, the 
analysis and monitoring of the ball mill load based 
on shell vibration signals with high sensitivity and 
strong anti-interference have increasingly attracted 
much focus from both academic and industrial 
fields [3]. However, comminuting mechanism of 
ball mill is very complex. Distribution of mineral 
particles, hardness of ore, slurry viscosity, the 
number and size of steel ball and other factors 
directly influence internal impact and grind in the 
ball mill. It is very difficult to extract the features of 
the shell vibration signals in the time domain, 
which are caused by superposition of a series of the 
impact force and frictions with different intensity 
and frequencies ranges [4]. Although the vibration 
and acoustic frequency spectrum contain plenty of 
information about the mill load, the modeling via 
full spectrum is difficult to build effectively. This is 
because the irrelevant and redundant spectral 
variables maybe cover up the real operation mode 
and deteriorate the quality of the model due to the 

hyper-high dimension and high colinearity in the 
frequency spectrum variables. Therefore, it is very 
necessary to select the feature spectral bands which 
are directly relevant to the parameters of the ball 
mill load. 

Parameters of mill load are reflected by different 
frequency bands of the vibration signals. A sample 
clustering and kernel principal component analysis 
was used to select the feature frequency bands and 
extract the nonlinear features [5, 6]. Although 
PCA/KPCA can retain the spectrum information as 
much as possible, the principal components 
extracted by the PCA/KPCA mainly reflects 
changes of itself feature-spectrum without 
considering the influence to parameters of ball mill 
load, which might result in loss of useful 
information and instability of model performance. 
The selected feature frequency bands directly 
relevant to the parameters of ball mill load by using 
genetic algorithm- interval partial least square were 
the suboptimal solutions, due to the random 
initialization and multi-run of genetic algorithm.  

Nogaard et al. [7] proposed a wavelength 
selection process called interval partial least 
squares (iPLS) regression. The iPLS algorithm 
splits the full spectrum into many sub-intervals of 
equal width, where each sub-interval builds a local 
PLS regression model. The best regression model 
based on sub-intervals should require the smallest 
number of PLS components and produce the lowest 
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RMSECV values. iPLS and its extension methods, 
such as Forward Interval Partial Least Squares 
(FiPLS), Backward Interval Partial Least Squares 
(BiPLS) [8], Synergy Interval Partial Least 
Squares[9] and Moving Window Partial Least-
Squares[10], are widely used in the spectral 
engineering field to analyze various of the spectrum 
information[11]. 

Due to high dimensionality and colinearity of the 
frequency spectrum difficult to build the effective 
mill load model, a frequency feature selection 
method of the shell vibration signal relevant to the 
parameters of ball mill load is proposed based on 
iPLS. Redundant or irrelevant frequency spectral 
variables are removed to improve the predictive 
power of ball mill load model and enhance the 
comprehension of grinding process. 

2. FEATURE SELECTION METHOD OF   
FREQUENCY SPECTRUM 

According to the mechanism of the vibration 
signal and acoustical signal, a frequency spectral 
feature of the ball mill outer response method based 
on iPLS is proposed as depicted in Figure 1. 

 
 Figure 1: The feature selection strategy of frequency 

spectrum based on iPLS 

Feature selection of the frequency spectrum of 
the shell vibration signals from the ball mill as 
follows: 

 (1)   First, remove the outliers and noise 
from the original vibration or acoustical 
signals tX . The time domain waveform of 
shell vibration or acoustical signal are 
transformed into the frequency domain power 
spectrum by PWELCH [7], and the power 
spectrum Xω are averaged by several rotation 
periods of frequency spectrum. 

(2)  Full-spectrum Xω  are split into K  
subintervals of equal width, k , 1, ,X k Kω = L . 

(3)    The local partial least squares 
regression model ,i kPLS  of mill load 
parameter iy  ( 1,2,3i = ), such as mineral to 
ball volume ratio, pulp density and charge 
volume ratio, is built on each interval kXω  by 
using the nonlinear iterative partial least 
squares algorithm. The ,i kPLS  model is 
expressed as follows: 
.{ } { }, , , ,, , , ,PLS

k i i k i k i k i kX Y W P B Qω ⎯⎯⎯→ .          (1) 

where , , ,1 , ,, , n h
i k i k i k hP p p R ×⎡ ⎤= ∈⎣ ⎦L  and 

, , ,1 , ,, , n h
i k i k i k hQ q q R ×⎡ ⎤= ∈⎣ ⎦L are loading 

matrix of spectrum interval and output 
parameters of the ball mill load, respectively. 

,i kW  is the weight matrix and ,i kB  is the 
diagonal coefficient matrix of inner model, 

( ) 1

, , , , ,
T T

i k i k i k i k i kB t t t u
−

= . The output ,ˆi ky  of 
iPLS mode developed on the i-th mill load 
parameter and the k-th spectrum interval is 
described in Eq. (2): 

( ) 1

, , , , , , ,ˆ T T
i k k i k i k i k i k i ky X W P W B Qω

−
=           (2)  

 (4)    Prediction performance of the local 
models developed on spectral subintervals of 
equal width are compared based on the 
validation parameter RMSECV (Root Mean 
Squared Error of Cross Validation) and the 
other parameter such as r (squared correlation 
coefficient). RMSE is defined as follows: 

( )2
,ˆ

, 1, 2,3i k i
i

y y
RMSE i

N
−

= =∑ .         (3) 

where N is the number of samples, iy  is the 
laboratory measured value and ,ˆi ky  is the 
predicted value. RMSEC is RMSE calculated 
from the calibration samples, RMSECV is 
calculated from the cross-validated samples, 
and RMSEP is calculated from the 
independent test set. Correspondingly, the 
correlation coefficients for these three 
situations are calculated. The lowest 
RMSECV of all the local models is the first 
chosen spectral region.  

(5)   Develop PLS models for all possible 
combinations of  the first chosen spectral 
region and the rest of the sub-intervals one by 
one. RMSECV is calculated for each 
combination region. The combination of two 
intervals with the lowest RMSECV is selected 
as the second spectral feature. 

 (6) This procedure isn't stopped until the 
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RMSECV increases with the number of 
interval combination. 

3. EXPERIMENT RESULTS AND DISCUSS 

3.1 Descriptions Of Experimental Ball Mill 

The experiments were performed on a 
laboratory scale lattice-type ball mill (XMQL-
420×450) with the drum of 460 mm in diameter and 
460 mm in length, as shown in Fig.1. The vibration 
signals of the ball mill were measured by a 
vibration acceleration sensor with sampling 
frequency 51,200Hz. The acoustic sensor was 
installed in the distance 1/3 from the inlet of ball 
mill. The experimental ball mill has maximum ball 
load of 80 kg, pulverizing capacity of 10 kg per 
hour and a rated revolution of 57 per minute. The 
grinding experiments are done by adding the steel 
balls of different size(diameter of 30, 20 and 
15mm), copper ore and water into the ball mill, 
which have been homogenized, and last for one 
minute.  

2Acoustic Sensor 3

Ball Mill

1 Shell Vibration 
Acceleration Sensor

Current sensor

PC Signal Acquisition

mine slurry
Ball
Minral
Water

 
Figure 2: Signal acquisition from the experimental ball 

mill 

 

 

 

3.2 Feature Selection Of Vibration Frequency          
Spectrum 

In the application of the iPLS algorithm, the 
number of intervals, the number of interval 
combination, the number of the local PLS models 
built on each interval are determined by the lowest 
RMSECV. Table 1 shows the results of feature 
selection of vibration frequency spectrum which are 
closely relevant to the parameters of mill load, such 
as mineral to ball volume ratio, charge volume ratio 
and pulp density. RMSECV is calculated for each 
combination of different intervals and the number 
of intervals. Take the mineral to ball volume ratio 
for instance, the spectral region  is chosen as the 
first interval with comb=[1] when  the RMSECV is 
the lowest among all the local PLS models 
developed on the single interval. The chosen 
interval in combination with all the remaining 
intervals, the lowest RMSECV is chosen as the 
second interval combination, comb=[1 13]. The 
spectral feature selection stops when the RMSECV 
doesn't decrease with the addition of the number of 
combination intervals.  Similarly, the combination 
of charge volume ratio with the lowest RMSECV is 
comb=[18 15 14 13 17 1 16] and combination of 
pulp density is comb=[7 10 8 9]. 

RMSECV of each interval models (bars) and 
full-spectrum model (dotted line) of the first 
selected interval of the vibration signals are shows 
in Figure 3. In Figure 3 (a) to (c), the vertical axis 
represents RMSECV of all the local PLS models 
for the mineral to ball volume ratio, charge volume 
ratio and pulp density, respectively. The number of 
interval (20) is expressed in abscissa axis. The 
numbers on the bar graph below represent the 
optimal number of latent variables of the local PLS 
models. It can be seen from Figure 3, RMSECV of 
local PLS model built on the first selected feature 
frequency band is less than the full-spectrum PLS 
model in the choice of the three mill load 
parameters of vibration signals. 
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Table I 
Feature selection of the shell vibration spectrum closely relevant to the mill load parameters  

Mill load 
parameters 

Interval 
number Segments PC Combination 

number(Comb) Interval region RMSECV rcv RMSEP rp 

Mineral 
to ball 
volume 
ratio 

10 5 5 [6 4 1 5 2 3] 
5001-6000,3001-4000, 

1-1000,4001-5000, 
1001-2000,2001-3000 

0.5114 0.8089 0.8039 0.7409 

10 10 6 [4 6 5 2 1 3] 
3001-4000,5001-6000, 4001-

5000,1001-2000, 
1-1000,2001-3000 

0.5423 0.7884 0.8907 0.7129 

20 5 5 [16 11 17 10 
14 9 13 1] 

7501-8000,5001-5500, 
8001-8500,4501-5000, 
6501-7000,4001-4500, 

6001-6500,1-500 

0.7704 0.6688 0.2908 0.9521 

20 10 5 [16 11 17 10 
14 9 13 1] 

7501-8000,5001-5500, 
8001-8500,4501-5000, 
6501-7000,4001-4500, 

6001-6500,1-500 

0.7590 0.6420 0.2908 0.9521 

Charge 
volume 

ratio 

10 5 5 [6 10 7 8 9 2 3]
5001-6000,9001-10000, 

6001-7000,7001-8000,8001-
9000,1001-2000,2001-3000 

0.1024 0.7542 0.0545 0.9348 

10 10 5 [10 4 8 9 5 2 3]
9001-10000,3001-4000,7001-

8000,8001-9000,4001-5000,1001-
2000,2001-3000 

0.1249 0.7269 0.0716 0.8827 

20 5 4 [18 15 14 13 
17 1 16] 

8501-9000,7001-7500, 6501-
7000,6001-6500, 

8001-8500,1-500,7501-8000 
0.1379 0.6933 0.0498 0.9509 

20 10 4 [18 15 14 13 
17 1 16] 

8501-9000,7001-7500, 6501-
7000,6001-6500, 

8001-8500,1-500,7501-8000 
0.1402 0.6344 0.0498 0.9509 

Pulp 
density  

10 5 4 [7 10 8 9] 
6001-7000,9001-10000, 
7001-8000,8001-9000 

0.1605 0.7796 0.0601 0.9684 

10 10 4 [7 10 9 8] 
6001-7000,9001-10000, 
8001-9000,7001-8000 

0.196 0.7533 0.0601 0.9684 

20 5 4 [19 17 9] 
9001-9500,8001-8500, 

4001-4500 
0.1912 0.7507 0.0774 0.9630 

20 10 6 [11 17 9] 
5001-5500,8001-8500, 

4001-4500 
0.2449 0.7376 0.0550 0.9692 
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                                   (c) 

Figure 3:  Shell vibration signal feature selection of the 
mill load parameters (a) Mineral to ball volume ratio (b) 

Charge volume ratio (c) Pulp density 

3.3 Feature Selection of Acoustic Frequency 
Spectrum 

Feature selection of the acoustic signals is 
similar to feature selection of the shell vibration 
signals. The best interval combination of the 
mineral to ball volume ratio is comb=[7 9 6 5 3 1 4] 
when the full spectrum is split into 10 intervals and 
five latent variables of the first chosen region. The 
best interval combination of the  charge volume 
ratio is comb=[10 2 6 5 3] when the full spectrum is 
split into ten intervals and two latent variables of 
the first chosen region. The best interval 
combination of the pulp density is comb=[12 10 9 5 
1 11] when the full spectrum is split into 20 
intervals and five latent variables of the first chosen 
region. The first feature band selection of the 
acoustic signal  for the mill load parameters are 
shown in Fig.4. It can be seen from Figure 4, 
RMSECV of the first selected feature band model 
of acoustic signal  for three mill load parameters are 
less than their full spectrum PLS model. 
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Figure 4: Acoustic signal feature selection of the mill 

load parameters (a) Mineral to ball volume ratio (b) 
Charge volume ratio (c) Pulp density 

3.4 Comparisons of Feature-Spectrum Model                 
and Full-Spectrum Model 

Performance comparison of full spectrum PLS 
model and feature spectrum PLS model is shown in 
Table 2. From Table 2, prediction error of the 
vibration and acoustic feature spectral model is less 
than their full spectrum model. Full-spectrum 
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model performance of the shell vibration signals 
and acoustic signals are compared for three 
parameters of the mill load. Only the ball volume 
ratio parameter of the mill load, prediction RMSE 
of the full spectrum model of acoustic signal is less 
than the full spectrum model of the shell vibration 
signal. For the charge volume ratio and pulp density 
parameters of the mill load, the performance of 
shell vibration full-spectrum model are superior to 
the acoustic full-spectrum model. Model results of 
the full spectrum and the feature spectrum for the 
shell vibration and acoustic signals are shown in 

Figure 5. Figure 5 (a) and (b) represent the full 
spectrum and feature spectrum PLS model of the 
shell vibration signal, and (c) and (d) represent  the 
full spectrum and feature spectrum PLS model of 
the acoustic signal. It can be seen from Figure 5, 
prediction results of the feature spectrum model are 
superior to the full spectrum for the shell vibration 
signal and acoustic signal, and performance of 
feature spectrum model of shell vibration signal is 
better than the acoustic signal feature spectrum 
model.  

 

Table II  
Performance comparisons of iPLS model and full-spectrum PLS model 

Model 
Data Modeling method mineral to ball volume ratio charge volume ratio pulp density 

RMSEP rp RMSEP rp RMSEP rp 

vibration Full-spectrum 
PLS 0.7976 0.7372 0. 1314 0.8117 0. 0582 0.9471 

vibration Feature-spectrum 
iPLS 0.2907 0.9521 0.0550 0.9692 0.0498 0.9509 

acoustic Full-spectrum 
PLS 0.4500 0.8623 0.2164 0.2459 0.2277 0.5758 

acoustic Feature-spectrum 
iPLS 0.3579 0.9326 0.1091 0.8808 0.1073 0.7255 
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Figure 5: Predictions of full-spectrum model and feature-

spectrum model (a) vibration full-spectrum model; (b) 
vibration feature-spectrum model; (c) acoustical full-

spectrum model; (d) acoustical feature-spectrum model. 

4. CONCLUSION 

Aiming at the ultra-high-dimensionality and 
strong collinearity existing in the  spectrum data of 
the wet ball mill, this paper presents a feature 
selection method of the shell vibration and acoustic 
spectrum based on interval partial least squares, and 
builds full spectrum and feature spectrum PLS 
model of the mineral to ball volume ratio, charge 
volume ratio and pulp density of the three mill load 
parameters. The experimental results show that 
prediction performance of PLS model based on the 
feature spectrum is better than the full-spectrum 
model, and the feature spectrum model based on the 
shell vibration is  superior to the acoustic feature 

spectrum model. Due to the experiment limitations 
to small samples of a wide range of operating 
conditions change, the more experiments should be 
done to further verify the feature bands. 
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