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ABSTRACT 
 

In recent years, Graphics Processing Units(GPUs) have attracted the attention of many application 
developers as powerful massively parallel system. Computer Unified Device Architecture (CUDA) as a 
general purpose parallel computing architecture makes GPUs an appealing choice to solve many complex 
computational problems in a more efficient way. Sparse Matrix-vector Multiplication(SpMV) algorithm is 
one of the most important scientific computing kernel algorithms. In this paper, we proposed new 
parallelization algorithms that CSR-M based on CSR format and ELLPACK-R based on ELLPACK 
format, which are realized the parallelism kernel on GPU with CUDA. We discussed implementing 
optimizing SpMV on GPUs using CUDA programming model, the optimization strategies including: 
mapping thread, mergering access, reusing data, avoiding branch, optimization thread block. The 
experiment results showed the proposed optimization strategies can improve performance, memory 
bandwidth and reduce the execution time of kernel. 

Keywords: Sparse Matrix-vector Multiplication, Computer Unified Device Architecture, Graphics 
Processing Unit 

 
1. INTRODUCTION  
 

With the rapid growth of computing complexity 
and data, general CPU computing power has failed 
to meet its needs. The speed of Graphics Processing 
Unit (GPU) development is more than Moore's 
Law, and the computing performance, memory 
bandwidth is far more than the development speed 
of the CPU. As modern GPUs have become 
increasingly powerful, inexpensive and relatively 
easier to program through high level API functions, 
they are increasingly being used for nongraphic or 
general purpose applications (called GPGPU 
computing). 

Sparse Matrix-vector Multiplication (SpMV) 
operation is widely used in solving large-scale 
linear system and solving matrix eigenvalues 
problems [1], especially in iterative method, it is a 
key step that influences the computing 
performance. SpMV is a typical of memory 
bottleneck operation, namely the rate of computing 
and memory is low, ALU is seriously unsaturated, 
and it is difficult to achieve the throughput of high 
floating-point operations. SpMV has the nature of 
parallelism, how to use modern multi-processor 

platform research the parallelism of SpMV is one 
of the feasible direction to improve performance. 

According to the deficiency of the traditional 
parallel strategies, we also proposed new 
parallelization algorithms that CSR-M based on 
CSR format and ELLPACK-R based on ELLPACK 
format, and realized the parallelism kernel in GPU 
with CUDA. Then we propose the more efficient 
performance optimization strategies: mapping 
thread, mergering access, reusing data, avoiding 
branch, optimization thread block, which can be 
realized based on CSR format and ELLPACK 
format. The experiment results showed the 
proposed optimization strategies can be improved 
performance, memory bandwidth and reduce the 
execution time of kernel. 

The rest of this paper is organized as follows: 
section II introduces related work, improved Sparse 
Matrix format is detailed in section III, parallel 
computing for SpMV model based on GPU is 
proposed in section IV, the optimization strategy is 
proposed in section V, section VI contains our 
results and evaluation, conclusion is shown in 
section VII. 

 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31 August 2012. Vol. 42 No.2 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
157 

 

2. RELATED WORK 
 

2.1 GPU PROGRAMMING WITH CUDA 
CUDA is a parallel computing architecture 

developed by NVIDIA Corporation [2], and allows 
writing and running general-purpose applications 
on the NVIDIA GPU’s. CUDA uses threads for 
parallel execution, and GPU allows thousands of 
threads for parallel execution at the same time. 

On GPU, there is a hierarchy of memory 
architecture to program on it, we propose the 
memories in our implementation: registers, shared 
memory, global memory, constant memory, texture 
memory. In the memory architecture, the fastest 
memories are the shared memories and registers. 
The other memories are all located on the GPUs 
main RAM. The constant memory is favourable 
when multiple processor cores load the same value 
from cache. Texture cache has higher latency but it 
has a better acceleration ratio for accessing large 
amount of data and non-aligned accessing. The 
memory architecture of GPU is described in Figure 
1.To gain better performance, we must manage the 
shared memory, registers, and global memory 
usage. 
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Figure 1: Memory architecture of CUDA 

 
2.2 SPARSE MATRIX-VECTOR MULTIPLICATION 

The bottleneck problems of memory are those 
algorithms that each floating point operations need 
to multiple-access memory, SpMV is one kind of 
this algorithm [3]. In the past twenty years, there 
have been a lot of work for the optimization of the 
SpMV algorithm, from the point of view of the 
memory ,optimization is mainly to improve the 
computation performance [2] [4] [5], which most of 
the optimization work is focused on CPU that 
generalization system structure [6]. But the 
optimization strategy can't be directly used in GPU. 
GPU is massively parallel systems, it has multi-
stage storage system structure. In order to play the 

advantages of GPU memory high bandwidth, we 
need to accord to the characteristics to design 
different optimization strategy. 

In [7], Nathan Bell and Michael Garland 
provided data structures and algorithms for SpMV 
that are efficiently implemented on CUDA platform 
for the fine-grained parallel architecture of the 
GPU. They emphasized memory bandwidth 
efficiency and compact storage formats when given 
the memory-bound nature of SpMV. They also 
developed methods to exploit several common 
forms of matrix structure while offering alternatives 
which accommodate greater irregularity. 

In [8], with indirect and irregular memory 
accesses resulting in more memory access per 
floating point operation, Baskraran proposed 
optimizations to effectively develop a high-
performance SpMV kernel on NVIDIA GPUs. The 
optimizations including: exploiting synchronization 
-free parallelism, optimized thread mapping based 
on the affinity towards optimal memory access 
pattern, optimized off-chip memory access to 
tolerate the high access latency, exploiting data 
reuse. 

Based on the above, this paper emphasize its 
optimization strategy in the process of SpMV 
algorithm on GPU, the optimization strategy is 
aimed at the system structure of the GPU, and 
consider the GPU complex storage management 
and the mapping optimization between threads. 

2.3 SPARSE MATRIX FORMAT 

In scientific computing, SpMV has been proven 
to be a special important of numerical algorithm 
[9], it has the characteristics of high intensity 
calculation, high parallel degree and simply control, 
so matrix calculation is very suitable to GPU for 
parallel computing. How to play the powerful 
computing ability of GPU in sparse matrix vector 
algorithm is need to deal with. 

Sparse matrix has several storage formats such 
as ELLPACK, COO, CSR, and Hybrid and so on. 
These storage formats are described detailed in 
[10]. Each format is different in storage 
requirements, calculation characteristics, access and 
operation of the matrix element method. Different 
storage formats are determined by the sparse matrix 
mode, that is, the distribution of non-zero elements 
in the matrix. In this paper, we discussed 
optimization strategies based on CSR and 
ELLPACK storage format to suit the GPU 
architecture. 

CSR format is the more popular storage 
format[10][11],it is a line of compressed format 
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which alter storing two-dimensional array of sparse 
matrix into three one-dimensional arrays: A, 
Col_Idx, Row_Ptr. Scan follow the line width for 
the sparse matrix, and will stored the zero elements 
in array A; An array of Col_Idx stored column 
index of non-zero elements in array A 
corresponding location in the original matrix; An 
array of Row_Ptr stored an index of every row in 
the first non-zero elements in an array of A in 
primitive sparse matrix. For M * N matrix, the 
length of Row_Ptr array is M+1, the offset of i-th 
row stored in Row_Ptr [i], the last Row_Ptr [M] in 
sparse matrix stored the total number of non-zero 
elements. We give an example of 5 * 4 sparse 
matrix, as shown in Figure 2, Figure 3, how to use 
the CSR storage formats to show the original sparse 
matrix. 

0 2 0 4 0

1 2 3 0 0

0 1 0 0 0

0 0 0 1 1
 

Figure 2: 5 * 4 sparse matrix 

4 1 2 3 12 1 1=A

3 0 1 2 11 3 4=Col_Idx

2 5 6 80=Row_Ptr
 

Figure 3: CSR storage format of sparse matrix 
 
ELLPACK format is not general storage format, 

because this kind of storage format has certain 
requirement to the sparse matrix, which demands 
the number of non-zero element has little change. 
ELLPACK format has only two arrays, which 
respectively are: A, Col_Idx. 

The format structure mode of ELLPACK is 
similar to CSR, the non-zero elements are moved to 
the left side of matrix, and the zero elements are 
moved to the right side of the matrix, the Figure 4 
is shown in CSR storage format of sparse matrix. 

2 4 0 0 0

1 2 3 0 0

1 0 0 0 0

1 1 0 0 0
 

Figure 4: CSR storage format of sparse matrix 

In determining the max length of row, the zero 
elements that smaller than max will be discarded. 
Finally, according to the column-wise scan the 
results matrix, all elements of the results matrix are 
stored in the array A, An array of Col_Idx stored 
column index of non-zero elements in array A 
corresponding location in the original matrix. Here, 
we are not consider X in an array of Col_Idx, 
because the zero elements filled in array A is not 
important, is only convenient to the same 
addressing way to element, Figure 5 and Figure 6 is 
original sparse matrix 2 D ELLPACK array and 1 
D ELLPACK array. 

2 31=A

2 4 0

1 0 0

1 1 0

1 20=Col_Idx

1 3 X

1 X X

3 4 X
 

Figure 5: 2D ELLPACK array 

1 1 1 4 22 0 1=A

0 1 3 3 11 X 4=Col_Idx

0 3 0 0

x 2 X X

 
Figure 6: 1D ELLPACK array 

For the M * N sparse matrix that each line at most 
K nonzero elements, ELLPACK format need to use 
dense array A[M*K] to store, when the number of 
nonzero elements is less than K, we filling with zero 
elements. 

3. IMPROVED SPARSE MATRIX FORMAT 

3.1 IMPROVED CSR FORMAT  
CSR-M format is proposed on the basis of CSR 

format, which is improved based on the 
characteristics of unique hierarchy structure of 
memory in GPU. At the same time, it is also based 
on general purpose, so CSR-M format may be 
considered to be general storage formats. CSR-M 
format is composed of three array, they are 
respectively: A, Col_x, Row_Ptr. 

In CSR format, an array of Col_Idx stored 
column index of non-zero elements in each row 
corresponding location in the original matrix. But 
in this paper, array of Col_Idx no longer stored 
index value of column, but stored vector X 
elements that corresponding index position on the 
nonzero elements multiplication, the name of array 
modification of Col_x. 

 After modification the CSR format, only need 
copy array Col_x to the GPU, no longer need copy 
vector X from CPU to GPU. This way reduces data 
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transfer between CPU and GPU, at the same time, it 
also reduces the kernel access the global memory. 
The Global memory can provide high memory 
bandwidth, but memory access latency is very high, 
this improvement reduced access time latency of 
global memory and improved computing 
performance of the sparse matrix vector 
multiplication. The optimization of the CSR storage 
formats in the Figure 7. We hypothesis input vector 
X is [1-5]. 

4 1 2 3 12 1 1=A

4 1 2 3 22 4 5=Col_x

2 5 6 80=Row_Ptr
 

Figure 7: CSR-M storage format of sparse matrix 
 
3.2 IMPROVED ELLPACK FORMAT 

ELLPACK-R format is based on ELLPACK 
format, it is designed to SPMV in GPU. Its 
structure is not different in ELLPACK, it increased 
the array of RL, the size of the array RL is the 
number of lines N in matrix, array RL is stored the 
number of nonzero elements in each line, figure 8 
and figure 9 is original sparse matrix 2 D 
ELLPACK array and 1 D ELLPACK array. 

2 31=A

2 4 0

1 0 0

1 1 0

1 20=Col_Idx

1 3 X

1 X X

3 4 X

3=RL

2

1

2
 

Figure 8: 2D ELLPACK array 

1 1 1 4 22 0 1=A

0 1 3 3 11 X 4=Col_Idx

3 1 22=RL

0 3 0 0

x 2 X X

Figure 8: 1D ELLPACK array 

1 1 1 4 22 0 1=A

0 1 3 3 11 X 4=Col_Idx

3 1 22=RL

0 3 0 0

x 2 X X

 

Figure 9: 1D ELLPACK array 

4. PARALLEL COMPUTING FOR SPMV 
MODEL BASED ON GPU 

4.1 CPU REALIZED SPMV 
The serial algorithm based on the CSR-M format 

is shown in table I, this algorithm is realized its 
parallelization in multiple processors, parallelism is 
realized in outer loop, so the single processors is 
responsible for computing the row of matrix. 

Table I 
Serial algorithm based on the csr-m format 

 
The SPMV serial algorithm based on 

ELLPACK-R format is shown in table II. This 
algorithm in multiprocessors realized 
parallelization, parallelism realization in inner 
circulation. 

Table II 
Serial algorithm based on the ELLPACK-R format 

 
4.2 GPU REALIZED SPMV 

Nathan Bell and Michael Garlandy proposed the 
parallelism SPMV kernel in NVDIA GPU use 
CUDA [7], the kernel covered a variety of sparse 
matrix storage formats. Here we only introduced 
SPMV parallelization kernel algorithm of CSR-M 
format and ELLPACK-R format. 

The SPMV parallelization kernel algorithm 
based on CSR-M format in GPU is shown in table 
III. Here the method of parallelism is: use a Warp 
threads to responsible for computing non-zero 
elements in sparse matrix, don't need to fill zero 
elements to align, the intermediate results put on 
sharing memory, and then accumulate the 
intermediate results through reduction summation, 
finally through thread 0 to get the final results. 

The SPMV parallelization kernel algorithm 
based on ELLPACK-R format in GPU is shown in 

{ for i=0 to rows 
{y(i)=0; 
 for j= Row_Ptr(i) to (Row_Ptr(i+1)-1) 
  {y(i)=y(i)+A(j-1)*x(Col_Idx(j-1));} 
} 
} 

{the length of RL array is same to the number of line  
MAX=The maximum row length; 
for i=0 to rows 
{y(i)=0;} 
for i=0 to MAX 
 {for j=0 to Rows 
   {if i<RL(j) 
y(j)=y(j)+A(j+i*Rows)*x(Col_Idx(j+i*Rows));} }} 
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table IV. Here the method of the parallelism is: use 
a thread to responsible for computing nonzero 
elements of one line in matrix, align ELLPACK-R 
array with filling the zero elements, the ELLPACK-
R kernel is not need to continuous access to x 
vector. 

Table III 
  Spmv kernel for the csr-m sparse matrix 

 

Table IV 
Vector spmv kernel for the ellpack-r sparse matrix 

5. OPTIMIZATIONS FOR SPMV MODEL 
BASED ON GPU 

The CUDA programming model greatly 
simplified the difficulty of using the GPU for 
general purpose computing, but compared to 
isomorphic system that only included CPU, it is 
more complicated to program in the heterogeneous 
system based on the CPU-GPU, and the program's 
performance optimization is even more difficult. 
Generally affect the performance of CUDA 
program includes the main three factors: memory 
access latency, load balance and global 
synchronous spending [12]. These factors in 
different computing platforms the causes and the 
corresponding optimization method is not same. 

5.1 OPTIMIZATION CSR-M SPMV FORMAT 
CSR-Vector used one warp calculating elements 

of one line according to the circle. In the process of 
calculation, in order to get the output vector, we 
reduce summing in shared memory. However, if the 
number of nonzero elements in the row is less than 
32, the computing performance of CSR-Vector will 
drop. When the number of nonzero elements in the 
row is more than 32, the computing performance 
will be good. For the various shortcomings of the 
CSR-Vector kernel, we propose the following 
optimization strategy: 

(1) Thread mapping 
In [7], taken the method that calculation of each 

warp corresponds to each element in the output 
vector y in the kernel, the natural features of 
synchronization improve the computation 
performance. The shortcoming is when the number 
of non-zero elements of each row in sparse matrix 
is less (each row only the individual non-zero 
elements), it will waste of computing resources. In 
this paper, we use the half-warps as a unit, set the 
number of threads in one line mapping as 16. 

(2) Merger access 
In the CSR-M format of the SPMV, the array A 

sequentially stored the nonzero elements of sparse 
matrix according to line way, so the thread access 
the elements of each row also meet the 
requirements of the merger memory access. If the 
number of nonzero elements in each line is more 
than 16, memory access of one line will be splitted 
into multiple memory access, each access are meet 
to merge access 

(3) Data reusing   
In the CSR-M format of the SPMV, we put the 

intermediate results into the shared memory, and 
finally summing the intermediate results in the 
shared memory. In this paper, we use the method of 

{ _global_void spmv_csr-m_Kernel(const int num_rows, 
const int * Row_Ptr, const int *Col_Idx, const Float * A, 
const Float * x, Float* y) 
{ __shared__ Float vals[];     

int thread_id=blockDim.x*blockIdx.x+threadIdx.x; 
int Warp_id= thread_id/ 32; 
int lane = thread_id & (32-1); 

int row = Warp_id; 
 if(row < num_rows) 
{ int row_start = Row_Ptr[row], row_end = 
Row_Ptr[row+1]; 
     vals [threadIdx.x] =0; 
     for(int j = row_start +lane; j < row_end; j +=32) 
      {vals [threadIdx.x] += data[j] * x[indices[j]];} 
if (lane<16) vals [threadIdx.x] += vals [threadIdx.x + 
16]; 
 if (lane<8) vals [threadIdx.x] += 
sdata[threadIdx.x + 8 ]; 
 if (lane<4) vals [threadIdx.x] += vals 
[threadIdx.x + 4 ]; 
 if (lane<2) vals [threadIdx.x] += vals 
[threadIdx.x + 2 ]; 
 if (tlane<1) vals [threadIdx.x] += vals 
[threadIdx.x + 1 ]; 

  if (lane == 0)  y[row] += vals [threadIdx.x];     } 
} 

{ _global_void spmv_ellpack-r_Kernel(const int 
num_rows, const int num_cols, const int 
*Col_Idx, const int *RL, const Float * A, const 
Float * x, Float* y) 
{ int row= thread block Dim.x* thread block 
Idx.x+threadIdx.x; 
 If(row<num_rows) 
{float dot=0; 
  for(int n=0;n<RL[row];n++) 
   {int col=Col_Idx[num_rows*n+row]; 
    float val=A[num_rows*n+row]; 
    if(val!=0) dot+=val*x[col]; 
    } 
y[row]+=dot;}}} 
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reduction summing, when the block address does 
not conflict of, it will very high-speed. The final 
output vector y is written to global memory. 

(4) Avoiding branch    
When the total number of rows modulo for the 

rows of each thread block, the result is not equal to 
0, in the last thread block, the elements that 
calculated will be filled with 0.Thus reducing the 
judgment of branch in kernel, and improving 
computational efficiency. When reducing summing, 
in order to avoid the judgment of branch, the size of 
array that stored intermediate results is set to 
multiple of 16. 

(5) Optimization thread block  
Thread block is set to 256 threads, and 

minimize the occupation of the registers and 
shared memory 

5.2 IMPROVE CSR- SPMV OPTIMIZATION 
ALGORITHM 

The achievement of Kernel first needs several 
threads that responsible for computing an element 
of the output vector. When the number of non-zero 
elements that one line contains is less, or is not 
multiple of 16, this strategy will cause wasting the 
thread to calculate the resources. In this paper, we 
propose a new calculation method: array A in CSR 
sparse matrix is divided into certain length 
fragments, the length of the fragment is an integer 
multiple of the number of threads in the thread 
blocks, a thread block calculate element of an array 
fragment. The intermediate results stored in shared 
memory, and finally through accumulated 
calculation the intermediate results to complete the 
output element y [13]. This method is equally 
distributed computing tasks, and can effectively 
improve the operation efficiency. 

Because there is difference in the number of 
nonzero elements of sparse matrix each row, CSR-
M-SpMV kernel is difficult to average assign 
computing tasks to each thread, and cause 
computing resources free. To solve this problem, 
this paper takes the method that each thread block 
calculates the 1024 nonzero elements, the last 
fragment is filled with 0, as shown in Figure 10. 

Block0:

0 1023

Block1:

1024 2047

BlockN:

1024*N 1024*N+1023

 
Figure 10: Each thread block calculates the 1024 nonzero 

elements 

On the base of the CSR data structure, we added 
an int2 type array Bound, the length of array Bound 
is the number of array fragments that are divided 
(the number of thread block). Bound [i] is 
correspond to thread block that index is i, the 
member of x stored row number where the first 
element corresponding thread block ,the member of 
y stored row number where tail element. This paper 
only generate Bound array through a simple 
judgment on each element values in Row_Ptr, as 
shown in Figure 11. 

Fragmen
t i：

The first element in 
row a

The last element in 
row b

bound[i].x=a,bound[i].y=b
 

Figure 11: Generate Bound array 
The above process by the two Kernel function：

the first step calculates the incomplete result and 
auxiliary vector result_aid; the second step merged 
the result_aid into the result, so obtain the final 
result. 

Table V 
The first kenerl 

 

Table VI 
The second kernel 

 
 

1. Calculate the product of 1024 elements and the 
corresponding vector elements, saved to the shared memory. 
2. According to the boundary row number that Bound 
recorded, read the value of rpos. Assume the fragment 
contains 100 lines, then read the adjacent 100 Half-walf thread 
. If the number of line is more than the number of Half-Warp, 
through the cycle solution. 
3.Assuming that this fragment contains 100 lines, the first 100 
Half-Warp product accumulating corresponding single 
element ,then the result will put into the registers. The first 
and the last row that corresponding Half-Warp will 
accumulate results in result_aid, the rest of the corresponding 
Half-Warp will write the result. When the number of line is 
more than the number of Half-Warp, we also used the method 
of cycle. 

1.thread i corresponding Bound[i] 
2.if(Bound[i].x== Bound[i-1].y) thread is not work; 
else if(Bound[i].x!= Bound[i-1].y) 
{thread work; 
   while(Bound[i].y== Bound[i+1].x ) i++;  } 
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5.3. OPTIMIZATION ELLPACK-R SPMV 
ALGORITHM 

In this paper, we realized ELLPACK-SPMV 
parallelization kernel on GPU, with a thread 
responsible for calculating one element in vector y, 
this thread is marked as x = i.The ELLPACK-
SPMV kernel is suitable for calculating the sparse 
matrix of regularization data structure, which is 
similar to the dense matrix, namely there is not 
much difference among the number of zero 
elements in each line. 

ELLPACK-R format is modified for realize 
parallelize SPMV kernel on GPU based on 
ELLPACK format. Here we mainly introduced 
optimization strategy of ELLPACK-R-SPMV 
kernel, the optimization strategy is proposed aimed 
at the shortcomings of ELLPACK-SPMV kernel. 

(1) Optimization thread  
According to the difference in thread mapping 

in each row, we can realize SPMV kernel based 
on ELLPACK-R format. When use T threads to 
calculate element y[i], we need to access 
elements in row i, the kernel is called ELLR-T. 
In this way, elements in row i are divided into T 
subsets. In order to calculate the output vector 
element y[i], T threads need RL[i] times internal 
iteration, the results in each thread will put the 
shared memory. Finally, in order to get element 
y[i], we need to reduction summing the T results in 
share memory. To achieve the best performance 
calculation, for each different sparse matrix, the 
values of parameters T are often not the same.  

(2) The merger visiting 
Reading all of the elements in array A, Col_Idx 

and RL is satisfied with the requirements of merger 
visiting and memory alignment, this is because 
ELLPACK-R format stored element use wide 
column, filling zero elements of each line to make 
the number of elements is just multiple of 16. So 
we can make as high as possible memory 
bandwidth on GPU. 

(3) Avoiding branch 
When executing ELLPACK-R-SPMV kernel, 

the threads that belong to the same warp will not 
enter branch. The code does not contain flow 
instructions, the flow instruction in the warp can 
produce serialization, because each thread is carry 
out the same cycle, but the number of iterations is 
not identical. When the circulation stop, thread will 
stop; however, those threads that not end of the 
circulation will continue. 

(4) Optimization thread block 
By optimizing the size of the thread block, we 

can obtain a higher share of the SM when the size 
of thread block in ELLR-T kernel is 128. 

6. EXPERIMENT RESULTS 

6.1 EXPERIMENT PLATFORM 
We experimentally evaluated our system using 

NVIDIA Tesla C1060, connected to Windows 7 
system. The development environment is VS2010 
IDE. The CUDA kernels were complied using 
NVIDIA CUDA Complier (nvcc) to generate the 
device code that was then launched from the GPU. 
The host programs were complied using the C 
language. We used CUDA used version 4.0 for our 
experiment. The architectural configurations are 
presented in Table VII. 

Table VII  
 Test platform specifications 

We use 6 sparse matrices from the sparse 
collection described in [14]. The benchmark 
program in NVIDIA SpMV library is also used the 
matrix as a test matrix, the selected sparse matrices 
represent a wide variety of real applications. Every 
matrix has properties of number of rows, columns, 
and elements of matrix, NNZ represents the zero 
number of elements. The properties of 6 matrices 
are showed in Table VIII. 

Table VIII  
Test matrix sets 

 
6.2 PERFORMANCE MEASUREMENTS 

(1) Computing performance 
The computing performance of SpMV kernel is 

measured by GFLOPs (giga floating point 
operations per second). Floating point operand is 
equal to the number of NNZ element multiplied by 
2. Computational performance is equal to the 
floating-point operand divided by run time of 
kernel, it is shown as formula 1: 

matrix row（

column） 
The number of 

non-zero 
The number of 
non-zero each 

line 
Protein 36,417 4344765 119.3 

PEM/Spheres 83,334 6010480 72.1 

FEM/Cantilever 62,451 4007383 64.1 
Economics 206,500 1273389 6.1 

Epidemiology 525,825 2100225 3.9 

FEM/Accelerator 121,192 2624331 21.6 

GPU NVIDIA Tesla C1060 
CPU Intel(R) core(TM) i7 920 
OS Windows 7 
CUDA CUDA 4.0 
IDE Microsoft Visual Studio 2010 
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 9

2 *
*10

FP NNZPF
T

=                  （1）  

The running time of kernel is represented by T, 
which is calling SpMV kernel execution many 
times, and then takes the average of time, the unit is 
Ms (milliseconds). Here the FP is floating-point 
operand. 

(2) Memory bandwidth 
In order to calculate the memory bandwidth, we 

need to calculate the number of memory 
transactions, and then divided by the kernel 
execution time T. The unit of memory bandwidth is 
GBytes, the unit of memory transactions is Byte, 
and the number of memory transactions depends on 
the realization of the algorithm. Of course, this 
paper is realized by the single precision floating-
point values, which means that every matrix 
elements need 4 Bytes, integer index also need 4 
Bytes, matrix A, input vector x and output vector y 
are floating point, the index is an integer. 

The formula of calculation memory bandwidth 
based on CSR format is shown as formula 2, in 
CSR format, the length of array of A, Col_Idx and 
Row_Ptr is respectively NNZ, NNZ and Rows + 1, 
the length of input vector x is also equal to NNZ. 

6

3*4 * 4 *( *3 1)
*10CSR

Bytes NNZ Bytes RowsBW
T
+ +

=    （2）    

The formula of calculation memory bandwidth 
based on CSR-M format is as shown as formula 3, 
in CSR-M format, the array of column index is no 

longer store index, but the value of the storage 
input vector x. 

6

2*4 * 4 *( *3 1)
*10CSR M

Bytes NNZ Bytes RowsBW
T−

+ +
= （3） 

The formula of calculation memory bandwidth 
based on ELLPACK format is as shown as formula 
4, the array of ELLPACK data structure has only 
two A and Col_Idx. 

6

2*4 * 2*4 *
*10ELLPACK

Bytes NNZ Bytes RowsBW
T
+

=  (4) 

The formula of calculation memory bandwidth 
based on ELLPACK-R format is as shown as 
formula 5, the array of ELLPACK data structure 
has only two A and Col_Idx and RL. 

6

2*4 * 3*4 *
*10ELLPACK R

Bytes NNZ Bytes RowsBW
T−

+
=  (5) 

(3) Running time 
TGPU is the running time of parallel kernel on 

GPU. The running time of kernel does not include 
the preprocessing time of the sparse matrix format, 
nor including the time of the transfer and copy 
matrix data between the CPU memory and GPU 
memory. 

6. 3. EXPERIMENT RESULT 
According to the difference in the SpMV sparse 

matrix CSR format, we respectively marked SpMV 
as CSR-R-GPU, CSR-O-GPU, CSR-B-GPU, and 
CSR-M-GPU. CSR-R-GPU is not optimized SpMV 
kernel. CSR-O-GPU is realized by Optimization 
strategy, CSR-M-GPU is realized based on CSR-M 
format. CSR-B-GPU is realized by a new algorithm 
that proposed in this paper, which is introduced a 
new data structure contains Bound.  
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Figure 12: Computing performance based on CSR SpMV kernel 
on GPU 
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Figure 13: Memory bandwidth based on CSR SpMV kernel on 
GPU 
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Figure 14: Running time based on CSR SpMV kernel on GPU 
 
Through the analysis, we can get the following 

conclusion:  
For CSR-O-GPU kernel, the execution time, 

memory bandwidth and computing performance is 
obviously higher than CSR-R-GPU, so the 
optimization strategy is effective.  

For CSR-M-GPU kernel, we can get better 
performance compared with the CSR-O-GPU, 
especially in the matrix PEM/Spheres, Economics, 
FEM/Cantilever and FEM/Accelerator. But in 
memory bandwidth, the CSR-M-GPU kernel is 
lower than the CSR-O-GPU kernel. Its performance 
is higher than CSR-R-GPU kernel.  

For CSR-B-GPU kernel, the performance in the 
matrix Protein, PEM/Spheres, FEM/Cantilever and 
FEM/Accelerator is obviously lower than other 
kernel. But, in Economics, Epidemiology matrix, 
the performance of CSR-B-GPU kernel is higher 
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than other kernel. When the average number of 
nonzero elements in each line is little, the 
performance is higher than other kernel. But when 
the average number of nonzero elements in each 
line is more, its performance is not ideal. One of the 
reasons is the kernel use many shared memory, so 
the optimization algorithm also needs to improve.  

The NON-CSR storage formats that realization 
of SPMV on GPU have ELLPACK, ELLPACK-R 
format, the corresponding kernel performance 
results marked as ELLPACK-GPU, ELLPACK-R-
GPU. For ELLPACK-R-GPU kernel, because use 
the optimization strategy, its performance better 
than ELLPACK-GPU. It is different from other 
formats kernel, the sparser matrix, the better the 
performance of calculation. 

0
2
4
6
8

10
12

Pr
ot
ei
n

PE
M/
Sp
he
re
s

FE
M/
Ca
nt
il
ev
er

Ec
on
om
ic
s

Ep
id
em
io
lo
gy

FE
M/
Ac
ce
le
ra
to
r

ELLPAC

ELLPAC-R

Figure 15:  Computing performance based on ELLPACK SpMV 
kernel on GPU 
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Figure 16: Memory bandwidth based on ELLPACK SpMV 
kernel on GPU 
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Figure 17: Running time based on ELLPACK SpMV kernel on 

GPU 

7. CONCLUSION 

In this paper, we proposed new parallelization 
algorithms that CSR-M based on CSR format and 
ELLPACK-R based on ELLPACK format, which 
realized the parallelism kernel on GPU with 
CUDA. We also proposed optimizations of sparse 
matrix vector multiplication on NVIDIA GPUs 
using CUDA programming model. The 
optimization strategies including: optimization 
thread mapping, merger access  the global memory, 
data reusing in the share memory, through the 
filling zero elements to achieve aligned so as to 
avoiding branch, and optimization thread block to 

improve SM processor share. The experiment 
results showed the proposed optimization strategy 
can be used on CSR and ELLPACK format, the 
strategy can be improved performance, memory 
bandwidth and reduce the execution time of kernel. 
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