
Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

OPTIMIZING SPARSE MATRIX-VECTOR MULTIPLICATION
BASED ON GPU

1, 2 MENGJIA YIN, 2 TAO ZHANG, 1, 3 XIANBIN XU, 1 JIN HU, 1, 4 SHUIBING HE
1 School of Computer, Wuhan University, Wuhan 430074, Hubei, China

2 School of Computer and Information Science, Hubei engineering University, Xiaogan 43200, Hubei, China
3 School of Computer Science, Wuhan Donghu University, Wuhan 430074, Hubei, China

4 Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 10000, China

ABSTRACT

In recent years, Graphics Processing Units(GPUs) have attracted the attention of many application
developers as powerful massively parallel system. Computer Unified Device Architecture (CUDA) as a
general purpose parallel computing architecture makes GPUs an appealing choice to solve many complex
computational problems in a more efficient way. Sparse Matrix-vector Multiplication(SpMV) algorithm is
one of the most important scientific computing kernel algorithms. In this paper, we proposed new
parallelization algorithms that CSR-M based on CSR format and ELLPACK-R based on ELLPACK
format, which are realized the parallelism kernel on GPU with CUDA. We discussed implementing
optimizing SpMV on GPUs using CUDA programming model, the optimization strategies including:
mapping thread, mergering access, reusing data, avoiding branch, optimization thread block. The
experiment results showed the proposed optimization strategies can improve performance, memory
bandwidth and reduce the execution time of kernel.

Keywords: Sparse Matrix-vector Multiplication, Computer Unified Device Architecture, Graphics
Processing Unit

1. INTRODUCTION

With the rapid growth of computing complexity
and data, general CPU computing power has failed
to meet its needs. The speed of Graphics Processing
Unit (GPU) development is more than Moore's
Law, and the computing performance, memory
bandwidth is far more than the development speed
of the CPU. As modern GPUs have become
increasingly powerful, inexpensive and relatively
easier to program through high level API functions,
they are increasingly being used for nongraphic or
general purpose applications (called GPGPU
computing).

Sparse Matrix-vector Multiplication (SpMV)
operation is widely used in solving large-scale
linear system and solving matrix eigenvalues
problems [1], especially in iterative method, it is a
key step that influences the computing
performance. SpMV is a typical of memory
bottleneck operation, namely the rate of computing
and memory is low, ALU is seriously unsaturated,
and it is difficult to achieve the throughput of high
floating-point operations. SpMV has the nature of
parallelism, how to use modern multi-processor

platform research the parallelism of SpMV is one
of the feasible direction to improve performance.

According to the deficiency of the traditional
parallel strategies, we also proposed new
parallelization algorithms that CSR-M based on
CSR format and ELLPACK-R based on ELLPACK
format, and realized the parallelism kernel in GPU
with CUDA. Then we propose the more efficient
performance optimization strategies: mapping
thread, mergering access, reusing data, avoiding
branch, optimization thread block, which can be
realized based on CSR format and ELLPACK
format. The experiment results showed the
proposed optimization strategies can be improved
performance, memory bandwidth and reduce the
execution time of kernel.

The rest of this paper is organized as follows:
section II introduces related work, improved Sparse
Matrix format is detailed in section III, parallel
computing for SpMV model based on GPU is
proposed in section IV, the optimization strategy is
proposed in section V, section VI contains our
results and evaluation, conclusion is shown in
section VII.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

2. RELATED WORK

2.1 GPU PROGRAMMING WITH CUDA
CUDA is a parallel computing architecture

developed by NVIDIA Corporation [2], and allows
writing and running general-purpose applications
on the NVIDIA GPU’s. CUDA uses threads for
parallel execution, and GPU allows thousands of
threads for parallel execution at the same time.

On GPU, there is a hierarchy of memory
architecture to program on it, we propose the
memories in our implementation: registers, shared
memory, global memory, constant memory, texture
memory. In the memory architecture, the fastest
memories are the shared memories and registers.
The other memories are all located on the GPUs
main RAM. The constant memory is favourable
when multiple processor cores load the same value
from cache. Texture cache has higher latency but it
has a better acceleration ratio for accessing large
amount of data and non-aligned accessing. The
memory architecture of GPU is described in Figure
1.To gain better performance, we must manage the
shared memory, registers, and global memory
usage.

Host

Shared Memory

Block(0,0)

Register Register

Thread(0,0) Thread(0,0)

Local
Memory

Local
Memory

Global Memory

Constant Memory

Texture Memory

Grid 0

Shared Memory

Block(0,0)

Register Register

Thread(0,0) Thread(0,0)

Local
Memory

Local
Memory

Figure 1: Memory architecture of CUDA

2.2 SPARSE MATRIX-VECTOR MULTIPLICATION

The bottleneck problems of memory are those
algorithms that each floating point operations need
to multiple-access memory, SpMV is one kind of
this algorithm [3]. In the past twenty years, there
have been a lot of work for the optimization of the
SpMV algorithm, from the point of view of the
memory ,optimization is mainly to improve the
computation performance [2] [4] [5], which most of
the optimization work is focused on CPU that
generalization system structure [6]. But the
optimization strategy can't be directly used in GPU.
GPU is massively parallel systems, it has multi-
stage storage system structure. In order to play the

advantages of GPU memory high bandwidth, we
need to accord to the characteristics to design
different optimization strategy.

In [7], Nathan Bell and Michael Garland
provided data structures and algorithms for SpMV
that are efficiently implemented on CUDA platform
for the fine-grained parallel architecture of the
GPU. They emphasized memory bandwidth
efficiency and compact storage formats when given
the memory-bound nature of SpMV. They also
developed methods to exploit several common
forms of matrix structure while offering alternatives
which accommodate greater irregularity.

In [8], with indirect and irregular memory
accesses resulting in more memory access per
floating point operation, Baskraran proposed
optimizations to effectively develop a high-
performance SpMV kernel on NVIDIA GPUs. The
optimizations including: exploiting synchronization
-free parallelism, optimized thread mapping based
on the affinity towards optimal memory access
pattern, optimized off-chip memory access to
tolerate the high access latency, exploiting data
reuse.

Based on the above, this paper emphasize its
optimization strategy in the process of SpMV
algorithm on GPU, the optimization strategy is
aimed at the system structure of the GPU, and
consider the GPU complex storage management
and the mapping optimization between threads.

2.3 SPARSE MATRIX FORMAT

In scientific computing, SpMV has been proven
to be a special important of numerical algorithm
[9], it has the characteristics of high intensity
calculation, high parallel degree and simply control,
so matrix calculation is very suitable to GPU for
parallel computing. How to play the powerful
computing ability of GPU in sparse matrix vector
algorithm is need to deal with.

Sparse matrix has several storage formats such
as ELLPACK, COO, CSR, and Hybrid and so on.
These storage formats are described detailed in
[10]. Each format is different in storage
requirements, calculation characteristics, access and
operation of the matrix element method. Different
storage formats are determined by the sparse matrix
mode, that is, the distribution of non-zero elements
in the matrix. In this paper, we discussed
optimization strategies based on CSR and
ELLPACK storage format to suit the GPU
architecture.

CSR format is the more popular storage
format[10][11],it is a line of compressed format

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

which alter storing two-dimensional array of sparse
matrix into three one-dimensional arrays: A,
Col_Idx, Row_Ptr. Scan follow the line width for
the sparse matrix, and will stored the zero elements
in array A; An array of Col_Idx stored column
index of non-zero elements in array A
corresponding location in the original matrix; An
array of Row_Ptr stored an index of every row in
the first non-zero elements in an array of A in
primitive sparse matrix. For M * N matrix, the
length of Row_Ptr array is M+1, the offset of i-th
row stored in Row_Ptr [i], the last Row_Ptr [M] in
sparse matrix stored the total number of non-zero
elements. We give an example of 5 * 4 sparse
matrix, as shown in Figure 2, Figure 3, how to use
the CSR storage formats to show the original sparse
matrix.

0 2 0 4 0

1 2 3 0 0

0 1 0 0 0

0 0 0 1 1

Figure 2: 5 * 4 sparse matrix

4 1 2 3 12 1 1=A

3 0 1 2 11 3 4=Col_Idx

2 5 6 80=Row_Ptr

Figure 3: CSR storage format of sparse matrix

ELLPACK format is not general storage format,

because this kind of storage format has certain
requirement to the sparse matrix, which demands
the number of non-zero element has little change.
ELLPACK format has only two arrays, which
respectively are: A, Col_Idx.

The format structure mode of ELLPACK is
similar to CSR, the non-zero elements are moved to
the left side of matrix, and the zero elements are
moved to the right side of the matrix, the Figure 4
is shown in CSR storage format of sparse matrix.

2 4 0 0 0

1 2 3 0 0

1 0 0 0 0

1 1 0 0 0

Figure 4: CSR storage format of sparse matrix

In determining the max length of row, the zero
elements that smaller than max will be discarded.
Finally, according to the column-wise scan the
results matrix, all elements of the results matrix are
stored in the array A, An array of Col_Idx stored
column index of non-zero elements in array A
corresponding location in the original matrix. Here,
we are not consider X in an array of Col_Idx,
because the zero elements filled in array A is not
important, is only convenient to the same
addressing way to element, Figure 5 and Figure 6 is
original sparse matrix 2 D ELLPACK array and 1
D ELLPACK array.

2 31=A

2 4 0

1 0 0

1 1 0

1 20=Col_Idx

1 3 X

1 X X

3 4 X

Figure 5: 2D ELLPACK array

1 1 1 4 22 0 1=A

0 1 3 3 11 X 4=Col_Idx

0 3 0 0

x 2 X X

Figure 6: 1D ELLPACK array

For the M * N sparse matrix that each line at most
K nonzero elements, ELLPACK format need to use
dense array A[M*K] to store, when the number of
nonzero elements is less than K, we filling with zero
elements.

3. IMPROVED SPARSE MATRIX FORMAT

3.1 IMPROVED CSR FORMAT
CSR-M format is proposed on the basis of CSR

format, which is improved based on the
characteristics of unique hierarchy structure of
memory in GPU. At the same time, it is also based
on general purpose, so CSR-M format may be
considered to be general storage formats. CSR-M
format is composed of three array, they are
respectively: A, Col_x, Row_Ptr.

In CSR format, an array of Col_Idx stored
column index of non-zero elements in each row
corresponding location in the original matrix. But
in this paper, array of Col_Idx no longer stored
index value of column, but stored vector X
elements that corresponding index position on the
nonzero elements multiplication, the name of array
modification of Col_x.

 After modification the CSR format, only need
copy array Col_x to the GPU, no longer need copy
vector X from CPU to GPU. This way reduces data

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

transfer between CPU and GPU, at the same time, it
also reduces the kernel access the global memory.
The Global memory can provide high memory
bandwidth, but memory access latency is very high,
this improvement reduced access time latency of
global memory and improved computing
performance of the sparse matrix vector
multiplication. The optimization of the CSR storage
formats in the Figure 7. We hypothesis input vector
X is [1-5].

4 1 2 3 12 1 1=A

4 1 2 3 22 4 5=Col_x

2 5 6 80=Row_Ptr

Figure 7: CSR-M storage format of sparse matrix

3.2 IMPROVED ELLPACK FORMAT

ELLPACK-R format is based on ELLPACK
format, it is designed to SPMV in GPU. Its
structure is not different in ELLPACK, it increased
the array of RL, the size of the array RL is the
number of lines N in matrix, array RL is stored the
number of nonzero elements in each line, figure 8
and figure 9 is original sparse matrix 2 D
ELLPACK array and 1 D ELLPACK array.

2 31=A

2 4 0

1 0 0

1 1 0

1 20=Col_Idx

1 3 X

1 X X

3 4 X

3=RL

2

1

2

Figure 8: 2D ELLPACK array

1 1 1 4 22 0 1=A

0 1 3 3 11 X 4=Col_Idx

3 1 22=RL

0 3 0 0

x 2 X X

Figure 8: 1D ELLPACK array

1 1 1 4 22 0 1=A

0 1 3 3 11 X 4=Col_Idx

3 1 22=RL

0 3 0 0

x 2 X X

Figure 9: 1D ELLPACK array

4. PARALLEL COMPUTING FOR SPMV
MODEL BASED ON GPU

4.1 CPU REALIZED SPMV
The serial algorithm based on the CSR-M format

is shown in table I, this algorithm is realized its
parallelization in multiple processors, parallelism is
realized in outer loop, so the single processors is
responsible for computing the row of matrix.

Table I
Serial algorithm based on the csr-m format

The SPMV serial algorithm based on

ELLPACK-R format is shown in table II. This
algorithm in multiprocessors realized
parallelization, parallelism realization in inner
circulation.

Table II
Serial algorithm based on the ELLPACK-R format

4.2 GPU REALIZED SPMV

Nathan Bell and Michael Garlandy proposed the
parallelism SPMV kernel in NVDIA GPU use
CUDA [7], the kernel covered a variety of sparse
matrix storage formats. Here we only introduced
SPMV parallelization kernel algorithm of CSR-M
format and ELLPACK-R format.

The SPMV parallelization kernel algorithm
based on CSR-M format in GPU is shown in table
III. Here the method of parallelism is: use a Warp
threads to responsible for computing non-zero
elements in sparse matrix, don't need to fill zero
elements to align, the intermediate results put on
sharing memory, and then accumulate the
intermediate results through reduction summation,
finally through thread 0 to get the final results.

The SPMV parallelization kernel algorithm
based on ELLPACK-R format in GPU is shown in

{ for i=0 to rows
{y(i)=0;
 for j= Row_Ptr(i) to (Row_Ptr(i+1)-1)
 {y(i)=y(i)+A(j-1)*x(Col_Idx(j-1));}
}
}

{the length of RL array is same to the number of line
MAX=The maximum row length;
for i=0 to rows
{y(i)=0;}
for i=0 to MAX
 {for j=0 to Rows
 {if i<RL(j)
y(j)=y(j)+A(j+i*Rows)*x(Col_Idx(j+i*Rows));} }}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

table IV. Here the method of the parallelism is: use
a thread to responsible for computing nonzero
elements of one line in matrix, align ELLPACK-R
array with filling the zero elements, the ELLPACK-
R kernel is not need to continuous access to x
vector.

Table III
 Spmv kernel for the csr-m sparse matrix

Table IV
Vector spmv kernel for the ellpack-r sparse matrix

5. OPTIMIZATIONS FOR SPMV MODEL
BASED ON GPU

The CUDA programming model greatly
simplified the difficulty of using the GPU for
general purpose computing, but compared to
isomorphic system that only included CPU, it is
more complicated to program in the heterogeneous
system based on the CPU-GPU, and the program's
performance optimization is even more difficult.
Generally affect the performance of CUDA
program includes the main three factors: memory
access latency, load balance and global
synchronous spending [12]. These factors in
different computing platforms the causes and the
corresponding optimization method is not same.

5.1 OPTIMIZATION CSR-M SPMV FORMAT
CSR-Vector used one warp calculating elements

of one line according to the circle. In the process of
calculation, in order to get the output vector, we
reduce summing in shared memory. However, if the
number of nonzero elements in the row is less than
32, the computing performance of CSR-Vector will
drop. When the number of nonzero elements in the
row is more than 32, the computing performance
will be good. For the various shortcomings of the
CSR-Vector kernel, we propose the following
optimization strategy:

(1) Thread mapping
In [7], taken the method that calculation of each

warp corresponds to each element in the output
vector y in the kernel, the natural features of
synchronization improve the computation
performance. The shortcoming is when the number
of non-zero elements of each row in sparse matrix
is less (each row only the individual non-zero
elements), it will waste of computing resources. In
this paper, we use the half-warps as a unit, set the
number of threads in one line mapping as 16.

(2) Merger access
In the CSR-M format of the SPMV, the array A

sequentially stored the nonzero elements of sparse
matrix according to line way, so the thread access
the elements of each row also meet the
requirements of the merger memory access. If the
number of nonzero elements in each line is more
than 16, memory access of one line will be splitted
into multiple memory access, each access are meet
to merge access

(3) Data reusing
In the CSR-M format of the SPMV, we put the

intermediate results into the shared memory, and
finally summing the intermediate results in the
shared memory. In this paper, we use the method of

{ _global_void spmv_csr-m_Kernel(const int num_rows,
const int * Row_Ptr, const int *Col_Idx, const Float * A,
const Float * x, Float* y)
{ __shared__ Float vals[];

int thread_id=blockDim.x*blockIdx.x+threadIdx.x;
int Warp_id= thread_id/ 32;
int lane = thread_id & (32-1);

int row = Warp_id;
 if(row < num_rows)
{ int row_start = Row_Ptr[row], row_end =
Row_Ptr[row+1];
 vals [threadIdx.x] =0;
 for(int j = row_start +lane; j < row_end; j +=32)
 {vals [threadIdx.x] += data[j] * x[indices[j]];}
if (lane<16) vals [threadIdx.x] += vals [threadIdx.x +
16];
 if (lane<8) vals [threadIdx.x] +=
sdata[threadIdx.x + 8];
 if (lane<4) vals [threadIdx.x] += vals
[threadIdx.x + 4];
 if (lane<2) vals [threadIdx.x] += vals
[threadIdx.x + 2];
 if (tlane<1) vals [threadIdx.x] += vals
[threadIdx.x + 1];

 if (lane == 0) y[row] += vals [threadIdx.x]; }
}

{ _global_void spmv_ellpack-r_Kernel(const int
num_rows, const int num_cols, const int
*Col_Idx, const int *RL, const Float * A, const
Float * x, Float* y)
{ int row= thread block Dim.x* thread block
Idx.x+threadIdx.x;
 If(row<num_rows)
{float dot=0;
 for(int n=0;n<RL[row];n++)
 {int col=Col_Idx[num_rows*n+row];
 float val=A[num_rows*n+row];
 if(val!=0) dot+=val*x[col];
 }
y[row]+=dot;}}}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

reduction summing, when the block address does
not conflict of, it will very high-speed. The final
output vector y is written to global memory.

(4) Avoiding branch
When the total number of rows modulo for the

rows of each thread block, the result is not equal to
0, in the last thread block, the elements that
calculated will be filled with 0.Thus reducing the
judgment of branch in kernel, and improving
computational efficiency. When reducing summing,
in order to avoid the judgment of branch, the size of
array that stored intermediate results is set to
multiple of 16.

(5) Optimization thread block
Thread block is set to 256 threads, and

minimize the occupation of the registers and
shared memory

5.2 IMPROVE CSR- SPMV OPTIMIZATION
ALGORITHM

The achievement of Kernel first needs several
threads that responsible for computing an element
of the output vector. When the number of non-zero
elements that one line contains is less, or is not
multiple of 16, this strategy will cause wasting the
thread to calculate the resources. In this paper, we
propose a new calculation method: array A in CSR
sparse matrix is divided into certain length
fragments, the length of the fragment is an integer
multiple of the number of threads in the thread
blocks, a thread block calculate element of an array
fragment. The intermediate results stored in shared
memory, and finally through accumulated
calculation the intermediate results to complete the
output element y [13]. This method is equally
distributed computing tasks, and can effectively
improve the operation efficiency.

Because there is difference in the number of
nonzero elements of sparse matrix each row, CSR-
M-SpMV kernel is difficult to average assign
computing tasks to each thread, and cause
computing resources free. To solve this problem,
this paper takes the method that each thread block
calculates the 1024 nonzero elements, the last
fragment is filled with 0, as shown in Figure 10.

Block0:

0 1023

Block1:

1024 2047

BlockN:

1024*N 1024*N+1023

Figure 10: Each thread block calculates the 1024 nonzero

elements

On the base of the CSR data structure, we added
an int2 type array Bound, the length of array Bound
is the number of array fragments that are divided
(the number of thread block). Bound [i] is
correspond to thread block that index is i, the
member of x stored row number where the first
element corresponding thread block ,the member of
y stored row number where tail element. This paper
only generate Bound array through a simple
judgment on each element values in Row_Ptr, as
shown in Figure 11.

Fragmen
t i：

The first element in
row a

The last element in
row b

bound[i].x=a,bound[i].y=b

Figure 11: Generate Bound array
The above process by the two Kernel function：

the first step calculates the incomplete result and
auxiliary vector result_aid; the second step merged
the result_aid into the result, so obtain the final
result.

Table V
The first kenerl

Table VI
The second kernel

1. Calculate the product of 1024 elements and the
corresponding vector elements, saved to the shared memory.
2. According to the boundary row number that Bound
recorded, read the value of rpos. Assume the fragment
contains 100 lines, then read the adjacent 100 Half-walf thread
. If the number of line is more than the number of Half-Warp,
through the cycle solution.
3.Assuming that this fragment contains 100 lines, the first 100
Half-Warp product accumulating corresponding single
element ,then the result will put into the registers. The first
and the last row that corresponding Half-Warp will
accumulate results in result_aid, the rest of the corresponding
Half-Warp will write the result. When the number of line is
more than the number of Half-Warp, we also used the method
of cycle.

1.thread i corresponding Bound[i]
2.if(Bound[i].x== Bound[i-1].y) thread is not work;
else if(Bound[i].x!= Bound[i-1].y)
{thread work;
 while(Bound[i].y== Bound[i+1].x) i++; }

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

162

5.3. OPTIMIZATION ELLPACK-R SPMV
ALGORITHM

In this paper, we realized ELLPACK-SPMV
parallelization kernel on GPU, with a thread
responsible for calculating one element in vector y,
this thread is marked as x = i.The ELLPACK-
SPMV kernel is suitable for calculating the sparse
matrix of regularization data structure, which is
similar to the dense matrix, namely there is not
much difference among the number of zero
elements in each line.

ELLPACK-R format is modified for realize
parallelize SPMV kernel on GPU based on
ELLPACK format. Here we mainly introduced
optimization strategy of ELLPACK-R-SPMV
kernel, the optimization strategy is proposed aimed
at the shortcomings of ELLPACK-SPMV kernel.

(1) Optimization thread
According to the difference in thread mapping

in each row, we can realize SPMV kernel based
on ELLPACK-R format. When use T threads to
calculate element y[i], we need to access
elements in row i, the kernel is called ELLR-T.
In this way, elements in row i are divided into T
subsets. In order to calculate the output vector
element y[i], T threads need RL[i] times internal
iteration, the results in each thread will put the
shared memory. Finally, in order to get element
y[i], we need to reduction summing the T results in
share memory. To achieve the best performance
calculation, for each different sparse matrix, the
values of parameters T are often not the same.

(2) The merger visiting
Reading all of the elements in array A, Col_Idx

and RL is satisfied with the requirements of merger
visiting and memory alignment, this is because
ELLPACK-R format stored element use wide
column, filling zero elements of each line to make
the number of elements is just multiple of 16. So
we can make as high as possible memory
bandwidth on GPU.

(3) Avoiding branch
When executing ELLPACK-R-SPMV kernel,

the threads that belong to the same warp will not
enter branch. The code does not contain flow
instructions, the flow instruction in the warp can
produce serialization, because each thread is carry
out the same cycle, but the number of iterations is
not identical. When the circulation stop, thread will
stop; however, those threads that not end of the
circulation will continue.

(4) Optimization thread block
By optimizing the size of the thread block, we

can obtain a higher share of the SM when the size
of thread block in ELLR-T kernel is 128.

6. EXPERIMENT RESULTS

6.1 EXPERIMENT PLATFORM
We experimentally evaluated our system using

NVIDIA Tesla C1060, connected to Windows 7
system. The development environment is VS2010
IDE. The CUDA kernels were complied using
NVIDIA CUDA Complier (nvcc) to generate the
device code that was then launched from the GPU.
The host programs were complied using the C
language. We used CUDA used version 4.0 for our
experiment. The architectural configurations are
presented in Table VII.

Table VII
 Test platform specifications

We use 6 sparse matrices from the sparse
collection described in [14]. The benchmark
program in NVIDIA SpMV library is also used the
matrix as a test matrix, the selected sparse matrices
represent a wide variety of real applications. Every
matrix has properties of number of rows, columns,
and elements of matrix, NNZ represents the zero
number of elements. The properties of 6 matrices
are showed in Table VIII.

Table VIII
Test matrix sets

6.2 PERFORMANCE MEASUREMENTS

(1) Computing performance
The computing performance of SpMV kernel is

measured by GFLOPs (giga floating point
operations per second). Floating point operand is
equal to the number of NNZ element multiplied by
2. Computational performance is equal to the
floating-point operand divided by run time of
kernel, it is shown as formula 1:

matrix row（

column）
The number of

non-zero
The number of
non-zero each

line
Protein 36,417 4344765 119.3

PEM/Spheres 83,334 6010480 72.1

FEM/Cantilever 62,451 4007383 64.1
Economics 206,500 1273389 6.1

Epidemiology 525,825 2100225 3.9

FEM/Accelerator 121,192 2624331 21.6

GPU NVIDIA Tesla C1060
CPU Intel(R) core(TM) i7 920
OS Windows 7
CUDA CUDA 4.0
IDE Microsoft Visual Studio 2010

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

163

 9

2 *
*10

FP NNZPF
T

= （1）

The running time of kernel is represented by T,
which is calling SpMV kernel execution many
times, and then takes the average of time, the unit is
Ms (milliseconds). Here the FP is floating-point
operand.

(2) Memory bandwidth
In order to calculate the memory bandwidth, we

need to calculate the number of memory
transactions, and then divided by the kernel
execution time T. The unit of memory bandwidth is
GBytes, the unit of memory transactions is Byte,
and the number of memory transactions depends on
the realization of the algorithm. Of course, this
paper is realized by the single precision floating-
point values, which means that every matrix
elements need 4 Bytes, integer index also need 4
Bytes, matrix A, input vector x and output vector y
are floating point, the index is an integer.

The formula of calculation memory bandwidth
based on CSR format is shown as formula 2, in
CSR format, the length of array of A, Col_Idx and
Row_Ptr is respectively NNZ, NNZ and Rows + 1,
the length of input vector x is also equal to NNZ.

6

3*4 * 4 *(*3 1)
*10CSR

Bytes NNZ Bytes RowsBW
T
+ +

= （2）

The formula of calculation memory bandwidth
based on CSR-M format is as shown as formula 3,
in CSR-M format, the array of column index is no

longer store index, but the value of the storage
input vector x.

6

2*4 * 4 *(*3 1)
*10CSR M

Bytes NNZ Bytes RowsBW
T−

+ +
= （3）

The formula of calculation memory bandwidth
based on ELLPACK format is as shown as formula
4, the array of ELLPACK data structure has only
two A and Col_Idx.

6

2*4 * 2*4 *
*10ELLPACK

Bytes NNZ Bytes RowsBW
T
+

= (4)

The formula of calculation memory bandwidth
based on ELLPACK-R format is as shown as
formula 5, the array of ELLPACK data structure
has only two A and Col_Idx and RL.

6

2*4 * 3*4 *
*10ELLPACK R

Bytes NNZ Bytes RowsBW
T−

+
= (5)

(3) Running time
TGPU is the running time of parallel kernel on

GPU. The running time of kernel does not include
the preprocessing time of the sparse matrix format,
nor including the time of the transfer and copy
matrix data between the CPU memory and GPU
memory.

6. 3. EXPERIMENT RESULT
According to the difference in the SpMV sparse

matrix CSR format, we respectively marked SpMV
as CSR-R-GPU, CSR-O-GPU, CSR-B-GPU, and
CSR-M-GPU. CSR-R-GPU is not optimized SpMV
kernel. CSR-O-GPU is realized by Optimization
strategy, CSR-M-GPU is realized based on CSR-M
format. CSR-B-GPU is realized by a new algorithm
that proposed in this paper, which is introduced a
new data structure contains Bound.

0
2
4
6
8

10
12

Pr
ot
ei
n

PE
M/
Sp
he
re
s

FE
M/
Ca
nt
il
ev
er

Ec
on
om
ic
s

Ep
id
em
io
lo
gy

FE
M/
Ac
ce
le
ra
to
r

CSR-R

CSR-O

CSR-M

CSR-B

Figure 12: Computing performance based on CSR SpMV kernel
on GPU

0
10
20
30
40
50
60
70

Pr
ot
ei
n

PE
M/
Sp
he
re
s

FE
M/
Ca
nt
il
ev

er

Ec
on
om
ic
s

Ep
id
em
io
lo
gy

FE
M/
Ac
ce
le
ra

to
r

CSR-R

CSR-O

CSR-M

CSR-B

Figure 13: Memory bandwidth based on CSR SpMV kernel on
GPU

0
1
2
3
4

Pr
ot

ei
n

PE
M/

Sp
he

re
s

FE
M/

Ca
nt

il
ev

er

Ec
on

om
ic

s

Ep
id

em
io

lo
gy

FE
M/

Ac
ce

le
ra

to
r

CSR-R

CSR-O

CSR-M

CSR-B

Figure 14: Running time based on CSR SpMV kernel on GPU

Through the analysis, we can get the following

conclusion:
For CSR-O-GPU kernel, the execution time,

memory bandwidth and computing performance is
obviously higher than CSR-R-GPU, so the
optimization strategy is effective.

For CSR-M-GPU kernel, we can get better
performance compared with the CSR-O-GPU,
especially in the matrix PEM/Spheres, Economics,
FEM/Cantilever and FEM/Accelerator. But in
memory bandwidth, the CSR-M-GPU kernel is
lower than the CSR-O-GPU kernel. Its performance
is higher than CSR-R-GPU kernel.

For CSR-B-GPU kernel, the performance in the
matrix Protein, PEM/Spheres, FEM/Cantilever and
FEM/Accelerator is obviously lower than other
kernel. But, in Economics, Epidemiology matrix,
the performance of CSR-B-GPU kernel is higher

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

164

than other kernel. When the average number of
nonzero elements in each line is little, the
performance is higher than other kernel. But when
the average number of nonzero elements in each
line is more, its performance is not ideal. One of the
reasons is the kernel use many shared memory, so
the optimization algorithm also needs to improve.

The NON-CSR storage formats that realization
of SPMV on GPU have ELLPACK, ELLPACK-R
format, the corresponding kernel performance
results marked as ELLPACK-GPU, ELLPACK-R-
GPU. For ELLPACK-R-GPU kernel, because use
the optimization strategy, its performance better
than ELLPACK-GPU. It is different from other
formats kernel, the sparser matrix, the better the
performance of calculation.

0
2
4
6
8

10
12

Pr
ot
ei
n

PE
M/
Sp
he
re
s

FE
M/
Ca
nt
il
ev
er

Ec
on
om
ic
s

Ep
id
em
io
lo
gy

FE
M/
Ac
ce
le
ra
to
r

ELLPAC

ELLPAC-R

Figure 15: Computing performance based on ELLPACK SpMV
kernel on GPU

0

20

40

60

P
r
o
t
e
i
n

P
E
M
/
S
p
h
e
r
e
s

F
E
M
/
C
a
n
t
i
l
e

v
e
r

E
c
o
n
o
m
i
c
s

E
p
i
d
e
m
i
o
l
o
g

y

F
E
M
/
A
c
c
e
l
e
r

a
t
o
r

ELLPACK

ELLPACK-R

Figure 16: Memory bandwidth based on ELLPACK SpMV
kernel on GPU

0

0.5

1

1.5

P
r
o
t
e
i
n

P
E
M
/
S
p
h
e
r
e
s

F
E
M
/
C
a
n
t
i
l
e

v
e
r

E
c
o
n
o
m
i
c
s

E
p
i
d
e
m
i
o
l
o
g

y

F
E
M
/
A
c
c
e
l
e
r

a
t
o
r

ELLPAC

ELLPAC-R

Figure 17: Running time based on ELLPACK SpMV kernel on

GPU

7. CONCLUSION

In this paper, we proposed new parallelization
algorithms that CSR-M based on CSR format and
ELLPACK-R based on ELLPACK format, which
realized the parallelism kernel on GPU with
CUDA. We also proposed optimizations of sparse
matrix vector multiplication on NVIDIA GPUs
using CUDA programming model. The
optimization strategies including: optimization
thread mapping, merger access the global memory,
data reusing in the share memory, through the
filling zero elements to achieve aligned so as to
avoiding branch, and optimization thread block to

improve SM processor share. The experiment
results showed the proposed optimization strategy
can be used on CSR and ELLPACK format, the
strategy can be improved performance, memory
bandwidth and reduce the execution time of kernel.

ACKNOWLEDGEMENTS

This work is supported by Fundamental
Research Funds for the Central Universities (Grant
No.3101012), and by Key Laboratory of High
Confidence Software Technologies Program (Grant
No.HCST201104).

REFRENCES:

[1] M. Shereshevsky, B. Cukic, J. Crowel et al.,
Software Aging and Multifractality of Memory
Resources, Proceedings of DSN 2003, pp. 721-
730, 2003.

[2] A.J.C.Bik and H.A.G.Wijshoff, “Automatic
Data Structure Selection And Transformation
For Sparse Matrix Computations”, IEEE
Transactions on Parallel and Distributed
Systems, Vol. 7, No.2, pp.109-126, 1996

[3] F. V’azquez, E. M. Garz’on, J. J. Fern’andez,
A Matrix Approach To Tomograhpic
Reconstruction And Its Implementation On
Gpus, Journal of Structural Biology, Vol. 170,
No. 1, pp.146-151, 2010

[4] K. Kourtis, G. Goumas, N. Koziris, “Optimizing
sparse matrix-vector multiplication using index
and value compression”, Proceedings of the 5th
conference on Computing frontiers, pp. 87-96,
1999.

[5] B.C. Lee et al., “Performance Model for
Evaluation and Automatic Tuning of
Symmetric Sparse Matrix-Vector Multiply”,
International Conference on Parallel
Processing, pp. 169-176, 2004.

[6] K. Fatahalian, J. Sugerman, P. Hanrahan,
“Understanding the efficiency of GPU
algorithms for matrix-matrix multiplications”,
Proceedings of the ACM SIGGRAPH
/EUROGRAPHICS conference on Graphics
hardware, pp.133-137 2004.

[7] N. Bell and M. Garland, Efficient Sparse
Matrix-Vector Multiplication on CUDA,
NVIDIA Technical Report NVR-20080004,
NVIDIA Corporation, 2008

[8] M. M. BASKARAN, R. BORDAWEKAR,
Optimizing Sparse Matrix-Vector
Multiplication on GPUs, IBM Research Report
RC24704, April 2009.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

[9] R.Shahnaz, A. Usman, I. R. Chugtai, “Review
of Storage Techniques for Sparse Matrices”,
Proceedings of the 9th International Multitopic
Conference, pp.1-7, 2005.

[10] R. Barrett et al., Templates for the solution of
Linear Systems: Building blocks for Iterative
Methods, SIAM Press, Philadelphia, 1994.

[11] R. Shahnaz, A. Usman, I. R. Chugtai,
“Implementation and Evaluation of Parallel
Sparse Matrix-Vector Products on Distributed
Memory Parallel Computers”, Proceedings of
2006 IEEE International Conference on
Cluster Computing, 2006.

[12] B. Chen, “Research on Performance
Optimization of Heterogeneous Platform
based on CPU-GPU and Multicore Parallel
Programming Model”, Mster Thesis,
University of Science and Technology of
China, pp.30-45, 2011

[13] H.Chen, “Parallel Technology For
Implementing Sparse Matrix Vector On GPU”,
Mster Thesis, School of Computer, Wuhan
University, China, 2012,

[14] S. Williams, et al., “Optimization of Sparse
Matrix-Vector Multiplication on Emerging
Multicore Platforms”, Parallel Computing, Vol.
35, No. 3, pp.178-194, 2009.

http://www.jatit.org/

	1, 2 Mengjia Yin, 2 Tao Zhang, 1, 3 Xianbin Xu, 1 Jin HU, 1, 4 Shuibing He
	4. PARALLEL COMPUTING FOR SPMV MODEL BASED ON GPU
	5. Optimizations for SPMV model Based on GPU
	6. EXPERIMENT RESULTS
	7. CONCLUSION
	ACKNOWLEDGEMENTS

